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CYCLIC MODULES OF FINITE GORENSTEIN INJECTIVE
DIMENSION AND GORENSTEIN RINGS

HANS–BJØRN FOXBY AND ANDERS J. FRANKILD

Dedicated to the achievements of Phil Griffith

Abstract. The main result asserts that a local commutative Noether-
ian ring is Gorenstein, if it possesses a non-zero cyclic module of finite
Gorenstein injective dimension. From this follows a classical result by
Peskine and Szpiro stating that the ring is Gorenstein, if it admits a
non-zero cyclic module of finite (classical) injective dimension. The
main result applies to local homomorphisms of local rings and yields
the next: if the source is a homomorphic image of a Gorenstein local
ring and the target has finite Gorenstein injective dimension over the
source, then the source is a Gorenstein ring. This, in turn, applies to
the Frobenius endomorphism when the local ring is of prime equichar-
acteristic and is a homomorphic image of a Gorenstein local ring.

1. Introduction

Throughout this paper (R,m, k) is a commutative Noetherian local ring.
The Gorenstein injective dimension in the title was introduced by Enochs,

Jenda, and Xu, and it is recalled in 3.1, and for any R–module N this integer is
denoted GidR N . It is a refinement of the classical injective dimension idR N
in the sense that there is always the inequality GidR N ≤ idR N , and if idR N
is finite, then GidR N = idR N . It turns out that the ring R is Gorenstein if
and only if every R–module has finite Gorenstein injective dimension; see [6,
Chapter 6].

The title refers to the next theorem, which is the main result of the paper.

Theorem A. If there exists a non-zero cyclic R–module N with the Goren-
stein injective dimension GidR N finite, then R is Gorenstein.
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The theorem has been proved in special cases by Takahashi; see [24, (3.5)].
As an immediate consequence of our theorem it follows that R is Gorenstein
if and only if R has finite Gorenstein injective dimension as an R–module;
this is the local commutative version of the main result in Holm [16]. Another
immediate consequence is that R is Gorenstein if and only if the residue
field k has finite Gorenstein injective dimension as an R–module. Since the
Gorenstein injective dimension is a refinement of the injective dimension, the
above result implies the next result, which is [22, Théorème (5.5)].

Theorem (Peskine and Szpiro). If there exists a non-zero cyclic R–
module N with the injective dimension idR N finite, then R is Gorenstein.

Theorem A is restated in 4.5, and it is proved there. The proof relies on
two auxiliary techniques. The first involves the Bass series IMR (t) and Poincaré
series PR

M (t) for an R–module M . These series are formal power series, and
their coefficients are the Bass numbers and the Betti numbers, respectively.
The series are presented in Section 4, where also the next key result is proved.

Proposition B. To any finitely generated R–module N of finite Goren-
stein injective dimension there exists then a finitely generated R–module K of
finite Gorenstein projective dimension such that there is the next equality:

PR
N (t)tdepth R = PR

K(t) IRR(t) .

Moreover, if N is of finite (classical) injective dimension, then K has finite
(classical) projective dimension.

The second auxiliary technique requires the ring R to admit a dualizing
complex D, and it involves two categories Af(R) and Bf(R) consisting of
complexes R–modules; see 2.4 and 2.5. Here it is important that a finitely
generated R–module is of finite Gorenstein injective dimension if and only if it
belongs to Bf(R); see 3.5, which is main result in [8] by Christensen, Frankild,
and Holm. The next result is also used in the proof of Theorem A.

Proposition C. The two functors (−)∗ = RHomR(−, R) and (−)† =
RHomR(−, D) fit into the diagram

Af(R)
(−)∗

wwnnnnnnnnnnnn
(−)†

((QQQQQQQQQQQQQ

Af(R)

(−)∗

77nnnnnnnnnnnn D⊗L
R− //

B (f)(R) ,
RHomR(D,−)

oo

(−)†

hhQQQQQQQQQQQQQ

in such a way that the inner and outer triangles are both commutative, the left
pair of parallel tilted arrows as well as the right pair of parallel tilted arrows
provide dualities of categories, and the pair of horizontal arrows provides an
equivalence of categories.
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This is restated as Proposition 2.6, and it is proved there. The next result
is an application of Theorem A.

Theorem D. Assume that ϕ : R −→ S is local homomorphism such that
the source R is a homomorphic image of a Gorenstein local ring. If the tar-
get S has finite Gorenstein injective dimension over the source R, then R is
Gorenstein and S has finite Gorenstein flat dimension over R.

Endomorphisms. Let ϕ : R −→ R be a local endomorphism, let M be
an R–module, and let n be a natural number. In this setup, ϕn

M denotes M
viewed as an R–module via ϕn, that is, the abelian group M equipped with
the multiplication (r, m) 7−→ ϕn(r)m.

The next result is part of Theorem 5.5.

Theorem E. Let ϕ : (R,m) −→ (R,m) be a local endomorphism and as-
sume that R is a homomorphic image of a Gorenstein local ring. The following
conditions are then equivalent.

(i) R is Gorenstein.
(ii) GidR

ϕn

R is finite for some integer n > 1.
(iii) GidR

ϕn

R is finite for all integers n > 1.
If one of the above conditions is met, then GidR

ϕn

R = depthR = dim R.

When the local ring R is of prime characteristic p, Theorems D and E
apply, in particular, to the Frobenius endomorphism R → R , r 7−→ rp.

The Frobenius endomorphism is a particular instance of a local endomor-
phism ϕ : (R,m) −→ (R,m) such that ϕi(m) ⊆ m2 for some integer i > 1;
this condition is equivalent to the condition that for every element x from m
the sequence (ϕi(x))i>1 converges to zero in the m–adic topology. Such an
endomorphism is called a contraction. Note that ϕ in Theorem D and E is
not supposed to be a contraction.

Theorem E is a Gorenstein version of the next theorem, which is [4, (13.3)].

Theorem (Avramov–Iyengar–Miller). Let ϕ : (R,m) −→ (R,m) be
a contraction. If idR

ϕn

R is finite for some integer n > 1, then R is regular.

The last result should be compared to the classical results by Kunz [20,
(2.1)] and Rodicio [23] showing that the ring is regular precisely when the
R–module ϕn

R has finite flat dimension (or, equivalently, finite projective di-
mension). Moreover, the result [17, (6.5)] by Iyengar and Sather-Wagstaff
implies that the ring is Gorenstein exactly when the Gorenstein flat dimen-
sion of R–module ϕn

R is finite.

Organization of the paper. The main results, Theorems A, D, and
E, belong to classical homological algebra. Their proofs, however, take—of
necessity—place in the derived category D(R) of the category of R–modules.
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For now there is no suitable description of the applications of this hyperho-
mological algebra to commutative ring theory. Thus, necessary background
material is scattered throughout Sections 2–4.

2. Dualities and equivalences

2.1. Derived category. Throughout the paper, (R,m, k) is a local com-
mutative Noetherian ring. We will work within the derived category D(R);
see, for example, Gelfand and Manin [15].

The objects in D(R) are complexes of R–modules. Homological notation
is used, so when M is a complex, the differential has degree −1, that is,
∂M

n : Mn −→ Mn−1. The symbol ' denotes isomorphisms in the derived
category. If n is an integer, ΣnM denotes the complex M shifted n degrees
to the left, that is, against the direction of the differential.

The full subcategory of D(R) consisting of complexes with bounded homo-
logy is denoted D<=(R), while Df

<=(R) denotes the full subcategory of D<=(R)
consisting of complexes with each homology module finitely generated; the
objects in Df

<=(R) will be referred to as finite complexes. Each R–module M
is viewed as a complex concentrated in degree zero. Moreover, each complex
M of R–modules with homology concentrated in degree zero is isomorphic in
D(R) to the module H0(M). Thus we identify R–modules with complexes
homologically concentrated in degree zero.

The homological size of a complex M is given by its homological infimum,
its homological supremum, and its amplitude: inf M = inf{ ` | H`(M) 6= 0 },
supM = sup{ ` | H`(M) 6= 0}, and ampM = supM − inf M . We set inf ∅ =
∞ and sup ∅ = −∞, so M belongs to D<=(R) if and only if supM < ∞ and
inf M > −∞. Moreover, ampM = 0 if and only if M is isomorphic (in the
derived category) to ΣnK for some non-zero R–module K and some integer
n; namely K = Hn(M).

If M is a homologically bounded complex, then M is said to be of finite
projective dimension, finite injective dimension, or finite flat dimension, when
M is isomorphic (in D(R) ) to a bounded complex consisting of, respectively,
projective modules, injective modules, or flat modules, in which case we write,
respectively, pdR M < ∞, idR M < ∞, or fdR M < ∞. For details consult [1].

The left derived tensor product functor −⊗L
R ∼ is defined, up to isomor-

phism in D(R), by taking an appropriate projective resolution of the first
argument or of the second one. The right derived homomorphism func-
tor RHomR(−,∼) is obtained by taking an appropriate projective resolu-
tion of the first argument or by taking an appropriate injective resolution of
the second one. If M and N are R–modules, then there are isomorphisms
H`(M ⊗L

R N) ∼= TorR
` (M,N) and H`(RHomR(M,N)) ∼= Ext−`

R (M,N) for all
integers `.
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2.2. Functorial isomorphisms. The next standard isomorphisms are
used throughout the paper. To facilitate the description here, also the other
ring S is supposed to be commutative, and not all the boundedness condi-
tions imposed on the complexes are strictly necessary. Let K, L, and M
belong to D(R), let P belong to D(S), and let N belong to the derived cat-
egory D(R,S) of the category of R–S–bimodules. There are then the next
functorial isomorphisms in D(R,S).

L⊗L
R M

'−−→ M ⊗L
R L .(Comm)

(M ⊗L
R N)⊗L

S P
'−−→ M ⊗L

R (N ⊗L
S P ) .(Assoc)

RHomS(M ⊗L
R N,P ) '−−→ RHomR(M,RHomS(N,P )) .(Adjoint)

RHomR(M,RHomS(P,N)) '−−→ RHomS(P,RHomR(M,N)) .(Swap)

Moreover, there are the following evaluation morphisms.

αKNP : RHomR(K, N)⊗L
S P −→ RHomR(K, N ⊗L

S P ) and
(Tensor–eval)

βPNM : P ⊗L
S RHomR(N,M) −→ RHomR(RHomS(P,N),M) .

(Hom–eval)

• The morphism αKNP is an isomorphism, if K is finite, H(N) is
bounded, and either fdS P or pdR K is finite.

• The morphism βPNM is an isomorphism, if P is finite, H(N) is
bounded, and either pdS P or idR M is finite.

For details consult [6, A.4] and the references therein.

2.3. Dimension and depth. For a finite complex M we define its depth
and dimension as follows:

dimR M = sup{dimR H`(M)− ` | ` ∈ Z } and

depthR M = inf{ ` | H−`(RHomR(k, M)) 6= 0 } .

Here dimR H`(M) denotes the (Krull) dimension of the module H`(M). If
M is a finitely generated module, then these invariants yield the classical
depth and dimension of M . It turns out that the dimension of a complex M
equals the supremum of the numbers dim R/p − inf Mp for p ∈ Spec R; see
[10, (16.3)].

2.4. Dagger duality. In this paragraph we assume that R admits a nor-
malized dualizing complex D, that is, D is a finite R–complex, its injec-
tive dimension idR D is finite, supD = dim R, and the canonical morphism
µD : R −→ RHomR(D,D) is an isomorphism. It follows that k '
RHomR(k, D) and inf D = depthR.

When M is a finite complex, we consider the dagger dual M† =
RHomR(M,D), and the following relations hold: supM† = dimR M and
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inf M† = depthR M ; for details see [10, (16.20)]. In particular, if H(M) 6= 0
then depthR M 6 dimR M , and the Cohen–Macaulay defect of M is defined
to be the non-negative integer cmdR M = dimR M − depthR M .

If R is a homomorphic image of a local Gorenstein ring Q, then
Σdim Q RHomQ(R,Q) is a normalized dualizing complex over R. Conse-
quently, every complete local ring admits a dualizing complex. On the other
hand, if a local ring admits a dualizing complex, then it is a homomorphic
image of a Gorenstein ring by Kawasaki [19].

The contravariant functor (−)† = RHomR(−, D) carries the category
Df

<=(R) into itself, and for every finite M there is the biduality isomorphism
δM
D : M

'−−→ M† † from (Hom–eval) in 2.2. This induces the next duality of
categories.

Df
<=(R)

(−)† //
Df

<=(R).
(−)†

oo

If R is a Cohen–Macaulay ring of dimension d possessing a normalized du-
alizing complex D, then Hn(D) = 0 for n 6= d, and Hd(D) is said to be the
dualizing (or canonical) module for R; see [5, Chapter 3].

2.5. Dualizing equivalence. Let D be a dualizing complex for R and
consider the functors D ⊗L

R − and RHomR(D,−).
The Auslander categories A(R) and B(R) are full subcategories of D(R)

defined as follows.

A(R) =
{

M ∈ D<=(R)
∣∣∣∣ ηM : M

'−−→ RHomR(D,D ⊗L
R M) is an iso-

morphism in D(R), and D ⊗L
R M is bounded

}
,

B(R) =
{

N ∈ D<=(R)
∣∣∣∣ εN : D ⊗L

R RHomR(D,N) '−−→ N is an isomor-
phism in D(R), and RHomR(D,N) is bounded

}
.

The homomorphisms ηM and εN are the evaluation morphisms αDDM and
βDDN from 2.2, respectively, composed with the isomorphism RHomR(D,D)
' R. This setup was introduced in [2], where it was also pointed out that
any complex of finite flat dimension belongs to A(R), and that any complex
of finite injective dimension belongs to B(R).

The Auslander categories are defined in such a way that there are the
following equivalences of categories; the second equivalence then follows by
restriction.

A(R)
D⊗L

R− // B(R).
RHomR(D,−)

oo

Af(R)
D⊗L

R− // Bf(R).
RHomR(D,−)

oo
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In the following result we consider the two functors (−)∗ = RHomR(−, R)
and (−)† = RHomR(−, D).

2.6. Proposition. The following statements hold for the next diagram.

Af(R)
(−)∗

wwnnnnnnnnnnnn
(−)†

((PPPPPPPPPPPP

Af(R)

(−)∗

77nnnnnnnnnnnn D⊗L
R− // Bf(R) ,

RHomR(D,−)
oo

(−)†

hhPPPPPPPPPPPP

(1) The inner triangle is commutative (up to canonical isomorphism).
(2) The outer triangle is commutative (up to canonical isomorphism).
(3) The left pair of parallel tilted arrows provides a duality of categories.
(4) The right pair of parallel tilted arrows provides a duality of categories.
(5) The pair of horizontal arrows provides an equivalence of categories.

Proof. The assertion concerning the horizontal arrows follows by dualiz-
ing equivalence 2.5. The functor (−)∗ provides a duality on Af(R); see [2,
(4.1.7)] or [7, (4.7)]. The corresponding assertion concerning (−)† follows by
similar arguments; see also the proof of [6, (3.2.9)]. The commutativity of the
inner and outer triangles are up to natural isomorphisms composed by the
isomorphisms in 2.2 and the isomorphism R ' RHomR(D,D). �

3. Gorenstein homological dimensions

3.1. Gorenstein injective dimension. An R–complex I is said to be a
complete injective resolution, if it is exact and consists of injective modules,
and it is such that HomR(I ′, I) is exact for all injective R–modules I ′. An
R–module J is said to be Gorenstein injective, if it is a cokernel in a complete
injective resolution. Thus, every injective module is Gorenstein injective.

The Gorenstein injective dimension GidR M of M ∈ D<=(R) is defined to
be the infimum of the set of integers n such that there exists a complex I
consisting of Gorenstein injective modules satisfying M ' I and I` = 0 for
−` > n. (Recall that we always use homological notation.) Thus, a complex
of R–modules has finite Gorenstein injective dimension if and only if it is
isomorphic in D(R) to a bounded complex of Gorenstein injective modules.
Moreover, the Gorenstein injective dimension is a refinement of the (classical)
injective dimension, that is, GidR M 6 idR M with equality if idR M is finite;
see [6, Chapter 6].

3.2. Gorenstein projective dimension. The Gorenstein projective di-
mension GpdR M of M ∈ D<=(R) was introduced by Enochs and Jenda; it is
defined dually to the injective one above, it is a refinement of the (classical)
projective dimension, that is, GpdR M 6 pdR M with equality if pdR M < ∞;
see [6, Chapter 4].
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3.3. Gorenstein flat dimension. The definition of the Gorenstein flat
dimension GfdR M of M ∈ D<=(R) is similar to the Gorenstein injective di-
mension above. A complex F of R–modules is said to be a complete flat
resolution, if it is exact and consists of flat modules, and it is such that also
I ′ ⊗R F is exact for all injective R–modules I ′. An R–module G is said to be
Gorenstein flat, if it is a cokernel in a complete flat resolution. Thus, every
flat module is Gorenstein flat.

The Gorenstein flat dimension GfdR M of M ∈ D<=(R) is defined to be the
infimum of the set of integers n such that there exists a complex F consisting
of Gorenstein flat modules satisfying M ' F and F` = 0 for ` > n. Thus,
a complex of R–modules has finite Gorenstein flat dimension if and only if
it is isomorphic in D(R) to a bounded complex of Gorenstein flat modules.
Moreover, the Gorenstein flat dimension is a refinement of the (classical) flat
dimension, that is, GfdR M 6 fdR M with equality if fdR M < ∞. For details
consult [6, Chapter 5].

3.4. Auslander’s G–dimension. If G is a finitely generated R–module,
then it is Gorenstein projective if and only if it satisfies the next conditions.

• Ext`
R(G, R) = 0 and Ext`

R(HomR(G, R), R) = 0 for ` > 0, and
• the canonical map G −→ HomR(HomR(G, R), R) is an isomorphism,

see, for example, [6, (4.4.6)]. Auslander’s Gorenstein dimension G–dimR M of
a finite R–complex M is defined to be at most n exactly when M is isomorphic
in D(R) to a bounded complex G such that G` = 0 for ` > n, and such that
each G` is a finitely generated R–modules satisfying the above two conditions;
see [6, (2.3.2)]. By [8, (3.8)] G–dimR M = GpdR M = GfdR M for any finite
complex M .

Moreover, [6, (3.1.11)] yields G–dimR M < ∞ if and only if M ∈ Af(R).
The last result is extended by the next one, which is the main theorem in
Christensen, Frankild and Holm [8].

3.5. Finiteness of Gorenstein dimensions. Let R be a homomorphic
image of a Gorenstein ring. If M is an R–complex, then the following are
equivalent.

(i) M belongs to A(R).
(ii) M has finite Gorenstein projective dimension, that is, GpdR M < ∞.
(iii) M has finite Gorenstein flat dimension, that is, GfdR M < ∞.

Furthermore, if N is an R–complex, then the following are equivalent.
(i) N belongs to B(R).
(ii) N has finite Gorenstein injective dimension, that is, GidR N < ∞.

For details consult [8, (4.1) and (4.4)].
The next result on completion and Gorenstein injective dimension is due

to Christensen, Frankild, and Iyengar. We thank Christensen and Iyengar
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for allowing us to include it here. Note that it does not require R to be a
homomorphic image of a Gorenstein ring.

3.6. Theorem. Let R be a local ring, and let M be a finite R–complex. If
M has finite Gorenstein injective dimension over R, then M ⊗R R̂ has finite
Gorenstein injective dimension over R̂.

Proof. Let KR be the Koszul complex on a set of generators for the maxi-
mal ideal m. Because the homology modules of KR have finite length, there
is a isomorphism KR ' R̂ ⊗R KR in D(R). By flatness of the completion
map R −→ R̂, a minimal set of generators for m extends to a minimal set
of generators of m̂; in particular, K

bR = R̂ ⊗R KR is a Koszul complex on a
minimal set of generators for m̂. Moreover, the isomorphism of R–modules
R/m ∼= k ∼= R̂/m̂ together with the fact that H`(KR) ∼= H`(K

bR) for all ` ∈ Z
shows that KR ' K

bR (in D(R)); we set K = K
bR.

Under the present assumptions on M , the complex

N = M ⊗R KR ' M ⊗R K ' (M ⊗L
R R̂)⊗ bR K

has finite Gorenstein injective dimension over R; see [9, (5.5)(c’)]. Note that
the homology modules of N have finite length since M is finite. Hence there
is an isomorphism

N
'−−→ HomR(HomR(N,ER(k)),ER(k)) .

Here ER(k) denotes the injective envelope of the R–module k. In particular,

GidR HomR(HomR(N,ER(k)),ER(k)) < ∞

and, therefore, GfdR HomR(N,ER(k)) is finite by [6, (6.4.2)]. As the homology
modules of HomR(N,ER(k)) has finite length, the complex

(∗) HomR(N,ER(k))⊗R R̂ ' HomR(N,ER(k))

has finite Gorenstein flat dimension over R̂. Thus, using (∗) and (Adjoint)
from 2.2 we conclude

N
'−−→ Hom bR(HomR(N,ER(k)),ER(k))

has finite Gorenstein injective dimension over R̂ by [8, (5.1)]; this uses the
fact that the complete ring R̂ admits a dualizing complex D. From [8, (4.4)]
it follows that the complex

RHom bR(D,N) ' RHom bR(D,M ⊗L
R R̂)⊗LbR K
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is homologically bounded. Thus, from [13, 1.3] it follows that the complex
RHom bR(D,M ⊗L

R R̂) is homologically bounded as well. Consider the com-
mutative diagram

(M ⊗L
R R̂)⊗LbR K D ⊗LbR RHom bR(D, (M ⊗L

R R̂)⊗LbR K)
ε

bR
(M⊗L

R
bR)⊗LbRK

'
oo

'
��

(M ⊗L
R R̂)⊗LbR K (D ⊗LbR RHom bR(D,M ⊗L

R R̂))⊗LbR K
(ε

bR
M⊗L

R
bR)⊗LbRK

oo

where the rightmost vertical isomorphism is by (Tensor-eval) and (Assoc)
in 2.2. Again, using [13, 1.3] and a standard mapping cone argument, it
follows that ε

bR
M⊗L

R
bR is a isomorphism. Whence, M⊗R R̂ ' M ⊗L

R R̂ has finite

Gorenstein injective dimension over R̂ by [8, (4.4)]. �

4. Bass and Poincaré series

4.1. Bass and Poincaré series. For a finite R–complex M and an inte-
ger `, the ` th Bass number and the ` th Betti numbers are, respectively, the
next vector space dimensions over the residue field k:

µ`
R(M) = rankk H−`(RHomR(k, M)) and βR

` (M) = rankk H`(k ⊗L
R M) .

The ring of formal Laurent series with integer coefficients is denoted Z(|t|);
its elements have the form

∑
`∈Z a`t

` with a` ∈ Z and a` = 0 for ` � 0. For
a finite R–complex M the Bass series IMR (t) and the Poincaré series PR

M (t)
are elements in Z(|t|) defined as follows.

IMR (t) =
∑
`∈Z

µ`
R(M)t` and PR

M (t) =
∑
`∈Z

βR
` (M)t` .

The Bass series for the ring is denoted IR(t), and the ring R is Gorenstein
precisely when IR(t) = ts for some integer s. If D is a finite R–complex,
then D is a normalized dualizing complex if and only if IDR (t) = 1. The next
equations for Bass and Poincaré series will be important later. The first two
are proved in [2, (1.5.3)], while the last two are proved in [12, (4.3)].
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4.2. Bass–Poincaré equalities. For finite complexes M and N there are
the next equalities of formal Laurent series, that is, equalities in Z(|t|).

PR
M⊗L

RN (t) = PR
M (t) PR

N (t) .(PP)

IRHomR(M,N)
R (t) = PR

M (t) INR (t) .(PI)

IM⊗L
RN

R (t) = IMR (t) PN
R (t−1) provided pdR N < ∞ .(IP)

PR
RHomR(M,N)(t) = IMR (t) IRN (t−1) provided idR N < ∞ .(I I)

4.3. Proposition. Let R be a homomorphic image of a Gorenstein ring,
and let N be a finite R–complex of finite Gorenstein injective dimension.
There exists then a finite R–complex K of finite Gorenstein projective dimen-
sion with inf K = inf N and amp K 6 amp N such that there is the next
equality of formal Laurent series.

PR
N (t)tdepth R = PR

K(t) IR(t) .

If N is of finite (classical) injective dimension, then K has finite (classical)
projective dimension.

Proof. Throughout the proof, we let D be a normalized dualizing com-
plex, and set M = N†, L = RHomR(D,N), and s = depthR. Note that
depthR M = inf N by 2.4. As N belongs to Bf(R) by 3.5, Lemma 2.6 yields
that M and L belong to Af(R), and that L∗ ' M and M∗ ' L. As M belongs
to Af(R), the G–dimension of M is finite by 3.5. Whence, by [6, (1.2.7) and
(1.4.8) ] we obtain

inf L = inf M∗ = −G–dimR M = depthR M − depth R = inf N − depth R.

Next, [6, (A.4.6)] yields the inequality

supL = supRHomR(D,N) 6 − inf D + supN = supN − depth R.

The last equality is by 2.4. Hence, amp L 6 amp N . Set K = ΣsL, which has
finite Gorenstein projective dimension as it belongs to Af(R). It still remains
to prove the equation for the Laurent series. Recall that s = depthR. The
computation

K∗† ' ((ΣsL)∗)† = (Σ−sL∗)† ' (Σ−sM)† = ΣsM† ' ΣsN

yields the next isomorphism.

(4.3.1) N ' Σ−sK∗†.

Using that IDR (t) = 1 by 2.4 and that PR(t) = 1, the formulae (II) and (PI)
in 4.2 yields the equalities

PR
N (t) = PR

Σ−sK∗†(t) = t−s PR
K∗†(t) = t−s IK

∗

R (t) = t−s PR
K(t) IR(t).
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Finally, if idR N is finite, it follows that pdR N† is finite as well, and this
implies that pdR N† ∗ < ∞, that is, pdR K < ∞. �

4.4. Remark. When the finite complex N from Proposition 4.3 is a mo-
dule, the finite complex K is also a module, and it has finite Gorenstein pro-
jective dimension. If the ring R is complete, then it is possible to use results
in [14, Section 2] to prove that K ∼= Exts

R(ER(k), N), where s = depthR. The
latter module was used by Peskine and Szpiro in the proof of their theorem
mentioned in the introduction.

4.5. Theorem. If there exists a non-zero cyclic R–module N with the
Gorenstein injective dimension GidR N finite, then R is Gorenstein.

Proof. Note first that we may assume that R is complete and thus possesses
a dualizing complex; see 3.6. As N is cyclic, we have N ∼= R/ AnnR N , and
hence the constant term in PR

N (t) is 1. Thus, the equlity of power series
in 4.3 yields that the constant term in PR

K(t) is also 1. In particular, the
module K occurring in 4.3 is cyclic; whence K ∼= R/ AnnR K. The formula
(4.3.1) gives that AnnR N ⊇ AnnR K. Applying the functor (−)†∗ to (4.3.1)
we obtain the equation K ' ΣsN†∗. This yields AnnR N ⊆ AnnR K. Thus
AnnR N = AnnR K, and it follows that N ∼= K, so the equation in 4.3 implies
that IR(t) = ts, that is, R is Gorenstein. �

4.6. Cohen–Macaulay injective dimension. Theorem 4.6 below is an
immediate consequence of 4.5, and it characterizes Cohen–Macaulay rings
in terms finiteness of the Cohen–Macaulay injective dimension introduced
by Holm and Jørgensen [18]. Recall from [7] that a finitely generated R–
module C is semi-dualizing if the natural homomorphism R −→ HomR(C,C)
is an isomorphism and Exti

R(C,C) = 0 for all i > 0, that is, the homothety
morphism R −→ RHomR(C,C) is an isomorphism in D(R).

The Cohen–Macaulay injective dimension of an R–module M is defined as

CMidR M = inf{GidRnC M |C is a semi-dualizing module overR }.

Here R n C denotes the trivial extension ring; it is the R–module R × C
equipped with the multiplication (r, c)(r′, c′) = (rr′, rc′ + r′c). If (R,m, k) is
local, then so is (R n C,m × C, k). The ring homomorphism R n C −→ R
defined by (r, c) 7−→ r turns every R–module into an R n C– module; if N is
cyclic over R, then it is so over R n C. Finally, the module C is a dualizing
module precisely when the ring R n C is Gorenstein; for details see Foxby
[11].

4.6. Theorem. If there exists a non-zero cyclic R–module N with the
Cohen–Macaulay injective dimension CMidR N finite, then R is Cohen–-
Macaulay with dualizing module. �
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5. Local homomorphisms

In this section we apply Theorem 4.5 to a local homomorphism of local
rings ϕ : (R,m, k) −→ (S, n, `).

5.1. Cohen factorizations. In this section we will use the Cohen factor-
izations of local homomorphisms introduced in Avramov, Foxby, and Herzog
[3]. A Cohen factorization of ϕ is a commutative diagram of local homomor-
phisms

R′

ϕ′

    @
@@

@@
@@

@

R

·
ϕ

>>}}}}}}}
ϕ

// S

such that ϕ′ is surjective, and ϕ̇ is flat with the closed fiber R′/mR′ a regular
ring and with the target R′ complete.

Cohen factorizations often exist: the semi-completion ϕ̀ : R −→ S −→ Ŝ
always admits a Cohen factorization; see [3, (1.1)].

5.2. Theorem. If ϕ : R −→ S is a local homomorphism and R is a ho-
momorphic image of a Gorenstein ring, then GidR S < ∞ if and only if R is
Gorenstein.

Proof. If R is Gorenstein, then GidR S is finite. Next, assume that GidR S

is finite. Lemma 5.3 below implies that GidR Ŝ is finite as well. Choose
a Cohen factorization R −→ R′ −→ Ŝ of the semi-completion ϕ̀, and note
that 5.3 below yields that also the cyclic R′–module Ŝ has finite Gorenstein
injective dimension. Thus, it follows from the main theorem 4.5 that R′ is
Gorenstein, and by flat descent [21, (23.4)], so is R. �

5.3. Lemma. Assume R is a homomorphic image of a Gorenstein ring.
Let ϕ : R −→ S be a local homomorphism, let R −→ R′ −→ Ŝ be a Cohen
factorization of its semi-completion, let N be a bounded complex of S–modules,
and set Ñ = N ⊗R Ŝ . The next numbers are then simultaneously finite.

GidR N, GidR Ñ , and GidR′ Ñ

Proof. Let D denote the normalized dualizing complex for R. According
to [8, thm. 4.4] we are required to show the following two equivalences

N ∈ B(R) ⇐⇒ Ñ ∈ B(R) ⇐⇒ Ñ ∈ B(R′) .

The latter equivalence follows from the second part of [8, (5.3)].
To establish the former one, note that as the completion Ŝ is flat over S

there is the isomorphism RHomR(D,N)⊗L
S Ŝ

'−−→ RHomR(D, Ñ). Thus, the
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homology of RHomR(D, Ñ) is bounded if and only if that of RHomR(D,N)
is. Moreover, from the commutative diagram

Ñ D ⊗L
R RHomR(D, Ñ)

εRfNoo

N ⊗L
S Ŝ D ⊗L

R RHomR(D,N)⊗L
S Ŝ

'

OO

εR
N⊗

L
R

bSoo

it follows that εReN and εR
N are simultaneously isomorphisms. �

The following result is [17, (8.14) and (8.15)] and it concerns contractions.

5.4. Theorem (Iyengar–Sather-Wagstaff). Let ϕ : (R,m) −→ (R,m) be
a contraction, that is, ϕi(m) ⊆ m2 for some integer i > 1. The following
conditions are then equivalent.

(i) R is Gorenstein.
(ii) GfdR

ϕn

R is finite for all integers n > 1.
(iii) There exists a finite R–complex P with H(P ) 6= 0 and pdR P finite

such that GfdR
ϕn

P is finite for some integer n > 1.
If one of the above equivalent conditions is satisfied, then GfdR

ϕn

R = 0.

What follows may be thought of as a Gorenstein injective version of the
above. However, the result is not restricted to contracting endomorphisms.

5.5. Theorem. Let ϕ : (R,m) −→ (R,m) be a local homomorphism, and
assume that R is a homomorphic image of a Gorenstein ring. The following
conditions are equivalent

(i) R is Gorenstein.
(ii) GidR

ϕn

R is finite for all integers n > 1.
(iii) There exists a finite R–complex P with H(P ) 6= 0 and pdR P finite

such that GidR
ϕn

P is finite for some integer n > 1.

Proof. The equivalence of (i) and (ii) results from Theorem 5.2. Clearly
(iii) is stronger than (ii), and it is trivial that (i) implies (iii). �

If the equivalent conditions of the theorem are satisfied, then it is possible
to prove that GidR

ϕn

R = depthR = dim R. However, because the only proof
that the remaining author knows is quite long, it has been left out to keep
this article at a reasonable length.
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