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Introduction

Throughout this paper we assume that all rings are commutative, noether-
Jan rings with unit and that all modules are finitely generated and unitary.
The main object of study is what it means about two modules A and B over
an unramified regular local ring to assert that the torsion submodule of A (R) B
is zero. The basic fact established (see 3) is that if A (R) B is torsion-free
and not zero, then

(a) A and B are torsion-free,
(b) Tor (A, B) 0 for all i > 0, and
(c) hdA +hdB hd(A (R)B) <.dim R,

where hd A means the homological dimension of A (we refer the reader to
[1] for notation and basic homological facts used). Using this result we give
the following criteria for a module A over an unramified regular local ring R
of dimension n to be free" (a) The tensor product of A with itself n-times
is torsion-free; (b) A (R) A (R) Horn(A, R) is torsion-free. Section 3 con-
cludes with some results which seem to indicate that the module theory of
odd-dimensional unramified regular local rings is different from the module
theory of even-dimensional unramified regular local rings.
The proofs of most of the results, including those just mentioned, are based

in an essential way on the fact established in 2 that for an unramified regular
Tor (A, B) 0 for some R-local ring R and a torsion-free R-module A if

module B, then Tor(A, B) 0 for all j >- i. In fact, if this property of
Tor can be established for arbitrary regular local rings, then almost all the
results of this paper extend immediately to all regular local rings.

1. Some properties of Tor
Before proceeding to the main results of this section we review briefly some

of the basic facts concerning the codimension of a module as can be found for
instance in [1] or [2].

Let R be a local ring with maximal ideal m and A a nonzero R-module. A
sequence of elements xl, xt in m is called an A-sequence if xl is not a
zero-divisor in A and xi is not a zero-divisor for A/(xl,..., ,xi_)A for all
i 2, t. If x,..., xt is an A-sequence, then it is easily seen that

<= dim R (where dim R means the Krull dimension of R). Thus it makes
sense to talk about maximal A-sequences. It can be shown that all maximal
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A-sequences have the same length, and we call this common length the co-
dimension of A (notation: codim A).
The codimension of a module has several important properties. Codim A

0 if and only if there is an element in A whose annihilator is m, or what
amounts to the same thing, there is an exact sequence 0 Rim A. If
the homological dimension of A (notation: hd A) is finite, then

hd A + codim A codim R.

Finally we observe that it follows easily from primary decomposition theory
of modules that if A1,... An are nonzero R-modules each of codimension
greater than 0, then there is a single element x in m which is not a zero-divisor
for all the A.

PROPOSITION 1.1. Let A and B be R-modules where R is a local ring with
maximal ideal m. If hd A s < and codim B O, then Tor(A, B) 0
and has codimension zero.

Proof. It is well known that an R-module C is free if and only if
Tor(C, R/m) O. From this it follows that if Tor(C, R/m) 0 for
some i > 0, then hd C < i.

Since codim B 0, there is an exact sequence 0 -- Rim ----> B Bt1 -- O.
The fact that hd A s gives us the exact sequence

0 -- Tor(A, R/m) -- Tor(A, B).

T RBy our previous observation we know that or8 (A, R/m) 0. Since
m Tor(A, R/m) 0, it follows that codim Tor(A, R/m) 0 which
gives the desired result.

THEOREM 1.2. Let A and B be nonzero modules over the local ring R such
that hd A s < . Let q be the largest integer such that Torq(A, B) 0.

If either codim (Torq(A, B)) __< 1 or q O, then we have

codim B codim (Torq(A, B)) + hd A q.

Proof. Part 1. Suppose codim (Torq(A, B) -< 1. Proceed. by induc-
tion on codim B. If codim B 0, then the result is nothing more than a
restatement of Proposition 1.1.

Suppose codim B / > 0. Let x in the maximal ideal of R be a nonzero
divisor for B alone or for B and Torq(A, B) depending on whether
codim (Torq (A, B)) is zero or one. From the exact sequence

O ---+ B B ---> B/xB --- 0we deduce the exact sequence
R R-- Torq+l(A, B) -- Torq+l(A, B/xB) -- Torq (A, B)

(,)
X Worq (A, B) -- Worq (A, B/xB) ---....
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Thus we have that Tor(A, B/xB) 0 for p > q + 1 since Tor(A, B) 0
for p > q.
Now if codim (Torq (A B) 0, then RTorq +I(A, B/xB) # 0 and has

codimension zero. Using the fact that 1 + codim (B/xB) codim B and
that B/xB satisfies the inductive hypothesis, it is easily seen that the theorem
has been established in the case codim (Torq(A, B)) 0.

Suppose codim (Torq(A, B)) 1. Since x is not a zero-divisor for
Torq(A, B), it follows from the exact sequence (.) that

(a) 0 --+ Torq (A, B) Torq (A, B) Torq (A, B/xB) is exact, and
(b) Tor(A,B/xB) 0forp > q.
It follows from (a) that Tor(A, B/xB) contains a submodule of codimen-

sion zero, and thus that codim (Torq(A, B/xB)) O. Noting that

and
1 codim (B/xB) codim B

1 + codim (Tor (A, B/xB) codim (Torq (A, B) ),

and that B/xB satisfies the inductive hypothesis, we obtain the desired result
in the case codim (Torq (A, B) 1, and thus the proof of Part 1 is complete.

Part 2. Suppose thatq 0, i.e., Tor(A,B) 0forp > 0. Then we
want to show that codim B codim (A (R) B) + hd A. Proceed by induc-
tion on codim (A (R) B). If codim (A (R) B) 0, we are back in the part
of the theorem already established in Part 1.

Suppose codim (A (R) B) / > 0. Then codim B > 0. For if
codim B 0, then we have by Proposition 1.l that A is free, and thus
codim (A (R) B) codim B 0, which is a contradiction. Let x in the
maximal ideal of R be a nonzero divisor for B and A (R) B. From the exact
sequence

0 ---> B x_ B ---+ B/BxB 0

we deduce the usual exact Tor sequence (.) of Part 1. It follows from (.)
that

(a) since Tor(A, B) 0 for p > 0, we have that Tor(A, B/xB) 0
for p > 1;

(b) 0--Tor(A,B/xB) A (R) B A (R) B A (R) B/xB 4. 0 is
exact.

Since x is not a zero-divisor for A (R) B, we have that Tor(A, B/xB) 0
and 1 + codim (A (R) B/xB) codim (A (R) B). Therefore we can apply
the inductive hypothesis to B/xB which tells us that

codim (B/xB) codim (A (R) B/xB) + hd A.

From this it follows that codim (B) codim (A (R) B) hdA. This
completes the proof of Part 2 of the theorem, which establishes the entire
theorem.
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COROLLARY 1.3. Let R be a local ring, A and B R-modules of finite homo-
logical dimension. If Tor(A, B) 0 for all p > O, then hd A hd B
hd (A (R) B).

Proof. We first show that hd (A (R) B) < . Let X and Y be finite
projective resolutions of A and B respectively. Since Tor(A, B) 0 for
all p > 0, the complex X (8). Y is acyclic and thus a finite projective resolu-
tion of A (8) B. Therefore hd (A (R) B) < .
Now suppose that codim R n. Then as observed before for an R-mod-

ule C we have that hd C -[- codim C n if hd C < . Since the homologi-
cal dimensions of A, B, and A (R) B are finite, the relation

codimB codim (A (R) B) -t-hdA

proved in Theorem 1.2 yields the desired result that

hdA +hdB hd(A (R)B).

Remart. Theorem 1.2 can be established in the case R is a regular local
ring by standard spectral sequence arguments.
Remart. It would be interesting to know if the formula codim B-

codim (Torq(A, B)) -t- hd A q of Theorem 1.2 is valid without the addi-
tional assumptions made on q and codim (Torq (A, B)).

2. Rigid complexes
Let R be a ring, X a complex of R-modules, and a set of R-modules.

Then X is said to be rigid with respect to the set if each module A in has
the property that Hi(X (R) A) 0 implies that H(X (R) A)) 0 for all
j -> i. For the purposes of this paper the most important example of a rigid
complex is that of a Koszul complex. Let R be a noetherian ring, and
xl,.-., x8 elements in R. For each i 1,..., s define Ci to be the
complex

- (C); ... (C)- (C)0- 0,

where (C). 0 for all j > 1 and all i 1,... s, and where (C)1
(C)0 Rforalli 1,... s. The complex C1(8) (R) C8 is called the
Koszul complex on xl,... x, (see [2]). According to [2, 2.6] a Koszul
complex is rigid with respect to the set of all finitely generated modules over
the noetherian ring R. We now use this fact to show that over unramified
regular local rings projective resolutions of finitely generated torsion-free R-
modules are rigid with respect to all finitely generated modules where an
unramified regular local ring is defined as follows. We say that a regular
local ring R is ramified ff R has characteristic zero while its residue class
field has characteristic p 0 and p is in m where m is the maximal ideal of R.
If R is not ramified, we say that it is unramified. It is obvious that if the
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characteristic of R is the same as its residue field (i.e., if R contains a field),
then R is unramified.
Now we observe that if R is a local ring, C a complex of R-modules, and A

an R-module, then C is rigid with respect to A if and only if ( is rigid with
respect to fl, where/ denotes the completion of the R-module E with respect
to the m-adic topology of R. This follows from the well known fact that the
completion of H/(C (R) A) is isomorphic to H/(( (R) fl) for all i and the
fact that the completion of a module is the zero module if and only if the
module is the zero module.

THEOREM 2.1. Let R be a regular local ring of equal characteristic. If X
is a projective resolution for a module A, then X is rigid with respect to all R-mod-
ules (i.e., with respect to all finitely generated R-modules).

Suppose R is an unramified regular local ring of characteristic 0 whose
residue class field has characteristic p. Then a projective resolution of an R-
module A for which p is not a zero-divisor, is rigid with respect to all R-
modules (finitely generated).

Proof. Let R be a regular local ring of equal characteristic. As observed
before, it suffices to prove the theorem in the case that R is a complete regular
local ring of equal characteristic. By Cohen’s well known structure theorem
R k[[X1 Xn]], the ring of formal power series over the residue class
field k of R. Now Serre has shown in [7; Chapter V, Part B] that

ktxlj (A B) TorIIx’ rj (k[[X]] A k B) for all i,or/

where k[[X]] denotes k[[X, ..., X]], where k[[X, Y]] denotes
/[[X1, X, Y1, Y]], where k[[X]] is considered a k[[X, Y]]-module
by means of the ring epimorphism X/-- X/and Y/- X/, and where A ) B
is a finitely generated k[[X, Y]]-module called the complete tensor product of
the ][[X]]-modules A and B. Since the kernel of k[[X, Y]] -+ k[[X]] is gener-
ated by the k[[X, Y]]-sequence X1- Y,..., Xn- Yn, we know by
[2, 2.8] that the Koszul complex of X Y, X Yn is a/[[X, Y]]-

tlx, rl B) O,projective resolution of k[[X]]. Therefore if or (k[[X]] A
then as observed before

TortIx’r(k[[X]], A B) 0 for all j __> i.

Thus if TorIx (A, B) 0, then TorIx (A, B) 0 for all j >_- i. There-
fore we have that a projective resolution of A is rigid with respect to any
k[[X]]-module B, which establishes the first part of the theorem.
Now suppose R is an unramified regular local ring of characteristic zero

whose residue class field is of characteristic p 0. Since p is a nonzero
divisor for an R-module E if and only if p in / is a nonzero divisor for/
(this follows from the fact that/ is R-fiat and/ E (R)/), it follows that
it suffices to prove the second part of the theorem also in the case R is corn-
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plete. Again by a well known structure theorem of Cohen we know that
R k[[X1,..., Xn]] where /c is a complete discrete rank-one valuation
ring. If A and B are R-modules such that p is not a .zero-divisor for A,
then Serre has shown [7, Chapter V, Part B]

k[lX Yl]Tor.lxlJ (A, B) lor (][[X]], A k B),

where k[[X]] k[[X1,.-., Xn]], where

lc[[X, Y]] k[[X1 ,-.., Xn, Yl ,’", Y]],

where k[[X]] is considered a k[[X, Y]]-module by means of the ring epimorphism
k[[X, Y]] --+ k[[X]] given by X -- X and Y -- Xi, and where A k B is a
finitely generated k[[X, Y]]-module called the complete tensor product of A
and B. Since the kernel of k[[X, Y]] -- ][[X]] is generated by the k[[X, Y]]-
sequence X1- Y, X- Y we can now proceed to establish the
second part of the theorem using similar arguments to those used in the equal
characteristic case.
We have as an immediate consequence of this theorem

COROLLnY 2.2. Let R be an unramified regular local ring, and A a torsion-

free R-module. Then a projective resolution of A is rigid with respect to all
R-modules.

Remark. It would be very interesting to know for arbitrary local rings
(or t least for arbitrary regular local rings) which modules hve projective
resolutions which are rigid with respect to all finitely generated modules.
In particular it would be nice to know if Corollary 2.2 holds for arbitrary
regular local rings.

3. Criteria for freeness
Throughout this section we assume for ease of exposition that all local rings

are unramified regular local rings (unless stated to the contrary), even though
some of the results can be stated in slightly more general terms.
The principal tool of this section is the following"

LEMMA 3.1. Let R be an unramified regular local ring (dim R > 0), and let
A and B be nonzero R-modules such that A (R) B is torsion-free. Then

A and B are torsion-free,
(b) Tor(A, B) O for all i > O,
(c) hd(A) -t- hd(B) hd(A (R) B) < dim R.

Proof. We first prove (a) and (b) under the additional hypothesis that A
is torsion-free.

Let 0 -+ B -- B -, B" -- 0 be exact with B’ the torsion submodule of B.
Then

(**) Tor(A, B’) --A (R) B’--A (R) B--A (R) B" ---0
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is exact. Since B’ is a finitely generated torsion module, it has a nontrivial
annihilator, and thus so does A (R) B’. But by hypothesis A (R) B is torsion-
free. Therefore the map A (R) B’ -+ A (R) B is the zero map, or what is the
same thing, A (R) B A (R) B". From this we have that A (R) B" is torsion-
free. Since we are assuming that A is a torsion-free, finitely generated R-
module, we know that there exists an exact sequence 0 ---+ A -+ F -+ F/A ---+ 0
with F a finitely generated free R-module. From this exact sequence we
deduce the exact sequence 0 -. Tor(F/A, B" A (R) B" --+ F (R) B".
Since A (R) B" is torsion-free and Tor(F/A, B") is a torsion module (all
Tori are torsion modules for i > 0) it follows that the map

Wor(F/A, B" ---+ A (R) B"

is the zero map. Therefore we have that Tor(F/A, B") O. The fact
that B" is torsion free, enables us to apply Corollary 2.2 to conclude that
Wor(F/A, B") 0 for all i > 0. But Wor(A, B") , Tor+I(F/A, B")
for all j -> 1 since F is free and 0 ---+ A ---+ F 7. F/A ---+ 0 is exact. Therefore
we have that Tor (A, B") 0 for all j > 0.

Going back to the exact sequence (**), we have that A (R) B’ 0 since
Tor(A, B") ---+ A (R) B’ is an epimorphism and Tor(A, B") 0. But
A 0 by hypothesis. Therefore B’ 0 since the tensor product of two
finitely generated modules over a local ring can be zero if and only if one of the
modules is the zero module. Therefore we have established that if A and B
are nonzero R-modules such that A and A (R) B are torsion-free, then B is
torsion-free, and Tor(A, B) 0 for all j > 0.

Let us now return to the proof of the desired proposition. Assume that
A (R) B is a nonzero torsion-free R-module, but make no further assumptions
regarding A and B.

Let 0 -+ A’ -+ A -+ A" --+ 0 be exact with A’ the torsion submodule of A.
Tensoring this exact sequence with B we have that A (R) B A"(R) B
since A’ (R) B is a torsion module and A (R) B is torsion-free. Therefore
A" (R) B is a nontrivial torsion-free module. Since A" and A" (R) B are non-
trivial torsion-free modules, it follows from what has already been established
that B is torsion-free. Hence we have that B and A (R) B are nontrivial
torsion-free R-modules. Applying again what has been established before,
we have that A is torsion-free and Tor(A, B) 0 for i > 0. Thus parts
(a) and (b) of the lemma have been established.

(c) From the fact that Tor(A, B) 0 for i > 0, we have by Corollary
1.3 that hd A -k hd B hd (A (R) B). Since A (R) B is torsion-free, we know
that codim (A (R) B) > 0, and therefore that hd (A @ B) < dim R. Thus
the proof of the lemma is complete.

Remark. In the proof of parts (a) and (b) the only hypothesis on R that
was used was that R is a domain and that projective resolutions of torsion-
free R-modules are rigid. Thus if this fact about torsion-free R-modules
holds for arbitrary regular local rings, then Lemma 3.1 and all of the conse-
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quences of it derived in the rest of this section are valid for arbitrary regular
local rings.

THEOREM 3.2. Let R be an unramified regular local ring of dimension n > O.
An R-module A is free if and only if the n-fold tensor product of A (i.e.,
A (R) (R) A n-times) is torsion-free.

Proof. If A is R-free, then certainly the n-fold tensor product of A is
torsion-free. Suppose the n-fold tensor product of A is torsion-free. If
it is zero, then A 0 and is thus free. If the n-fold tensor product is not
zero, then we have by Lemm 3.1 that n(hd A) < dim R n. Since hd A
is an integer greater than or equal to zero, we have that hd A 0 or A is
free.

It should be observed that Theorem 3.2 is the best result along these lines
that is possible. For let R be an arbitrary regular local ring of dimension
n -> 3, let C be an R-module such that hd C n, and let

O -- A ---> Xn_2.---> -- Xo----) C--> O

be an exact sequence with the X projective R-modules. Then it is not dif-
ficult to see that hd A 1 and that the (n 1)-fold tensor product of A
is torsion-free. Of course the n-fold tensor product is not torsion-free. Thus
the dimension of R is the smallest integer n which can be used to test whether
or not module is free by looking at the torsion submodule ot the n-fold
tensor product. However it is possible to give other criteria for freeness by
looking at the torsion submodule of the tensor product of modules which are
independent of the dimension of R if one makes additional assumptions about
the module A. Before going on with these other criteria we need a few ob-
servations.

Let R be a ring and A an R-module. We denote the R-module Hom, (A, R)
which we will call the dual of A by A*. We shall say that an R-module A
is reflexive if the natural map f:A -- A** given by f(a)(g) g(a) for all a
in A and g in A* is an isomorphism. It is well known that if A is projective,
then A is reflexive.

PROPOSITION 3.3. Let R be a noetherian, integrally closed domain, A a

torsion-free R-module. Then A is projective if and only if A (R) A* is reflexive.

Proof. It is easily seen that if A is projective, then so is A* and A (R) A*.
Thus if A is projective, then A (R) A* is reflexive.
Suppose A (R) A* is reflexive. Then A (R) A* is torsion-free. Since A

is torsion-free, Hom(A, A) is torsion-free. Now it is well known that the
mapping h’A (R) A* Hom,(A, A) given by h(a (R) f)(x) f(x)a for
all a and x in A and f in A* is an isomorphism if and only if A is projective
(see for instance [4, A.1]). Now if V A (R) K where K is the field of quo-
tients of R we have a commutative diagram
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0 0

A @ A* --, HomR(A, A)

V (R) V* HomK(V, V)

with exact columns since A (R) A* and HomR(A, A) are torsion-free and
Hom and (R) commute with passing to rings of quotients. Therefore we have
that h:A (R) A*---- Hom(A, A) is a monomorphism and A (R) A* and
Hom,(A, A) have equal ranks (i.e., after tensoring with K the derived
vector spaces have the same dimension over K). Since R is a normal and
A (R) A* is reflexive, it follows from [3, 3.4] that in order to show that the
monomorphism h is onto, it suffices to show that h induces an isomorphism
when one passes to the ring of quotients R for each minimal ideal in R.
But A is a torsion-free R-module. Therefore A. is a finitely generated
torsion-free module over the principal ideal ring R, and is thus R,-free. Hence
h induces the desired isomorphism when one passes to R for each minimal
prime ideal in R. Thus h is an isomorphism, i.e., A is a projective R-
module.

LEMMA 3.4. If R is an unramified regular local ring, then R, is an unrami-
fled regular local ring for each prime ideal in R.

Proof. It suffices to consider only the case that R has characteristic zero
and the residue class field has characteristic p rs 0. Let be a prime ideal
in R. If does not contain p, then R, contains the field of rational numbers
and is thus unramified. Suppose p is in . Since p is in m m2, we know
that R/(p) is a regular local ring. Therefore R/pR is a regular local ring,
which shows that p is not in the square of the maximal ideal of R,. There-
fore R is unramified.

PIOrOSWoN 3.5. Let A and B be nonzero modules over the unramified
regular local ring R which satisfy the conditions: (a) for each prime ideal in R
such that A is R-free we have that B, is R,-free, and (b) A (R) B is torsion-free.
Then B is reflexive.

Proof. We proceed by induction on dim R. Suppose that dim R -< 2.
Then we claim that B is free and thus reflexive. For if A is free, then by
the hypothesis B is free. If A is not free, then A is torsion-free by Lemma
3.1 and thus has homological dimension 1. But since by Lemma 3.1 we
have that hd A -4- hd B hd(A (R) B) < 2, it follows that B is free.

Suppose dim R k > 2 and the proposition is valid for dim R < k. Since
A (R) B is torsion-free, we know that B is torsion-free, and we therefore have
the exact sequence 0 -- B B** ---> B**/B ---+ O. Since R is unramified for
each prime ideal in R (see Lemma 3.4), we have by the inductive hypothesis
that Br is reflexive for each prime which is not the maximal ideal of R.
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Therefore (B**/B), 0 for each prime ideal in R other than the maximal
ideal of R. Thus B**/B has finite length. If B**/B O, then

hd(B**/B) k.

Since hd(B**) =< k 2 (see [4, 4.7]), it follows that hd B lc 1. But
by Lemma 3.1 we know that hd A q- hd B < k since A (R) B is torsion-free.
Therefore hd A 0, which in view of the hypothesis means that hd B 0,
which is a contradiction. Thus B**/B O, or in other words B is reflexive.
Combining Propositions 3.3 and 3.5 we obtain

THEOREM 3.6. Let R be an unramified regular local ring and A an R-module.
Then we have that

(a) If A (R) A is torsion-free, then A is reflexive.
(b) If A (R) A (R) A* is torsion-free and A* O, then A is free.
(c) If A A* and the three-fold tensor product of A is torsion-free, then

A is free.
Proof. (a) We obtain the desired result immediately from Proposition

3.5 if we setA AandB A.
(b) Setting A A and B A (R) A* in Proposition 3.5 we see immedi-

ately that A (R) A* is reflexive and A is torsion-free. However since A is
torsion-free and A (R) A* is reflexive, we have by Proposition 3.3 that A is
projective and thus free.

(c) This is an immediate consequence of (b).
We now give an example to show that parts (b) and (c) of Theorem 3.6

cannot be improved in general. We do this by showing that if R is a regular
local ring of odd dimension greater than 1, then there exists an R-module A
such that A A* and A (R) A is torsion-free, but A is not free. In fact, the
R-module A which we construct will have the additional property that A, is
R,-free for each prime ideal other than the maximal ideal of R. Suppose
the dimension of R is n, and m is the maximal ideal of R. Let

be a minimal resolution of R/m (see [6] for definition of minimal resolutions
and their basic properties). Now it is well known that Ext(R/m, R) 0
for i 0, n 1 and Ext,(R/m, R) R/m. Therefore we have that

is exact and thus a projective resolution of Rim. Actually (****) is a minimal
resolution of Rim. For if it were not minimal, then (****) would be a direct

In [5] it is shown that if E is an R-module (R an arbitrary noetherian ring) whose
annihilator contains an R-sequence xl, x of length but no R-sequence of longer
length, then Ext’(E, R) 0 for all < and Extt(E, R) HOmR (E, R/a) where

(x, x t). Since the maximM ideal of a regular local ring of dimension n is
generated by an R-sequence of length n, we have the desired assertion.
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sum as a complex of a minimal resolution and a nontrivial resolution of (0).
But since taking the dual of (****) gives us (***) back again, we would have
that (***) was not minimal, which is a contradiction. Since (***) and (****)
are both minimal resolutions of R/m, they are isomorphic complexes. Now
let A Im(X+l -- Xa) and B Im(X* -- X+I), where 2q n 1.
It follows from the fact that the complexes (***) and (****) are isomorphic
that A B. From the exact sequence X+2 -- X+I A -- 0 we deduce
the exact sequence 0 -- A* -- Xq+l -- Xq+.. Since (****) is exact, it follows
that A* B. Therefore we have that A A*. Also we have that hd A q
since 0 X, -- Xn--1 ---> X+I -+ A --+ 0 is a minimal resolution of A.

TThus or (A, Rim) 0 for i > q. Now from the exact sequence

O --- A -- X --- C -- O

we deduce the exact sequence 0 -- Torf(A, C) --+ A (R) A --* Xq (R) A. Since
Torf (A, C) Torq+(A, R/m), we have that 0 -+ A (R) A --. X (R) A is
exact, and therefore A (R) A is torsion-free. Also we have that if m,
then A, is a module of relations in a free resolution over R, of Rim (R) R, 0.
Hence we have that A, is R,-free for m. Therefore the module A gives
us our desired example. The following theorem shows that the assumption
that R is of odd dimension is essential in the example just given. This gives
a strong indication that the module theory of even- and odd-dimensional
regular local rings are different.

THEOREM 3.7. Let R be an unramified regular local ring (dim R > 0), and
A an R-module satisfying the following conditions:

(a) hdA hdA*,
(b) A (R) A* is torsion-free,
(e) A is R,-free for each nonmaximal prime ideal in R.

Then hd A 0 or (n 1)/2 where n is the dimension of R.
Therefore if n is even, A must be projective. If n is odd, then there are modules

A satisfying (a), (b), (e) and such that hd A (n 1)/2.

Proof. The conclusions of the last pragrph re either obvious or they
hve been established lready. The first prt of the theorem will follow
esily from

PROPOSITION 3.8. Let R be a regular local ring (not necessarily unramified)
of dimension n O, and A an R-module which is not projective. Let j be the
smallest strictly positive integer such that Ext(A, R) 0. /f
hd(Ext(A, R) n, then

There exists an exact sequence
O--- A*--- Y---...--+ Y-- Yo---+ L--- O

with the Y free R-modules and hd L n.

Since A is not projective nd hs finite homologicM dimension, we know by [4, 4.10]
that Ext,(A, R) 0 where p hd A. Therefore it makes sense to tMk bout the
smMlest strictly positive integer such that Ext(A, R) 0.
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(b) HdA* n (j -b 1) if j < n, and hdA* 0 if j n.
(c) If B is an R-module, then Tor (A*, B) 0 for all i > 0 if and only
hdB __< j - 1.
d) If B is torsion-free and hd B <- j, then A* (R) B is torsion-free.

If we assume in addition that R is unramified, then we have

e If B is torsion-free, then A* (R) B is torsion-free if and only if hd B __< j.
(f) If A is torsion-free, then the following statements are equivalent:

A (R) A* is torsion-free;
(ii) hdA =j;
(iii) hdA-khdA*- n- 1.

Proof. (a) Let 0 -- X -- -- X.+I --+ Xj - -- X1 -+ X0 -+ A - 0
be exact with the X free R-modules. Since Ext*(A, R) 0 for all i such
that j >_- i > 0, we have that

o xt L 0

is exact where L * *Coker(Xj_ - X. ). Now each X is free since the dual
of a free module is free. From the definition of Ext’(A, R) we know that
there is a monomorphism Ext’(A, R) -+ L. Since hd(Ext’(A, R)) n, we
know that hd L n, which establishes part (a) of the proposition.

(b) follows immediately from (a).
rR(c) From (a) it follows that Tor(A*, B) To +j+(L, B) for any

R-module B. Since hd L n, we know that codim L 0. Thus we are
in a position to apply Proposition 1.1 from which we deduce that

Tort (i, B) 0

where hd B. Therefore hd B -< j - 1 if and only if Tor(A*, B) 0
for all i > 0.

(d) and (e) Let 0 -- A* -- Y --+ -- Y0 -- L -- 0 be the exact sequence
with the Y free and hd L n whose existence was established in (a).

Suppose 0 -- A* -- Y -- C --+ 0 is exact. We now show that A* (R) B is
torsion-free if and only if Tor(C, B) 0.

Since Tor(C, B) is a torsion module, we deduce from the exact sequence

0 -- Tor(C, B) -- A* (R) B --. Y (R) B -- C (R) B -- 0

and the fact that B is torsion-free, that A* (R) B is torsion-free if and only if
Tor(C, B) 0. Now Tor(C, B) Tor+(L, B) for all i > 0 since
0 C -- Y._ -- -- Y0 --+ L 0 is exact with the Y free. Therefore
if hd B <- j, then Tor(C, B) 0, which means that A* (R) B is torsion-free.
On the other hand if A* @ B is torsion-free, then

Tor(C, B) Tor+(1, B) 0

which in the case that R is unramified means that Tor(L, B) 0 for all
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p > j. Since hd L n, we have by Proposition 1.1 that hd B __< j. Thus
(d) and (e) are established.

(f) By parts (d) and (e) we know that A (R) A* is torsion-free if and
only ifhdA -< j. Since ExtJ(A, R) 0, we know that hd A -> j. Thus
we have that A (R) A* is torsion-free if and only if hd A j. Now A is
torsion-free, and thus hd A < n. Therefore by (a) we know that hd A*
n-j- 1. ThereforehdA =jifandonlyifhdA +hdA* n- 1.

Remark. It should be observed that part (f) can be used to give another
proof of the fact that if A (R) A (R) A* is torsion-free and A is torsion-free, then
A is proiective (see Theorem 3.6).
We now return to the proof of Theorem 3.7. Suppose that A satisfies the

conditions of the hypothesis of Theorem 3.7. Then for each nonmaximal
prime ideal p in R we have that A is R-free. Since

R (R) Ext(A, R) Ext(A,, R,) for all i
and

Ext(A, R,) 0 for all i > 0,

we have that Ext’(A, R) has finite length. Therefore if A is not projective,
then A satisfies the hypothesis of Proposition 3.8 since certainly a nonzero
module of finite length has homological dimension equal to the dimension
of the ring R. Since we are also assuming that A (R) A* is torsion-free, we
have by (f) of Proposition 3.8 that hd(A q- hd(A*) n 1. Therefore
imposing the last condition that hd A hd A* we have that

hd(A) (n 1)/2,

which establishes Theorem 3.7.
We conclude this section with another consequence of Proposition 3.8.

PROPOSITION 3.9. Let R be an unramified regular local ring, and A a nonzero

reflexive R-module such that A is R-free for each nonmaximal prime ideal
in R. If B is a torsion-free R-module, then A (R) B is torsion-free if and

only if hd A -t- hd B __< n 1, where n is the dimension of R (n > 0).

Proof. Since A is R,-free for all nonmaximal prime ideals in R, we know
* is R,-free for all nonmaximal ideals in R. Thus for each i > 0that A

we have that ExtR(A*, R) has finite length, since

0 ExtR(A, R,) R (R) Ext,(A, R)

for all nonmaximal prime ideals in R. Since the proposition is obviously
true if A* is projective, we might as well assume A* is not projective. Then
A* satisfies the hypothesis of Proposition 3.8. Let j be the smallest strictly
positive integer such that Ext’(A, R) 0. Since A A**, we have by
(a) of Proposition 3.8 that hd(A) n j 1 (observe that j n since
A is torsion-free). Now by (e) of Proposition 3.8 we have that A* (R) B is
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torsion-free if and only if hd B -< j. Using the fact that j (n 1) -hd A
we have that A* (R) B is torsion-free if and only if hd A -f- hd B =< n 1.

z. I:orther oppications
In this section we give some applications of the notion of a rigid complex

in directions different from those already given.

PROPOSITION 4.1. Let R be an arbitrary local ring, X a free positive conplex
over R (i.e., each component Xi of X is free and Xi 0 for i < O) such that
(a) Ho(X) A O, (b) if C is an R-module and H(X (R) C) O, then
H(X (R) C) O for all i >= 1. If Y is a positive cornplex such that X (R) Y
is acyclic, then Y is acyclic.

Proof. Filtering the double complex X (R) Y in the standard manner by
defining Fv(X (R) Y) v>_r q Xr (R) Yq we obtain a spectral sequence
withE2v,q Hv(X (R) H(Y)). SinceH(X (R) Y) O foralln > 0 by
hypothesis, we have that E, 0 for all p and q greater than zero. Now
d2v 0forp < 0andq < 0 Therefore,q E, -- E_,+I and E,

E,o E,o
for all i >= 2. But E,o 0, which means that 0 E,o HI(X (R) Ho(Y)).
Since X is a rigid complex we know that 0 Hv(X (R) Ho(Y)) E,o for
all p _-> 1. Proceeding by induction we have that

0 E,q H(X (R) Hq(Y))

for all p >__ 1 and all q. Combining this with the fact that E,q
p and q greater than zero, we have that

0 E,q Uo(X (R) Uq(Y)) A (R) Hq(Y)

O, for all

for q > O.

Since R is a local ring and A 0, we conclude that Hq(Y) 0 for all q > 0,
i.e., Y is acyclic.

PROPOSITION 4.2. Let R be a local ring, X a positive free complex, and i an
integer greater than zero such that if H(X (R) C) 0 for some R-module C,
then H(X (R) C) O for all j >= i. Suppose xi xt is an A-sequence
where A Ho(X) 0; then X (R) K, where K is the Koszul complex on

xl,..., xt, has the property that if Hi(X (R) K (R) C) 0 for a module C,
then

H(X (R) K (R) C) 0 for all j >= i.

Proof. Since the Koszul complex is free, the complex X (R) K is free.
Also since the tensor product of complexes is associative, it is easily seen that
it is sufficient to prove the proposition in the case 1. By [2, 1.1] we
have the exact sequence

..---+ H+I(X (R) K (R) C) Hi(X (R) C)- H(X (R) C)-- H(X (R) K (R) C)---...,
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where 0i is multiplication by (- 1)*xl. Now if Hi(X (R) K (R) C) 0, then
the map

Hi(X (R) C) Hi(X (R) C),

multiplication by xl, is an epimorphism. Therefore, since R is a local ring,
Hi(X (R) C) is a finitely generated R-module, and x is in the radical of R,
we know that Hi(X (R) C) O. Consequently we have that H(X (R) C) 0
for all j => i, which means in view of the above exact sequence that

H(X (R) K (R) C) 0 for allj => i.

THEOREM 4.3. Let R be a local ring, A a nonzero R-module satisfying the
condition that if C is an R-module such that Tor(A, C) O, then

C) 0Tori (A,

for all i >= 1. Then every A-sequence is an R-sequence.

Proof. Let x, xt be an A-sequence, and let Ki be the Koszul complex
onx,-.. xifor eachi 1,.-. t. By Proposition 4.1 we have that if
X is a projective resolution of A and X (R) Kt is acyclic, then Kt is acyclic.
However by [2, 2.8] we know that if Kt is acyclic, then x,..., xt is an
R-sequence. Therefore it suffices to show that X (R) Kt is acyclic in order
to establish the theorem.

Suppose 1. Then by [2, 1.1] we have the exact sequence

’’--+ Hi+l(X ( K1) --+ Hi(X) -- Hi(X) .-+ H(X (R) K.) -+...,

where O is multiplication by (- 1)**. Since X is a projective resolution of
A, we know that Hi(X) 0 for all i > 0 and thus Hi(X (R) K) 0 for all
i > 1. From the exact sequence

0-+ H(X (R) K.) ----+ Ho(X) Ho(X) -+ Ho(X (R) K.) -.+ 0

and the fact that Xl is not a zero-divisor for Ho(X) A, we conclude that
HI(X (R) K1) 0 and Ho(X (R) K1) A/XlA. Therefore X (R) K is a
projective resolution of A/x1A. It follows easily by induction that X (R) Kt is
a projective resolution of A/(x-,..., xt)A, which gives the desired result.
Remark. It is clear that the hypothesis of Theorem 4.3 is satisfied in the

following situations"
(a) R is a regular local ring. of equal characteristic, and A is an R-module.
(b) R is an unramified regular local ring, and A is an R-module such that

the characteristic of the residue class field of R is not a zero-divisor for A.
(c) R is an arbitrary local ring, and A is an R-module of homological

dimension 1.
Theorem 4.3 shows that not all projective resolutions of modules satisfy

the hypothesis of the theorem. For let R be a local ring whose codimension
is zero but whose dimension is not zero. Let be a nonmaximal prime ideal
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in R. Then codim R/O > 0. Thus. a projective resolution of RIo does not
satisfy the hypothesis of 4.3 and thus in particular is not rigid.
We conclude this paper with an application of these ideas to ideal theory.

LEMMA 4.4. Let R be a noetherian ring, a an ideal in R containing a nonzero
divisor such that hd R/a < . If B is a nonzero R-module and

Tor(R/a, B) 0

for all i > O, then (0):a (0) in B (i.e., there is some element in a which
is not a zero-divisor in B ).

Proof. It is sufficient to show that if a prime ideal in R belongs to (0)
in B, then does not contain a. Suppose some prime ideal belonging to
(0) in B does contain a. Then B, (0) and codimR, B 0. Also we
have that

Tor’ (R/a),, B,) R, (R) Tor (R/a, B) 0 for all i > 0.

Therefore by Proposition 1.1 we have that hdR(R,/aR) 0, which means
that aR 0 since R, is a local ring. But aR 0 since a contains a nonzero
divisor. Therefore does not contain a, which gives us the desired result.

PROPOSITION 4.5. Let R be a noetherian ring, a an ideal in R containing a
nonzero divisor, and b (0) an ideal in R.

(a) If a is projective and a n b ab, then b a b.
(b) If b contains a nonzero divisor, hd RIb < , the ideal a is projective,

and a n b ab, then a: b a and b: a b.
(c) If b contains a nonzero divisor, hd R/b < , the ideal a (x), and

b: (x) b, then (x):b x.
(d) If R is a regular domain containing a field and a n b ab, then

a:b- a and b:a b.

Proof. We first observe that Tor(R/a, R/b) a n blab. Then (a)
and (b) are immediate consequences of Lemma 4.4.

(c) Since a contains a nonzero divisor, x must be a nonzero divisor.
The fact that b :x b easily shows that b n (x) bx. Therefore

Tor/(R/(x), R/b) 0

for all i > 0. Applying Lemma 4.4. we have that (x):b (x).
(d) If R is a regular domain containing a field, then R is a regular local

ring of equal characteristic for each prime ideal in R. Suppose we assume
that Tor(R/a, R/b) 0. Then for each prime ideal in R, we have that

0 R (R) Tor(R/a, R/b) Tor(R/aR, R/bR).

By Theorem 2.1 we know therefore that Tor’(R/aR, R,/bR) 0 for

A noetherian domain R is said to be regular if R is a regular local ring for each
prime ideal in R.
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all i > 0. Thus R, (R) Tor(R/a, R/b) 0 for all i > 0 and all prime ideals
p in R, which means that Tor(R/a, R/b) 0 for all i > 0.
We are now in position to apply Lemma 4.4 and obtain the desired result.
Remark. We show by example that the results of Proposition 4.5 require

some homological hypothesis and are not just formal results. It is well
known that there exist local domains R of dimension 2 but whose codimension
is one. Let be a prime ideal of rank 1 in R, and let x 0 be a non-unit
not in . Therefore we have that O:(x) . However, since the codimen-
sion of R is one, we know that the maximal ideal of R belongs to (x), and
therefore (x) (x). This shows that part (c) of Proposition 4.5 can be
false if the hypothesis that hd RIb < oo is dropped, which is what has hap-
pened in this example.
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