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THE LIMIT LAMINATION METRIC FOR THE
COLDING-MINICOZZI MINIMAL LAMINATION

WILLIAM H. MEEKS III

Abstract. We prove that the singular set S(L) of convergence in a
Colding-Minicozzi limit minimal lamination L is a C1,1-curve which is

orthogonal to leaves of the limit minimal lamination L in some neigh-
borhood of S(L). We also obtain useful information on the related limit

lamination metric.

1. Introduction

In a series of papers, Colding and Minicozzi [1], [2], [4], [3], [5] developed
a theory for minimal surfaces with compactness and regularity results, one of
whose end goals is to prove: Every sequence of properly embedded minimal
surfaces in a homogeneously regular Riemannian three-manifold N , each of
which intersects small balls of fixed size radii in simply-connected components,
has a subsequence that converges to a minimal lamination L of N , which we
call a Colding-Minicozzi limit minimal lamination, when it exists. Such a
sequence of minimal surfaces is called locally-simply-connected and we refer
to this compactness result as the Limit Lamination Theorem when it holds
(see Section 11.1 of [12] for some additional partial results in the case when
N = R

3). We believe that this theorem always holds when the minimal
surfaces are complete and N is complete with nonnegative curvature but fails
in general if N does not have nonnegative curvature.

Furthermore, Colding and Minicozzi prove that the convergence of such a
locally-simply-connected sequence of minimal surfaces to a minimal lamina-
tion L is Cα, 0 < α < 1, in the complement of a locally finite collection S(L)
of Lipschitz curves that are properly embedded in N and along which the
convergence is not C1. They also prove that if S(L) 6= Ø, then L is a foliation
when restricted to a neighborhood of S(L) and the singular curves in S(L)
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are transverse to L. Note that S(L) 6= Ø if the curvature of the sequence of
surfaces blows up at some point in N .

When N is R3 and the sequence of minimal surfaces is locally-simply-
connected and they are planar domains, then there is always a subsequence
of the surfaces which converges to a minimal lamination L [5], [12]. Meeks
and Rosenberg [13] have applied this compactness and regularity theorem
in [4], as well as a related one-sided curvature estimate [4] and in the case
the surfaces in the sequence are simply connected, to prove that the plane
and the helicoid are the only properly embedded simply-connected minimal
surfaces in R3. These results imply that in a small neighborhood of any point
of almost maximal curvature on an embedded minimal disk in a Riemannian
three-manifold, the disk has the appearance of an almost perfectly formed
homothetically shrunk helicoid with many sheets. Motivated by this local
picture of embedded minimal disks at points of large curvature, the author
conjectured that the Lipschitz curves S(L) should be C1,1-curves which are
orthogonal to the leaves of L. A main goal of this paper is to present the
author’s original proof of this conjecture; a second later proof appears in [8].

The presentation of the proof of Theorem 1 below given in [8] was based
on the suggestion by Colding and Minicozzi to have it more closely follow
the proof of their original Lipschitz regularity theorem for the singular set,
while the proof presented here uses a nonstandard blow-up procedure and
gives some different insight into the convergence of the minimal surfaces to L
in a neighborhood of S(L).

Theorem 1 (Regularity Theorem). Let {Oi}i∈I be an open cover of small
geodesic balls in a Riemannian three-manifold N which forms a basis for the
topology of N . Let Σ(n) be a sequence of properly embedded compact minimal
surfaces such that for all i ∈ I and for n sufficiently large, Σ(n)∩Oi consists
of simply-connected components. If L is a limit minimal lamination for the
Σ(n) and the convergence of Σ(n) is Cα, α ∈ (0, 1), outside of a nonempty set
S(L) of locally finite collection of Lipschitz curves which are transverse to L,
then:

(1) S(L) consists of a locally-finite collection of integral curves of the unit
Lipschitz normal vector field to their C1,1-foliation neighborhoods in
L.

(2) The singular set of convergence S(L) is a locally-finite set of C1,1-
curves which are orthogonal to the leaves of L.

(3) The geodesic curvature of the curves in S(L) is defined almost every-
where and where the curvature is defined, it is locally bounded. If N
is compact, then the estimate for the bound on the curvature of the
curves in S(L) can be chosen to depend only on N and the covering
{Oi}i∈I .
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The above theorem and its proof are useful in applications of the Limit
Lamination Theorem of Colding and Minicozzi. For example, we use the
above theorem in the proof of a related theorem, which we call the Lami-
nation Metric Theorem. The Lamination Metric Theorem describes how the
intrinsic metrics on minimal surfaces in Theorem 1 converge to a natural met-
ric space structure of the limit lamination; this application appears in Section
3 and it has applications [9], [10], [11] to classifying properly embedded min-
imal surfaces of finite genus in R3. Recently, Meeks and Rosenberg [13] have
used this result in an important way to prove that the closure of a complete
embedded minimal surface of positive injectivity radius in a three-manifold
has the structure of a C1,α lamination.

Note that the C1,1-regularity of the singular set given in Theorem 1 im-
plies that the singular set has almost everywhere defined curvature, which is
locally bounded. In [16], Meeks and Weber give an example of a sequence of
properly embedded minimal disks in the unit ball in R3 which converges to
a minimal foliation L of the unit ball and such that the singular set S(L) of
convergence passes though the origin and is an arc on a circle of radius 1. This
example shows that the although the curvature of the singular curve is locally
bounded it need not be zero. More generally, Meeks and Weber prove that
the C1,1-regularity of S(L) given in Theorem 1 is the best possible result by
proving that any properly embedded C1,1-curve Γ in an open set in R3 has a
regular neighborhood in the open set with a Colding-Minicozzi limit minimal
lamination L with S(L) = Γ.

Based on all the above results, the author makes the following conjecture
which, if correct, is sharp by the above mentioned example of Meeks and
Weber where the singular set is a circle of curvature 1 at the origin.

Conjecture 1.1. Suppose {Dn | n ∈ N} is a sequence of embedded min-
imal disks in the unit ball B centered at the origin in R3 with ∂Dn ⊂ ∂B,
which converge to a minimal lamination L of the interior of B. Suppose that
S(t) is a component of S(L) parametrized by arc length and such that S(0) is
the origin of B. Then lim supt→0 ‖S′(t)− S′(0)‖/t ≤ 1.

2. The proof of the regularity theorem

In this section we will prove Theorem 1. As mentioned in the Introduction
this theorem states that the singular set S(L) of convergence of Colding-
Minicozzi is a C1,1-locally-finite collection of integral curves of the unit normal
to a minimal lamination limit L of a convergent sequence of minimal surfaces
Σ(n) which is locally-simply-connected in some Riemannian three-manifold.

Because of the local nature of Theorem 1, the proof of this theorem in
the special case where the Riemannian three-manifold is R3 can be easily
adapted to prove the general case and so we will restrict our attention to
the R3 case. Let B be the open unit ball centered at the origin. Suppose
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D(n) ⊂ B is a sequence of properly embedded minimal disks with a sequence
of points pn ∈ D(n) converging to the origin O = (0, 0, 0) and where the
absolute Gaussian curvature of D(n) at pn is diverging to infinity. Assume
that a subsequence of the D(n) converges to a minimal foliation L of B and
the convergence is Cα, α ∈ (0, 1), outside of a transverse Lipschitz curve S(L)
passing through O. (By a result of Solomon [17], a codimension-one minimal
foliation is of class C1,1.) After choosing a subsequence, assume that the
original sequence converges to L. We will prove that S(L) is a C1,1-curve
orthogonal to the leaves of L, by proving that S(L) is a C1-curve orthogonal
to the leaves of L. It then follows that S(L) is an integral curve of the unit
normal vector field to L which is C0,1 in a neighborhood of S(L) (see [17] for
this regularity of the unit normal vector field) and so S(L) is of class C1,1.

Let W̃ be a compact product neighborhood of a compact arc α̃ : [−ε′, ε′]→
S(L) which parametrizes a neighborhood of the origin O ∈ S(L) with α̃(0) =
O. Here we may assume that the C1,1-coordinates in W̃ are chosen so that
W̃ = D× [−ε′, ε′], where D×{t} is the open geodesic disk of radius ε′ in the
leaf of L containing α̃(t) and α̃(t) = α̃([−ε′, ε′]) ∩ (D × {t}).

Since α̃ is a Lipschitz curve, for a positive choice of ε much smaller than ε′,
the interior of α = α̃|[−ε,ε] is contained in the interior of W ⊂ W̃ which is the
intersection of W̃ with the solid cylinder C(ε) containing α with axis being
the unit normal line to the leaf D × {0} ⊂ W̃ at O; here we assume that the
top disk in W is a disk in the leaf D × {ε} containing α(ε) and the bottom
disk in W is a disk in D × {−ε} containing α(−ε). Note that for n large
and ε small, the cylinder sides of ∂W intersect D(n) transversely in curves
that have positive geodesic curvature from the point of view of the outward
pointing vector to the cylinder.

The end points α(−ε) and α(ε) are limits, respectively, of points p(n,−)
and p(n,+) in D(n) of almost maximal curvature. By almost maximal cur-
vature, we mean the following: the absolute Gaussian curvature of D(n) at
these points goes to infinity as n → ∞ and after translating D(n) so that
such a point is at the origin and applying a large homothety so that the
Gaussian curvature at the origin is −1, then this new sequence of minimal
disks converges smoothly on compact subsets of R3 to a properly embedded
simply-connected minimal surface of Gaussian curvature bounded from below
by −1; we refer the reader to [13] for further discussion on the existence of
points of almost maximal curvature. In our case, for any point p ∈ S(L), we
can find a sequence of points of almost maximal curvature on D(n) converging
to p and so we can find the points p(n,−) and p(n,+).

The main theorem in [13] states that a properly embedded simply-connected
minimal surface in R3 with nonzero Gaussian curvature at the origin is a he-
licoid. A simple consequence of this result is that, when appropriately scaled
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by curvature, the disk D(n) is approximated by a well-formed homothetically-
shrunk large compact region of a helicoid in small neighborhoods of p(n,−)
and of p(n,+) (see Proposition 2 in [8] for the proof); let E(n,−) and E(n,+)
denote these neighborhoods of p(n,−) and p(n,+) where D(n) has the ap-
pearance of well-formed helicoids.

From the multigraph picture of D(n) near α(−ε) and α(ε) presented in
[1], [2], [4], [13] and the fact that E(n,−) and E(n,+) are almost helicoids,
there exist geodesic arcs β̃(n,−) and β̃(n,+) in E(n,−) and E(n,+) passing
through p(n,−) and p(n,+) respectively and “orthogonal” to the forming
helicoid axes on E(n,−) and on E(n,+). The results in these papers show that
the beginning multigraphs in E(n,−) and E(n,+) extend sideways from the
forming helicoid axes for some fixed positive distance for n large. In particular,
for n large, β̃(n,−) and β̃(n,+) can be extended to larger compact geodesics
in this local multigraph picture of D(n) near p(n,−) and p(n,+). By choosing
ε sufficiently small, we may assume that the extended geodesics β(n,−) and
β(n,+) each have their end points on the cylinder sides of ∂C(ε). For n large
and ε small, the cylinder sides of ∂W intersect D(n) almost orthogonally
in two almost flat highly sheeted “helical” type compact arcs δ̃(n, 1), δ̃(n, 2),
which, under a possible enlargement of W , each intersect β(n,−) and β(n,+)
in single points. Let δ(n, 1), δ(n, 2) be the respective subarcs of δ̃(n, 1) and
δ̃(n, 2), each with boundary end points being the just described points of
intersection. Define E(n) ⊂ D(n) to be the subdisk with boundary β(n,−)∪
β(n,+)∪δ(n, 1)∪δ(n, 2).Note that the sequence E(n) converges to the product
foliation L ∩W of W with singular set α (we now consider α to lie in W ).
After choosing a subsequence, β(n,−) and β(n,+) converge C1 to geodesics
β(−) and β(+) on the top and bottom disks of W .

Since the boundary of E(n) is geodesically convex and E(n) has nonpositive
Gaussian curvature, there exists a unique geodesic σn ⊂ E(n) of least length
joining the points p(n,−) to p(n,+); assume that σn is parametrized to have
unit speed. We now prove that σn converges as a point set to α as n → ∞.
Recall that for n large the Gaussian curvature of E(n) near δ(n, 1)∪ δ(n, 2) is
uniformly bounded and ∂E(n) is geodesically convex. Thus, any limit point
of σn in L − S(L) must stay a positive distance from the cylinder sides of
W . Hence, σn stays away from ∂E(n) except at its end points. Suppose
that σn does not limit as a point set to α. In this case there is a limit point
p /∈ S(L) of these geodesics and p lies on a disk F (t) = (D×{t})∩W for some
t,−ε ≤ t ≤ ε. Let σn(t(n)) be a sequence of points converging to p. Since in
a small neighborhood of p the disks E(n) converge smoothly to the leaves of
L, after choosing a subsequence, we may assume that the tangent vectors to
σn(t(n)) also converge to a tangent vector T (p) at p.

Since the exponential map for geodesics emanating from p and defined on
the leafD×{t} of L is injective as long as it is defined, the geodesic Γ(t) passing
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through p with tangent vector T (p) on F (t) − α(t) must leave F (t) − α(t).
Since the exponential map is injective, at least one of the end points of this
geodesic must lie on the boundary of F (t). But Γ(t) is itself a limit of the
geodesics σn which stay a positive distance from the boundary of F (t) when
t 6= ±ε. Thus when t 6= ±ε we arrive at a contradiction. In the case t = ±ε,
the disk F (t) is a half disk with geodesically convex boundary with β(+) or
β(−) on part of the boundary; in this case the previous argument with slight
modifications gives a contradiction. Thus, the limit set of the σn is contained
in α and so clearly equals α since α is a connected arc and the limit set of the
σn contains the end points of this arc.

Recall that the minimal foliation L of B is of class C1,1 and the unit normal
vector field N to L is Lipschitz. Therefore, the integral curves of N are of class
C1,1 and foliate W . We will let L denote the unoriented line field associated
to N . Our strategy to complete the proof of the theorem is to prove that
α is an integral curve of L passing through O. We will accomplish this by
showing that the tangent line field to σn converges to L as n→∞. But a unit
speed C1-curve τn of fixed length whose tangent line field is εn-close to some
ambient Lipschitz line field must be C1-close to any integral curve of the line
field which has a point C0-close to τn, where the closeness depends only on
εn, the length of the curve and the Lipschitz constant of the line field. Thus,
for n large, σn would be εn-close in the C1-norm to the integral curve γ of
L passing through O with εn → 0 as n → ∞. (Basically, this result follows
directly from the uniqueness and existence of ordinary differential equations
for an associated Lipschitz line field L in an open set in R3. From the flow
associated to L, one constructs C1,1 coordinates in a neighborhood of O and
in these coordinates O = (0, 0, 0), L corresponds to the line field E3 parallel to
e3 = (0, 0, 1). In these coordinates let γ̃n denote the related γn curves, whose
tangent line fields converge to E3. In this classical setting, we can express
γ̃n as small graphs over the x3-axis and these graphs converge C1 to it. This
argument also shows that the lengths of the γn are uniformly bounded in any
sufficiently small coordinate neighborhood of O.)

Since the σn limit as a point set to α, would be converging to γ, and the
σn and the set of integral curves of N are both compact in the C1-norm, then
the σn would converge in the C1-norm to the integral curve γ of L passing
through O. Hence, α would be contained in the integral curve γ of N . We
remark that we are using in an essential way that the unit normal vector field
to a minimal foliation is Lipschitz [17] and so, by the uniqueness of solutions
to ordinary differential equations defined by Lipschitz functions, have unique
integral curves. It remains to prove that the tangent line field to σn converges
to L as n→∞.

For each σn, let θ(σn(t)) be the unoriented angle that the tangent line to
σn at σn(t) makes with the line L(σn(t)). We need to prove that for all δ > 0,
there exists a positive integer N0 such that for n ≥ N0, θ(σn(t)) < δ for t in
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the domain of σn. Since our goal is to prove that near α(0), α is an integral
curve of N , then it suffices to demonstrate that θ(σn(t)) < δ for σn(t) close
to α(0). Reasoning by contradiction, suppose that there exists a δ > 0 and a
sequence of parameter values t(n), each one in the domain of σn, such that
for some s ∈ (−ε/2, ε/2), σn(t(n)) converges to the point α(s) as n→∞ and
θ(σn(t(n))) ≥ δ for all n. Without loss of generality, we will assume that
s = 0. Clearly, δ can be chosen arbitrarily small, which will be used later on.

We now review a basic geometrical property on which our proof depends.
Suppose qn ∈ E(n) is a point of almost maximal curvature. Then in a small
neighborhood of qn, E(n) has the appearance of an almost perfectly formed
homothetically scaled down helicoid with many sheets. Note that σn must
pass through the core around the axis of this forming helicoid; otherwise,
σn would not limit as a point set to the singular set of L. The least-length
property of σn guarantees that in the expanded scale of the limit helicoid,
the corresponding curves λn(σn − qn), where λn =

√
|K(qn)|, must approx-

imate the axis of the forming helicoid axis since this property would hold
on a genuine helicoid. More precisely, the least-length property that we are
referring to is the following: given two sequences of points f(n), g(n) on a
fixed vertical helicoid with x3(f(n)) → ∞ and x3(g(n)) → −∞, then the
least-length geodesics arcs γn joining f(n) and g(n) converge C1 on compact
subsets of the helicoid to the axis of the helicoid. The proof that σn approxi-
mates in a C1-sense the axis of the forming helicoid can be understood by the
following blow-up argument. Translate to the origin and scale by curvature
neighborhoods of qn to obtain a sequence H(n) of minimal disks of bounded
curvature which, after taking a subsequence, converge to a helicoid H in R3.
It is important to note that although we need to take a subsequence of the
H(n) to get convergence to H, the axis of H, which is parallel to L(α(0)), is
independent of the choice of convergent subsequence; this uniqueness of axis
follows from a fixed distance extension of the beginning multigraph proved in
[2]. Suppose the sequence H(n(i)) converges to H and let σ̃n(i) be the related
geodesics. Note that the σ̃n(i) must pass near the origin and pass through the
core of the forming helicoid H. By our previous observations, the σ̃n(i) must
converge to C1 on balls in R3 to the axis of H; this proves the assertion that
σn approximates in a C1-sense (in the scale of the limit helicoid) the axis of
the forming helicoid at q̃n. Since the axis of the limit helicoid that appears at
qn is the line L(qn), the tangent lines to σn very near qn must be converging
to L(q) as well, where q is the limit of the qn. We will refer to this result
as “the C1-basic approximation to L property” that σn satisfies near points
of almost maximal curvature. This property will now be applied to derive a
contradiction.

Since there is a sequence of points qn ∈ E(n) with almost maximal cur-
vature converging to α(0) and near these points E(n) has the appearance
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of a helicoid with axis almost parallel to L(α(0)), the C1-basic approxima-
tion property implies that there exist times t(n, ∗) in the domain of σn with
σn(t(n, ∗)) → α(0) and such that the tangent line σn(t(n, ∗)) is converging
to the line L(α(0)); we are using here the property that the line field L is
continuous to prove the existence of the numbers t(n, ∗). After choosing a
subsequence, we may assume that either t(n) < t(n, ∗) or t(n) > t(n, ∗) for all
n, where the t(n) were defined previously. Without loss of generality in our
arguments, we will assume that t(n) < t(n, ∗). Note that θ(σn(t(n, ∗))→ 0 as
n→∞ and so we may assume that θ(σn(t(n, ∗))) < δ/2 for n large. Let r(n)
be the largest number in [t(n), t(n, ∗)] such that θ(σn(r(n)) = δ and let s(n)
be the smallest number in the interval [r(n), t(n, ∗)] such that θ(σn(s(n))) =
δ/2. From this point on in the proof, we will assume that δ is chosen less than
π/10.

Now consider the following new sequence of disks G(n) obtained by trans-
lating D(n) by −σn(r(n)) and then homothetically scaling by the factor
1/(s(n)− r(n)):

G(n) =
1

s(n)− r(n)
(D(n)− σn(r(n)))

We claim that the homothety factor 1/(s(n)− r(n)) → ∞ as n → ∞. If
the sequence of positive numbers s(n)− r(n) does not converge to zero, then
for some η > 0, there exist arbitrarily large n such that s(n) − r(n) ≥ η.
Let σ̃n be the image of the arc related to σn|[r(n),s(n)] but in the disk G(n).
Since δ < π/10 and θ lies between δ and δ/2 on the interval [r(n), s(n)], the
end points of σ̃n must be at least a fixed positive distance d(η) from each
other which is independent of n and can be estimated from below in terms of
η. Since σn converges to α, it follows that there exists a sequence of points
q̃n ∈ G(n) of almost maximal curvature such that the (d(η)/10)-neighborhood
of q̃n in R3 intersects σ̃n only in its interior and σ̃n passes through the core of
the helicoid that is forming at the point q̃n. Thus, the angle that the tangent
line to a point σ̃n(t′(n)) of σ̃n which is closest to q̃n makes with the axis of
the forming helicoid at q̃n is converging to zero as n → ∞. But the original
line field at the related point q̂n on E(n) is converging to the axis of the
helicoid which is forming on E(n) at q̂(n). Since these forming helicoids are
parallel (G(n) and D(n) are essentially translated surfaces), we see that for
n large there is a time t′(n) ∈ [r(n), s(n)] such that θ(σn(t′(n))) < δ/2. This
contradicts the property that θ(σn(t)) lies between δ and δ/2 on [r(n), s(n)].
This contradiction proves that s(n)− r(n)→ 0 as n→∞. Since σn has unit
speed and s(n) − r(n) → 0 as n → ∞, the arcs σn([r(n), s(n)]) converge to
α(0) as a point set.

Since s(n) − r(n) → 0, the boundaries of the disks G(n) eventually lie
outside of any compact set in R

3 and so the compactness theorem in [4]
implies that a subsequence of the G(n) converges on compact subsets of R3
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to a minimal lamination L̃ of R3 with possibly a new singular set S(L̃). After
choosing this subsequence, assume that G(n) converges to L̃.

There are several cases to consider depending upon how the G(n) limit
to L̃. In the first case suppose that the Gaussian curvature of the collection
G(n) is uniformly bounded in the closed ball B(1) of radius 1 centered at the
origin. Again let σ̃n denote the arc related to the image arc σn([r(n), s(n)]).
Note that by our normalization, the beginning point of σ̃n is at the origin and
σ̃n is a geodesic of length one on G(n) and so σ̃n is contained in B(1).

After choosing another subsequence, we may assume that the σ̃n converge
in the C1-norm to a geodesic σ̃ on a leaf of L̃. The lines L(σn(t)), considered to
be lines passing through the origin, converge to L(α(0)) for all t ∈ [r(n), s(n)]
because the sequence of geodesic arcs σn([r(n), s(n)]) converges to α(0) as we
remarked earlier. Since the lines L(σn(t)) are converging to L(α(0)) for each
t ∈ [r(n), s(n)] and θ(σn(r(n))) = δ and θ(σn(s(n)) = δ/2, the tangent vectors
to the end points of σ̃ are not parallel in R3. In particular the metric on the leaf
H(σ̃) of L̃ containing σ̃ is not flat since σ̃ is not a straight line. It follows that
the Gaussian curvature of the sequence G(n) is uniformly bounded on compact
subsets of R3; otherwise, L̃ would have a singular point of convergence which
in turn would imply that L̃ is a foliation by planes but the metric on H(σ̃)
is not flat. Since the limit leaves of L̃ are planes (see the proof of Theorem
1.6 in [13]), H(σ̃) is not a limit leaf of L̃. Once one knows that H(σ̃) is
not a limit leaf, then a standard argument using Jacobi vector fields shows
that the convergence of G(n) to give H(σ̃) is of multiplicity one in area.
(One just takes a normalized difference between highest and lowest sheets of
G(n) which converge to H(σ̃) to obtain a positive Jacobi function on H(σ̃),
which can be assumed to be simply-connected by taking covering spaces, and
then apply the results in [6] or [7] to conclude H(σ̃) is a plane.) Since the
convergence of the G(n) which give H(σ̃) is of multiplicity one on H(σ̃), the
standard lifting argument of closed curves on H(σ̃) to G(n) shows that H(σ̃)
is simply-connected. Since H(σ̃) is simply-connected and has locally bounded
Gaussian curvature in R3, its closure is a lamination and Theorem 1.6 in [13]
implies that H(σ̃) is properly embedded in R3. Hence, by the main result in
[13], H(σ̃) is a helicoid and it follows that L̃ = H(σ̃). But then the length
minimizing property of our original σn implies that the associated σ̃n in G(n)
would converge C1 on balls in R3 to the axis of the helicoid L̃ which is a
straight line. The reason for this is that σ̃n converges to the axis of L̃ because
the rescaling G(n) of D(n) is essentially by curvature, since L̃ is a nonflat
surface. This contradicts the earlier observation that the tangent vectors at
end points of σ̃ ⊂ H(σ̃) are not parallel. This contradiction implies that the
Gaussian curvature of the surfaces G(n) is not uniformly bounded in B(1).

What we have proven so far is that the Gaussian curvature of the G(n)
is not uniformly bounded in the ball B(1). Hence, L̃ is a foliation of R3 by
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parallel planes whose singular set is a Lipschitz curve S(L̃) which intersects
B(1) at some point. At this point in the proof it is helpful to remark that the
normal line to the planes in L̃ is L(α(0)); this follows from the fact that L
varies continuously in the ball B and L̃ is the scaled limit of portions of E(n)
from smaller and smaller neighborhoods of α(0). For convenience assume
that the planes in L̃ are horizontal. Since the tangent vectors to planes in
L̃ are horizontal and the tangent vectors to σ̃n are bounded away from the
horizontal, the σ̃n must converge to a portion of S(L̃) as n → ∞. On the
other hand, by our choice of small δ, tangent vectors to σ̃n make a small angle
with L(α(0)) and so, by our normalization, σ̃n is a curve whose end points
have differing heights of at least 1/2. Our previous arguments show that there
exist points g(n) ∈ G(n) of almost maximal curvature whose extrinsic heights
converge to 1/4 and whose intrinsic distance to σ̃n is converging to zero. In
this case, the length minimizing property of σn implies that σ̃n must pass
through the core of the forming vertical helicoid at g(n). Hence, for n large,
there must be a t′(n) ∈ [r(n), s(n)] where the tangent line to σ̃n makes an
angle of less than δ/4 with L(α(0)). Hence, for n large, θ(σn(t′(n))) is less
than δ/2 but θ ◦ σn([r(n), s(n)]) = [δ/2, δ]. This contradiction completes our
proof of Theorem 1.

3. The lamination metric theorem

As an application of our proof of the C1,1-regularity of the singular curve
S(L) in the Colding-Minicozzi lamination theorem, we now prove an inter-
esting and useful compactness theorem. This theorem is helpful in deriving
curvature estimates for properly embedded minimal surfaces with finite genus
in R3 or in M×R, where M is a compact Riemannian surface (see [9], [10], [11],
[14], [15]). It is also used in an important manner in proving a recent result
by Meeks and Rosenberg [15], which states that the closure of any complete
embedded minimal surface with positive injectivity radius in a Riemannian
three-manifold has the structure of a minimal lamination. The metric defined
in the next theorem gives rise to the natural one on minimal parking garage
structures of R3, which are important examples of Colding-Minicozzi limit
minimal laminations (see [12]).

Theorem 2 (Lamination Metric Theorem). Suppose N is a Riemannian
three-manifold. Suppose Σ(k) is a sequence of connected properly embedded
minimal surfaces in N that is locally-simply-connected and which converges
to a minimal lamination L of N with non empty singular set of convergence
being a transverse, possibly disconnected, Lipschitz curve S(L). Let Γ be a
component of the singular set S(L). Let L(1,Γ) be the union of the leaves of
L that intersect Γ and let S(1,Γ) = S(L) ∩ L(1,Γ). Define inductively, for
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n ≥ 2,L(n,Γ) to be the union of the leaves of L that intersect S(n− 1,Γ) and
define S(n,Γ) to be S(L) ∩ L(n,Γ). Then the following statements hold:

(1) For all n,L(n,Γ) is a connected open set of N .
(2) L(∞,Γ) =

⋃∞
i=1 L(n,Γ) is a connected open set of N , and every com-

ponent of S(L) that intersects L(∞,Γ) is contained in it.
(3) If N is compact, then, for some n, L(∞,Γ) = L(n,Γ).
(4) For each n ∈ N ∪ {∞},L(n,Γ) is a path connected metric space with

respect to the following distance function. Define d(n,Γ)(p, q) to be
equal to the infimum of the lengths of continuous piecewise C1-arcs
in L(n,Γ) such that every C1-arc component of the path lies entirely
in a leaf of L or in S(L). If the metric on N is complete, then there
exists a shortest length path in L(n,Γ) joining p and q which consists
of a finite number of geodesics segments in the leaves of L together
with a finite number of segments in S(L); such a shortest length path
we will call a minimizing geodesic.

(5) If N is complete, then the Riemannian distance functions dk on Σ(k)∩
L(∞,Γ) converge to the restriction of d(∞,Γ) to Σ(k) ∩ L(∞,Γ) in
a manner which we now describe. Suppose pk, qk ∈ Σ(k) converge
to points p, q ∈ L(∞,Γ), respectively, and γk is a minimizing ge-
odesic on Σ(k) joining pk and qk. Then the lengths of the γk are
uniformly bounded and a subsequence of these minimizing geodesics
converges to a piecewise-smooth curve γ in L(∞,Γ) with end points
p, q. The curve γ consists of a finite number of geodesic segments in
leaves of L together with a finite number of segments and corners in
S(L). Furthermore, if p and q are joined by a minimizing geodesic
in L(∞,Γ) that intersects S(L), then γ is a length minimizing ge-
odesic. In particular, if p, q lie on distinct leaves of L(∞,Γ), then
for every ε > 0, there exists a positive integer I, such that if k ≥ I,
then d(∞,Γ)(p, q)−ε ≤ dk(pk, qk) ≤ d(∞,Γ)(p, q)+ε. Conversely, given
p, q ∈ L(∞,Γ), there exist points pk, qk ∈ Σ(k) (carefully chosen)
converging to p, q, respectively, such that if γk is any sequence of least
length geodesics in Σ(k) joining pk to qk, then a subsequence converges
to a minimizing geodesic in L(∞,Γ).

(6) If N is complete, then (L(∞,Γ), d(∞,Γ)) is a complete path connected
metric space. (L(∞,Γ), d(∞,Γ)) does not have a countable basis, and
so this metric space is not compact.

Proof. Statements 1 and 2 follow immediately from the Colding-Minicozzi
Lamination Theorem and elementary topology. Since N being compact im-
plies S(L) is a finite collection of simple closed curves, the definition of L(n,Γ)
implies that L(∞,Γ) = L(n,Γ) for some integer n, which proves statement
3. Statement 4 follows immediately from local considerations in Riemannian



656 WILLIAM H. MEEKS III

geometry and the arguments contained in the proof of our regularity theo-
rem (Theorem 1) for the singular set. This proof of regularity shows that
any sequence of geodesics on Σ(k) of fixed length L with some limit point
p ∈ L(n,Γ), contains a subsequence which converges to a continuous curve
in L(n,Γ) of length L consisting of geodesic segments in leaves of L together
with arcs and corners in S(L).

It is natural to consider a continuous piecewise C1 curve σ in L(∞,Γ) to
be a geodesic if it is a limit of geodesics on the Σ(k) parametrized by arc
length. Note that such a limit geodesic σ is locally length minimizing on L
unless for some t0, σ(t0) lies in the interior of σ and for all sufficiently small
ε > 0, σ(t0 − ε) and σ(t0 + ε) lie on the same leaf of L(∞,Γ) and σ has
a nontrivial corner point at σ(t0). The existence of such limit geodesics in
L(∞,Γ) which are not locally length minimizing but which are the limits of
length minimizing geodesics in the Σ(k) presents some difficulties which must
be overcome in the proof of statement 5.

We now prove statement 5. By statement 2, L(∞,Γ) is a connected open
set of N and every component of S(L) that intersects L(∞,Γ) is contained
in it. It follows that the geodesic completion L(∞,Γ) in N of this open set is
a complete Riemannian three-manifold whose boundary (which can be con-
sidered to lie in N) consists of complete minimal surfaces, which are disjoint
from S(L) by the curvature estimates in [4]. Suppose γk are length minimizing
geodesics in Σ(k) with end points pk, qk converging to p, q. By the arguments
in the proof of the C1,1-regularity of S(L), a subsequence of the γk converges
to a possibly disconnected geodesic γ in L(∞,Γ) consisting of geodesic arcs
in leaves of L and arcs and corners in S(L) ∩ L(∞,Γ). A lifting argument,
similar to the one which we will use shortly, shows that there exist paths in
Σ(k) joining pk to qk of uniformly bounded length, and so, γ is a compact
connected geodesic with end points p and q.

By statement 4, there exist length minimizing geodesics γ̂k in L(∞,Γ)
with the same end points as γk. Note that a subsequence γ̂ki converges to a
minimizing geodesic γ̂ of length L(γ̂) = d(∞,Γ)(p, q) with end points p and q.

Suppose now that γ̂ intersects S(L) at some point. By the proof of the C1,1-
regularity of S(L) and a lifting argument, for ki large, the compact connected
least length geodesic γ̂ can be approximated by curves γ̂ki on Σ(ki) with the
same end points as γki and with the lengths of the γ̂ki converging to the length
of γ̂ as ki →∞. We remark that the hypothesis that γ̂∩S(L) 6= Ø is essential
in order to define the lifts γ̂ki of γ̂ with the correct end points, which is not
possible if p and q lie on the same leaf of L but lie on different nearby lifted
intervals in Σ(ki) over a γ̂ which are disjoint from S(L).

It follows that the lengths of the geodesics γk are essentially bounded by
L(γ̂) = d(∞,Γ)(p, q). Hence, the limit geodesic γ in L(∞,Γ) joining p to q of
length at most L(γ̂) = d(∞,Γ)(p, q). By definition of d(∞,Γ), the length of the
embedded geodesic γ is equal to the d(∞,Γ) distance between its end points.
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It remains to prove that the last sentence in statement 5 holds. By the
above discussion, the last sentence in statement 5 holds if some minimizing
geodesic of L(∞,Γ) joining p, q intersects S(L), independently of the choice
of the converging points pk, qk. On the other hand, if a least length embedded
geodesic α joining p and q fails to intersect S(L), then for k large, α lifts to
paths αk on Σ(k), which converge C1 to α. So the length minimizing geodesics
on Σ(k) with the same end points as αk have a subsequence converging to a
minimizing geodesic in L(∞,Γ) joining p to q. This completes the proof of
statement 5.

The first statement in statement 6 follows immediately from statements 4
and 5. Since L(∞,Γ) is locally a foliation of N , it does not have a countable
basis as a d(∞,Γ) metric space, which implies that this metric space is not
compact. This completes the proof of the theorem. �

Question 1. If N is a compact Riemannian three-manifold with a Colding-
Minicozzi limit minimal lamination L and S(L) 6= Ø, then is N = L(∞,Γ)?
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