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SOME SOFIC SHIFTS CANNOT COMMUTE WITH
NONWANDERING SHIFTS OF FINITE TYPE

MIKE BOYLE

Abstract. Suppose S is a nonwandering shift of finite type (SFT), and
T is an expansive automorphism of S. We show T cannot be a strictly

sofic almost Markov shift. Also included is an example of D. Fiebig, a
reducible SFT with an expansive automorphism which is not SFT.

1. Introduction

In his 1995 memoir [19], Masakazu Nasu asked if an expansive automor-
phism of a shift of finite type must be a shift of finite type ([19, p.33, Question
2.a]). As already announced in [3], Doris Fiebig produced a counterexample
in the case that the shift of finite type is allowed to be reducible. Her example
is included in the Appendix.

The irreducible case of Nasu’s question remains a major open problem for
understanding the dynamics of automorphisms of shifts of finite type and the
related Zd actions. There has been excellent progress on related questions
involving positively expansive maps or onesided shifts of finite type [3], [7],
[19], [20], [21]; however, since D. Fiebig’s counterexample, there have been no
results on Nasu’s original question, despite considerable efforts.

In this paper, we will at least resolve a meaningful case of Nasu’s question.
We will prove that an expansive automorphism of a nonwandering shift of
finite type cannot be conjugate to an almost Markov strictly sofic shift. In
the example of D. Fiebig, the expansive automorphism of the reducible shift
of finite type is almost Markov (Remark A.4), and the reducible shift of fi-
nite type is wandering. The two results together highlight the importance of
the irreducibility condition, or more precisely the condition that the SFT be
nonwandering (Remark 3.4).
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2. Definitions and background

We will be concerned with certain selfhomeomorphisms of compact metric
spaces. The particular choice of metric compatible with the topology will be
of no importance in this paper. For a lighter notation, we will generally use
the same symbol (e.g., S) for both the homeomorphism and its domain; the
correct interpretation should be clear in context.

Such a homeomorphism S is expansive if there exists ε > 0 such that for all
distinct x and y in S, there exists n ∈ Z such that dist(Snx, Sny) > ε. Such
an ε is called an expansive constant for S. Expansiveness is a multifaceted
condition of considerable importance in dynamics; see the brief discussion in
[6, Section 5], its references, and also [2].

Next we recall some elementary symbolic dynamics; see [15] or [13] for a
thorough introduction. We regard {0, 1, . . . , n − 1}Z as the space of doubly
infinite sequences x = . . . x−1x0x1 . . . . The full shift on n symbols is the
map on this space which sends x to the bisequence y such that yn = xn+1

for all n. The restriction of such a map to a closed, shift-invariant subset is
a subshift. A subshift S is a shift of finite type (SFT) if there exists a finite
set W of (finite) words such that the space S consists of all sequences on
{0, 1, . . . , n− 1}Z in which words from W never occur. An SFT S is 1-step if
for all x, y in S, if z is a bisequence such that zi = xi for i ≤ 0 and zi = yi
for i ≥ 0, then z ∈ S.

A block code is a map ϕ between subshifts such that there exists N such that
for all x in the domain the word x[−N,N ] determines the symbol (ϕx)0. Here
ϕ is a one-block code if it is possible to choose N = 0. The homomorphisms of
subshifts (continuous maps between subshifts intertwining the shift actions)
are precisely the block codes. A sofic shift is a subshift which is the image of
an SFT under a block code.

We will say a subshift is irreducible if it has a dense forward orbit. An
irreducible SFT can be presented by an irreducible matrix with nonnegative
integer entries with a standard construction [13], [15]. An irreducible sofic
shift is the image of an irreducible SFT under a block code.

A block code is left closing if it never collapses distinct forwardly asymptotic
points; it is right closing if it never collapses distinct backwardly asymptotic
points; and it is biclosing if it is both left and right closing. A sofic shift
is almost Markov if it is the image of a SFT under a biclosing map [5]. An
irreducible almost Markov sofic shift is called almost finite type (AFT) [16].
The AFT shifts are a natural and large class of relatively well behaved sofic
shifts (see e.g. [16], [4], [27], [11], [25] and [15, Sec. 13.1]), and their study
leads to the study of general almost Markov shifts [5]. For a homeomorphism
S, whether S has one of the following properties does not change under passage
to a power Sn: SFT; sofic; strictly sofic; almost Markov.
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By a Zd action α we will mean an action of Zd by homeomorphisms on a
compact metric space, and for n ∈ Zd we let αn denote the homeomorphism
by which n acts. One approach to the study of Zd actions is to impose some
condition on a single homeomorphism αn in the action. Two such conditions
are the Markov condition (in the zero-dimensional case, αn is Markov iff it is
SFT) and expansiveness. An expansive component of vectors for a given Zd

action is a maximal connected open set U of Rd such that tU = U for t > 0
and αn is expansive if n ∈ U [6]. (Expansive components are descendants of
the causal cones of Milnor [17]. The “Weyl chambers” of Katok and Spatzier
[12] are important examples of expansive components; in that smooth setting,
expansiveness arises from hyperbolicity.) For n within an expansive compo-
nent, quantitative properties of αn vary nicely, and qualitative properties of
αn (such as the Markov property) tend to hold for all or for no αn in an expan-
sive component [6], [9], [12]). However, outside a smooth or algebraic setting,
it is not clear what kind of relation must hold between actions in different
expansive components. The first problem here, already isolated by Nasu [19]
and still unsolved, is to understand when expansive Markov and nonMarkov
actions can coexist (necessarily in different expansive components) within the
same Z2 action.

Two homeomorphisms S and T are topologically conjugate, or isomorphic,
if there is a homeomorphism ϕ such that ϕS = Tϕ. Here if S = T then we
may call ϕ an automorphism of S. (Caveat: Our interest is in dynamically
invariant properties. So, in a phrase like “S is SFT”, the word “is” may mean
“is topologically conjugate to some”.)

3. Recurrence conditions

Let S be a selfhomeomorphism of a metric space. For x, y in S, an ε-chain
from x to y is a finite sequence of points x0, x1, . . . , xn such that x = x0,
y = xn and dist((Sx)i, xi+1) < ε for 0 ≤ i < n. S is chain recurrent if for all
x and all ε > 0 there exists an ε-chain from x to x. S is chain transitive if for
all x, y and all ε > 0 there exists an ε-chain from x to y. (Chain recurrence and
chain transitivity are significant concepts for dynamical systems [23].) A point
x is a wandering point (for S) if it has a neighborhood U such that U ∩ SnU
is empty for all n > 0. S is nonwandering if it has no wandering point. A
closed open set is nontrivial if both it and its complement are nonempty. A
subshift S is indecomposable if there is no nontrivial closed open set B such
that SB = B. For any property P , we say that S is totally P if Sn is P for
all n > 0.

Given a subshift S, we define its nth Markov approximation to be the
subshift Sn on all sequences x such that for all i, the word x[i, i + n − 1] is
an S-word (i.e., a word occurring in some point of S). The SFTs Sn form a
decreasing sequence with intersection S.
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Proposition 3.1. Suppose S is a shift of finite type. Then the following
are equivalent.

(1) S is nonwandering.
(2) S is chain recurrent.
(3) S has periodic points dense.
(4) S is a disjoint union of finitely many irreducible SFTs.

Proposition 3.2. Suppose S is a subshift.
(1) S is chain recurrent if and only if every Sn is a nonwandering SFT.
(2) S is chain transitive if and only if every Sn is an irreducible SFT.
(3) S is totally chain transitive if and only if every Sn is a mixing SFT.
(4) When S is chain recurrent: S is totally chain transitive if and only if

it is totally indecomposable.

Proposition 3.3. Suppose S is a sofic shift. Then the following are equiv-
alent.

(1) S is the image of a nonwandering SFT.
(2) S has periodic points dense.
(3) S is nonwandering.

Proof. We will prove (3) =⇒ (1) in Proposition 3.3 and leave the other
proofs of the propositions above to the reader. Suppose S is sofic nonwander-
ing. Let π : T → S be a bounded-to-one block code from an SFT T onto S.
Let W denote the set of nonwandering points in T : this is the nonwandering
SFT which is the closure of the periodic points of T . If π maps W onto S, we
are done, so suppose y ∈ S \πW . Let x1, . . . , xm denote the preimages of y in
T : all of them are wandering points for T . Let Ui be an open neighborhood
of xi with disjoint forward images. Pick N such that T kUi∩Uj = ∅ for k > N
and 1 ≤ i, j ≤ m. Then shrink the Ui sufficiently that in addition we have
T kUi ∩ Uj = ∅ for 1 ≤ k ≤ N and 1 ≤ i, j ≤ m. Let E be the complement
of
⋃m
i=1 Ui. Then the complement of πE is a neighborhood of y which never

returns to itself, and therefore y is wandering, which is a contradiction. �

Remark 3.4. A wandering sofic shift can be chain recurrent, and even
totally chain transitive (for an example see Remark A.4). Also, it is easy to
see the following are equivalent:

(1) Every expansive automorphism of a nonwandering SFT is SFT.
(2) Every expansive automorphism of an irreducible SFT is SFT.

For (2) =⇒ (1), suppose S is an expansive automorphism of a nonwandering
shift of finite type T . Then T is the disjoint union of irreducible SFTs T(i)

which are permuted by S, and for some n > 0, Sn fixes each T(i). The
assumption (1) then implies that Sn is a disjoint union of SFTs, hence Sn is
SFT. Therefore S is SFT.
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4. Indecomposable automorphisms

We begin by recalling a little ergodic theory. For an automorphism S of a
Lebesque probability space, with invariant measure µ and generating partition
P, the Pinsker algebra of (S, µ) is the σ-algebra

P(S, µ) = N ∨
( ⋂
n∈N

P(S, n)
)

= N ∨
( ⋂
n∈N

P(S,−n)
)

where N is the σ-algebra of µ-null sets and

P(S, n) = ∨∞i=nS−iP .

For any finite partition Q, h(S, µ,Q) = 0 if and only if the elements of Q are
contained in the Pinsker algebra [24], [26]. (In particular, P(S, µ) does not
depend on the particular choice of generating partition P.) The system (S, µ)
is a K-automorphism if it has a trivial Pinsker algebra; equivalently, for any
partition B of X into two sets of positive measure, h(S, µ,B) > 0.

The next lemma assumes some familiarity with expansive subdynamics [6].

Lemma 4.1. Let α be a Z2 action on a zero dimensional compact metric
space X. Suppose m,n are nonzero elements of Z2 such that the homeomor-
phisms αm and αn are expansive, with m and n lying in the same connected
component of expansive 1-frames. Suppose µ is a Borel probability which is
invariant for both αm and αn.

Then the Pinsker algebras P(αm, µ) and P(αn, µ) are equal.

Proof. Let P be a partition of X into closed open sets with diameters
smaller than expansive constants for αm and αn. The proof of Proposition
8.1(3) in [6] includes the result that given a > 0 there is a c > 0 such that
“([a,∞)n)t codes ([c,∞)m)t.” In the zero dimensional case, the last statement
translates to “P(αn, a) refines P(αm, c)”. Taking intersections, we conclude
that the Pinsker algebra P(αn, µ) refines P(αm, µ). Similarly, the Pinsker
algebra P(αm, µ) refines P(αn, µ). �

Proposition 4.2. Suppose S and T are commuting expansive homeomor-
phisms of a zero dimensional compact metric space X; µ is a Borel probability
which is both S and T invariant; µ is nonzero on nonempty open sets; and
(T, µ) is a K- automorphism.

Then S is totally indecomposable.

Proof. We suppose there is a nontrivial closed open set B and some n > 0
such that SnB = B, and argue to a contradiction. Without loss of generality,
we suppose n = 1.

Let B be the partition {B,B′}. Let α be the Z2 action generated by S
and T , with α(1,0) = T and α(0,1) = S. Expansiveness of αv is an open
condition on v depending only on the line Rv; so for sufficiently large k,
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the map α(1,k) = TSk is expansive, and also (1, k) and (0, 1) lie in the same
connected component of expansive 1-frames (vectors) [6]. Choose such a k > 0
and set S′ = TSk.

Without loss of generality, suppose that all elements of the time zero par-
tition P have diameter smaller than expansive constants for S and S′, and
also that B is a union of elements of P. Because B is S-invariant, it holds
for all x and i that (TSk)ix ∈ B if and only if T ix ∈ B. So, for all n,
∨ni=0(TSk)iB = ∨ni=0T

iB. Therefore

h(S′, µ,B) = h(T, µ,B) > 0

where the last inequality holds because (T, µ) is a K-automorphism.
On the other hand, h(S, µ,B) = 0. Therefore B is µ-measurable with

respect to the Pinsker algebra of (S, µ). It follows from Lemma 4.1 that (S, µ)
and (S′, µ) have the same Pinsker algebra. Therefore h(S′, µ,B) = 0. This
contradiction concludes the proof. �

Corollary 4.3. Suppose S is an expansive automorphism of a mixing
sofic shift T . Then S is totally chain transitive.

Proof. For every n, the set of T -periodic points of period n is finite, and
S (as an automorphism of T ) maps that finite set onto itself. So, every T -
periodic point is an S-periodic point. Since T has dense periodic points, so
does S, and S is chain recurrent.

As an automorphism of T , S respects the unique measure of maximal
entropy µ of T , so µ is both S and T invariant. When T is a mixing SFT,
this (T, µ) is well known to be a K automorphism [26, Theorem 4.35] (and
in fact Bernoulli). This still holds for T mixing sofic, since T is a quotient of
some mixing SFT by a map which is a measurable conjugacy with respect to
the measures of maximal entropy.

By Proposition 4.2, S is totally indecomposable. Because the subshift S is
also chain recurrent, S is totally chain transitive. �

5. Ruling out AFT automorphisms

There are variants on the definition of “right resolving”. In this paper, we
will use the following.

Definition 5.1. A right resolving map π : S → T is a surjective one-
block code between subshifts such that for all w, x in S the following holds:
if w0 = x0 and (πw)1 = (πx)1, then w1 = x1.

In the next lemma we adapt a construction of Kitchens [13, Proposition
4.3.3] to the general subshift setting.
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Lemma 5.2. Suppose π : S → T is a right closing block code. Then there
is a conjugacy of subshifts γ : S′ → S such that πγ : S′ → T is a right
resolving code.

Proof. Without loss of generality suppose π is a one-block code. By a
compactness argument, there exists N > 0 with the following property: for
all x and w in S, if (πw)[−N,N ] = (πx)[−N,N ] and w[−N, 0] = x[−N, 0],
then w1 = x1. Define a new alphabet A as follows. An element of A is
an equivalence class of S-words x[−N,N ], where x[−N,N ] ∼ w[−N,N ] if (i)
x[−N, 0] = w[−N, 0] and also (ii) the words x[1, N ] and w[1, N ] have the same
image T -word under the one-block code π. Define S′ as the image of a block
code ψ with domain S, where (ψx)0 is defined to be the element of A which
contains x[−N,N ]. Clearly ψ is injective and therefore defines a conjugacy.

Next consider the map ρ from S′ to the (2N + 1)-block presentation T ′ of
T , where ρ is the one-block code such that for all a in S′, (ρa)0 is the word
which is the π image of the words x[−N,N ] in the equivalence class a0. By
choice of N , the map ρ is right resolving. Let ϕ be the one-block code from T ′

to T such that, when y ∈ T ′ and y0 is a T -word z[−N,N ], then (ϕy)0 = zN .
The map ϕ is right resolving and therefore so is the composition ϕρ. We see
that TNπ = ϕρψ. Because all the block codes commute with the shift, we
have πSN = ϕρψ, so πSNψ−1 is right resolving. Let γ = SNψ−1. �

Proposition 5.3. Suppose π : S → T is a right closing block code from
a chain transitive subshift S onto a shift of finite type T .

Then S is an irreducible SFT.

Proof. This result is known by two proofs in the case that S is an irreducible
sofic shift [8, Prop. 4.12]. The proof of Kitchens [8, pp. 40–41] generalizes
nicely to the chain transitive case. We include details for completeness.

Without loss of generality, we suppose T is a one-step SFT. Then by Lemma
5.2, also without loss of generality we suppose π is a right resolving one-block
code. Because S is chain transitive, the 1-Markov approximation S1 to S is
an irreducible SFT containing S. Because T is 1-step SFT, the surjective
resolving one-block code π : S → T extends to a surjective resolving one-
block code π1 : S1 → T . Now, h(S) = h(T ) = h(S1) because resolving maps
are finite to one and therefore respect topological entropy. As is well known
(e.g. [15, Cor. 4.4.9] or [13, p.120]), an irreducible SFT contains no proper
subsystem of equal entropy. Therefore S1 = S, and S is SFT. �

Lemma 5.4. Suppose S and T are commuting homeomorphisms, S is a
mixing SFT and T is sofic. Then T is mixing.

Proof. T is the quotient of some SFT T̃ by some map π which is finite to
one. Preimages of T -periodic points are therefore T̃ -periodic. T has dense
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periodic points (because for each n the finite set of points in S-orbits of size
n is permuted by T , and S has dense periodic points). Therefore T is the
image of the nonwandering SFT which is the closure of the periodic points in
T̃ . So, without loss of generality suppose T̃ is the disjoint union of irreducible
SFTs T1, . . . , Tk. Also suppose without loss of generality that the collection of
Ti is minimal, i.e., the image of any proper subcollection of these irreducible
components is not all of T . Let Ti be the image under π of T̃i.

Each Ti is a maximal subsystem of T for the property of having a dense
orbit, and there are no other such subsystems, because any orbit is contained
in some Ti. Therefore S, as an automorphism of T , permutes the Ti. Choose j
such that Sj fixes each of the sets Ti. By the minimality condition, each of the
Sj-invariant sets Ti must contain a nonempty open set not contained in the
union of the other Tj . If k > 1, then there is a nonempty nondense open set
invariant under the mixing map Sj , which is impossible. Therefore k = 1. If
necessary after replacing T̃1 with the Fisher cover of T1, we may suppose that
the period p of the irreducible SFT T̃i is smallest possible, and π : T̃1 → T1 is
one to one a.e. Then we must have p = 1, for otherwise T pi would be the union
of p mixing sofic shifts, each containing a nonempty open set not contained
in the union of the others, and we would have a contradiction as before. �

Theorem 5.5. Suppose S and T are commuting homeomorphisms and S
is a nonwandering shift of finite type. Then T cannot be a strictly sofic almost
Markov shift.

Proof. We suppose T is strictly sofic almost Markov, and argue to a con-
tradiction.

As a nonwandering SFT, S is a disjoint union of irreducible SFTs. For some
k, Sk is then a disjoint union of mixing SFTs. Because T is an automorphism
of Sk, it must permute these mixing SFTs. For some j, T j fixes each of them.
The restriction of T j to at least one of them must be strictly sofic and almost
Markov. So it suffices to obtain a contradiction under the additional condition
that the shift of finite type S is mixing.

Because T is a sofic automorphism of the mixing SFT S, by Lemma 5.4 T
is mixing. Let T ′ be the canonical mixing SFT cover of the mixing strictly
sofic almost Markov shift T , and let π : T ′ → T be the covering map. Then
S lifts by π to a unique automorphism S′ of T ′ ([14] or [4]).

The map π : T ′ → T is biclosing, so there exists ε > 0 such that dist(x,w) >
ε whenever x 6= w and πx = πw. Also, because S is expansive, points in
different fibers of π are uniformly separated under the action of S′. It follows
that S′ is expansive.

Because S′ is an expansive automorphism of the mixing SFT T ′, by Corol-
lary 4.3 S′ is totally chain transitive. Because preimage points under π are
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uniformly separated, the map π : S′ → S is biclosing, and in particular right
closing. If follows from Lemma 5.2 that S′ is an irreducible SFT.

We now have a biclosing map of mixing SFTs, π : S′ → S. Nasu proved that
such a map must be constant-to-one ([18] or [13, Proposition 3.4.4]). However,
π is generically one-to-one by construction as the canonical irreducible cover
π : T ′ → T , and it is not everywhere one-to-one because T is strictly sofic.
This gives the required contradiction and finishes the proof. �

Appendix A. The reducible example of Doris Fiebig

In this appendix we give an example of Doris Fiebig [10]: a twosided re-
ducible SFT S, and an expansive automorphism T of S, with T not SFT.
More precisely, there are two examples: a very simple one, and a modification
to achieve positive entropy.

Example A.1 ([10]). S is defined as the union of four orbits: two fixed
points, 0∞ and 3∞, and two connecting orbits, 0∞23∞ and 0∞2′3∞. The
automorphism T just shifts the orbit 0∞23∞ one step to the left, and the
orbit 0∞2′3∞ one step to the right. This is a bijective block code, thus T
is an automorphism of S. T is expansive, since for any point x in S the
bisequence (Tnx)0, n ∈ Z, yields enough information to determine the point
x.
T is not SFT. To see this we recode T to a subshift using the S-symbols

as partition. Then the S-point x = 0∞23∞ becomes 0∞23∞ and the S-point
y = 0∞2′3∞ becomes 3∞2′0∞. So, in the recoding, for all n > 0 we see words
23n and 3n2′, but the word 23n2′ does not occur. Therefore T is not SFT.

Example A.2 ([10]). To get a positive entropy example, consider the
one-step SFT S on symbols {0, 1, 2, 2′, 3, 4} with exactly the following allowed
transitions: elements of {0, 1} can be followed by elements of {0, 1, 2, 2′}; and
elements of {2, 2′, 3, 4} can be followed by elements of {3, 4}. Then there
is an automorphism U of S which shifts the symbol 2 two steps to the left
and the symbol 2′ two steps to the right, that is: U maps ab2 → 2a′b′ and
2′a′b′ → ab2′, where (a, a′), (b, b′) ∈ {(0, 3), (1, 4)}. Otherwise, U fixes all
symbols. Let T = SU .
T is expansive since on points without the symbols 2 and 2′, T is just the

shift S and on the points with the symbol 2, the 2 goes in steps of size 3 to
the left and on points with the symbol 2′, the 2′ goes 1 step to the right. Thus
we can recover any point x from the sequence (Tnx)[−1, 1], n ∈ Z.
T is not a SFT. Consider the S-points x = 0∞23∞ and y = 0∞2′3∞. Let

A = 03, B = 03. Then ((Tnx)[−1, 1])n, n ∈ Z, is of the form A∞(023)B∞,
and ((Tny)[−1, 1])n, n ∈ Z, is of the form B∞(2′33)(02′3)(002′)A∞, but for
all n > 0 there is no point z having in its sequence ((Tnz)[−1, 1])n, n ∈ Z, a
subblock (002′)An(023). This proves T is not a SFT.



1276 MIKE BOYLE

Remark A.3. Example A.1 can also be modified to have positive entropy
by replacing the pair S, T with S ×R, T ×R, where R is a shift of finite type
of positive entropy.

Remark A.4. In Example A.1, the nonSFT expansive automorphism T is
totally chain transitive; as the union of two SFTs, it is also an almost Markov
sofic shift. Thus a totally chain transitive strictly sofic almost Markov shift T
can commute with a shift of finite type S (but only when both S and T are
wandering).
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