Open Access
Winter 2004 On generalizations of a problem of Diophantus
Yann Bugeaud, Katalin Gyarmati
Illinois J. Math. 48(4): 1105-1115 (Winter 2004). DOI: 10.1215/ijm/1258138502

Abstract

Let $k \ge 2$ be an integer and let ${\mc A}$ and ${\mc B}$ be two sets of integers. We give upper bounds for the number of perfect $k$-th powers of the form $ab+1$, with $a$ in ${\mc A}$ and $b$ in ${\mc B}$. We further investigate several related questions.

Citation

Download Citation

Yann Bugeaud. Katalin Gyarmati. "On generalizations of a problem of Diophantus." Illinois J. Math. 48 (4) 1105 - 1115, Winter 2004. https://doi.org/10.1215/ijm/1258138502

Information

Published: Winter 2004
First available in Project Euclid: 13 November 2009

zbMATH: 1065.11015
MathSciNet: MR2113668
Digital Object Identifier: 10.1215/ijm/1258138502

Subjects:
Primary: 11D99
Secondary: 11B75

Rights: Copyright © 2004 University of Illinois at Urbana-Champaign

Vol.48 • No. 4 • Winter 2004
Back to Top