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ON THE STRUCTURE OF THE SET OF SEMIDUALIZING
COMPLEXES

A. GERKO

Abstract. We study the structure of the set of semidualizing com-
plexes over a local ring. In particular, we prove that for a pair of

semidualizing complexes X1 and X2 such that GX2 dimX1 < ∞ we

have X2 ' X1⊗LRRHomR(X1, X2). Specializing to the case of semidu-

alizing modules over artinian rings we obtain a number of quantitative
results for rings possessing a configuration of semidualizing modules of
special form. For rings with m3 = 0 this condition reduces to the ex-

istence of a nontrivial semidualizing module and we prove a number of
structural results in this case.

1. Introduction

In this paper we study the structure of the set of semidualizing complexes
over a commutative local Noetherian ring. The motivation behind this prob-
lem is its close relation to various questions about G-dimension, most notably
the question about the transitivity of G-dimension, raised by Avramov and
Foxby in [AF2].

Trivial examples of semidualizing complexes are the free module of rank
one and the dualizing complex when it exists. In all examples of rings known
to the author for which there are nontrivial semidualizing complexes the set
of these complexes has a very simple partial ordering structure, identical to
that of the set of all subsets of a finite set. The ultimate question we would
like to answer is whether a similar kind of structure exists in general, but so
far even simpler questions, such as whether there is always a finite number of
semidualizing complexes, remain unresolved.

In Section 3 we study a binary relation which, conjecturally, can endow the
set of the semidualizing modules over a ring with a structure of partial or-
dering. More precisely, we are interested in pairs of semidualizing complexes
X1 and X2 such that GX2 dimX1 < ∞. In particular, we prove (Theorem
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3.1) that in this case X2 can be represented as the left derived tensor prod-
uct of X1 and another semidualizing complex. This splitting result for pairs
of semidualizing complexes is easily generalized (Corollary 3.3) to the case
of chains, i.e., sequences of semidualizing complexes Xi, where for any two
consecutive entries we have GXi dimXi−1 <∞.

In Section 4 we prove a number of quantitative results about Artinian
rings with “a large number” of Tor-independent semidualizing modules (the
condition conjecturally equivalent to the existence of a corresponding long
chain of semidualizing modules).

Finally, in Section 5 we study the structure of such rings in more detail; in
particular, over rings with m3 = 0 we obtain analogues of the structural results
of the paper [Y] for rings possessing a nontrivial module of zero G-dimension.

2. Preliminaries

In this section we recall several notions from commutative and homological
algebra and fix some notations which will be used throughout the paper.

By a ring R we will always mean a commutative Noetherian local ring with
maximal ideal m and with residue class field k. A complex X of R-modules
is a collection of modules Xi and homomorphisms ∂Xi : Xi → Xi−1 such
that ∂Xi ∂

X
i+1 = 0. The i-th homology of a complex X is a module Hi(X) =

ker ∂Xi / im ∂Xi+1. The following numbers denote the positions of the non-zero
homologies of the complex X:

sup(X) = sup{i | Hi(X) 6= 0},
inf(X) = inf{i | Hi(X) 6= 0},

amp(X) = sup(X)− inf(X).

A complex is acyclic (Hi(X) = 0 for every i) if and only if any of the
following is true: sup(X) = −∞, inf(X) =∞, amp(X) = −∞. If amp(X) <
∞ (resp. inf(X) > −∞, sup(X) <∞) then we say that X is bounded (resp.
bounded below, bounded above).

We are working with the derived categories Dfb (R) (resp. Df+(R),Df−(R)),
i.e., the category of bounded (resp. bounded below, bounded above) R-
complexes with finite homology, localized at the class of quasi-isomorphisms
(see [H] or [GM]). All modules are assumed to be finitely generated, unless
otherwise specified.

By RHomR(−,−) (− ⊗LR −) we denote the right (left) derived functor
of the homomorphism (tensor product) functor of complexes. Note that no
boundedness conditions on the arguments are needed by the results of [S],
[AF1].

For a complex X bounded below [above] we define the Betti [Bass] num-
bers as βRi (X) = dimk(ExtiR(X, k)) [µiR(X) = dimk(ExtiR(k,X))]. The Betti
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[Bass] series, aggregating these data, are defined as PRX (t) =
∑
i β

R
i (X)ti

[IXR (t) =
∑
i µ

i
R(X)ti].

We use without further comments the standard morphisms of complexes,
in particular, the biduality morphism ω : M → RHomR(RHomR(M,N), N)
and the composition morphism ϕ : RHomR(M,N) ⊗LR RHomR(N,K) →
RHomR(M,K).

A complex K ∈ Dfb (R) is called semidualizing (see [C], [G]) if the biduality
morphism R → RHomR(RHomR(R,K),K) is an isomorphism. The trivial
examples are the ring itself and the dualizing complex when it exists.

For every semidualizing complex K the complex X ∈ Dfb (R) is
said to be of finite G-dimension with respect to K, or of finite GK-
dimension, if RHomR(X,K) ∈ Dfb (R) and the biduality morphism
X → RHomR(RHomR(X,K),K) is an isomorphism. In this case we
set GK dimX = − inf(RHomR(X,K))) + inf(K); otherwise we define
GK dimX = ∞. Note that the above conditions hold trivially when K is
dualizing. When K = R this dimension coincides with the G-dimension of
Auslander and Bridger [AB].

3. Semidualizing complexes

Theorem 3.1. If X1 and X2 are semidualizing complexes over a ring R
such that GX2 dimX1 < ∞, and the complex M has finite G-dimension with
respect to both X1 and X2, then the composition morphism

ϕ : RHomR(M,X1)⊗LR RHomR(X1, X2)→ RHomR(M,X2)

is an isomorphism.

Proof. It suffices to prove that coneϕ is acyclic. From the commutative
diagram

RHomR(RHomR(M,X1)⊗LR RHomR(X1, X2), X2)
RHomR(ϕ,X2)
←−−−−−−−−−−− RHomR(RHomR(M,X2), X2)y' x'

RHomR(RHomR(M,X1),RHomR(RHomR(X1, X2), X2)) Mx' ∥∥∥
RHomR(RHomR(M,X1), X1)

'←−−−−−− M

it follows that RHomR(ϕ,X2) is an isomorphism. Thus the complex
RHomR(coneϕ,X2) is acyclic. Since the complexes RHomR(M,X1) ⊗LR
RHomR(X1, X2) and RHomR(M,X2) are bounded below, the complex coneϕ
is also bounded below. If H(coneϕ) 6= 0, then inf coneϕ is finite. We have
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−∞ = sup RHomR(k,RHomR(coneϕ,X2))

= sup RHomR(k ⊗LR coneϕ,X2)

= sup RHomk(k ⊗LR coneϕ,RHomR(k,X2))

= sup RHomR(k,X2)− inf coneϕ,

a contradiction, since the right-hand side is finite. �

Definition 3.2. We say that the non-isomorphic semidualizing complexes
X0, X1, . . . , Xn form a chain of length n if GXi dimXi−1 < ∞ for all i =
1, . . . , n.

Corollary 3.3. If the semidualizing complexes X0, X1, . . . , Xn form a
chain, then we have an isomorphism

Xn ' X0 ⊗LR RHomR(X0, X1)⊗LR RHomR(X1, X2)(3.1)

⊗LR · · · ⊗LR RHomR(Xn−1, Xn).

Proof. For each i apply Theorem 3.1 with M = R to the semidualizing
complexes Xi and Xi−1. �

Remark 3.4. If the semidualizing complexes X0, X1, . . . , Xn ' X0 form
a chain, then Corollary 3.3 implies that

X0 ' X0 ⊗LR RHomR(X0, X1)⊗LR RHomR(X1, X2)

⊗LR · · · ⊗LR RHomR(Xn−1, Xn).

Thus for all i we have RHomR(Xi, Xi+1) ' R and Xi ' Xi+1. This is a slight
variation of the proofs of [C, Proposition 8.3,(iii)⇒(ii)] and [ATY, Theorem
5.5].

Proposition 3.5. If X1, X1 ⊗LR X2 are semidualizing complexes over
a ring R, then ϕ : X1 → RHomR(X2, X1 ⊗LR X2) is an isomorphism. If,
moreover, X2 is semidualizing, then ψ : X2 → RHomR(X1, X1 ⊗LR X2) is an
isomorphism; in particular, GX1⊗LRX2

dimX1 <∞.

Proof. Analogously to the proof of Theorem 3.1 note that coneϕ is bounded
above. Thus, if it is not acyclic, then RHomR(X1, coneϕ) is also not acyclic,
a contradiction. �

Remark 3.6. There are quite a number of questions remaining unresolved
about the structure of the set. We note some of them:

Transitivity: If a triple of semidualizing complexes X1, X2, X3 is such
that GX3 dimX2 < ∞ and GX2 dimX1 < ∞, does this imply that
GX3 dimX1 <∞?
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Existence of a “join”: Does there exist, for each pair of semidualizing
complexes X1, X2, a third semidualizing complex X3 with the prop-
erty that GX3 dimX2 < ∞ and GX3 dimX1 < ∞? (Note that this
holds trivially when the ring possesses a dualizing complex.)

4. Semidualizing modules over Artin rings

In this section we assume that R is Artin and that all modules are finitely
generated.

Definition 4.1. The modules K1,K2, . . . ,Kn are said to be weakly Tor-
independent if amp(⊗L1≤i≤nKi) = 0.

Definition 4.2. The modules K1,K2, . . . ,Kn are said to be strongly Tor-
independent if for any subset I ⊂ {1, . . . , n} we have amp(⊗Li∈IKi) = 0.

Remark 4.3. In the case n = 2 both notions are equivalent to the classical
Tor -independence, i.e., to the condition that TorRi (K1,K2) vanishes for i > 0.

Remark 4.4. It is not clear whether weak Tor-independence implies
strong Tor-independence if n > 2.

Theorem 4.5. If the modules K1,K2, . . . ,Kn are non-free and strongly
Tor-independent, then mn 6= 0. If, under the same conditions, mn+1 = 0, then
the Betti series of k has the form 1/

∏n
i=1(1− dit) for some positive integers

di.

Proof. Let Yi = Syz1(Ki). Note that if we take, for each i, a module Xi ∈
{Ki, Yi}, then the modules Xi are still strongly Tor-independent. Suppose
mn = 0. We prove by induction that mn−j ⊗1≤i≤j Yi = 0. If j = 1 this is
clear, since Y1 ⊂ mRβ

R
0 (K1). If this holds for j = l, then taking the exact

sequence
0→ Yl+1 → Rβ

R
0 (Kl+1) → Kl+1 → 0,

tensoring it by ⊗1≤i≤lYi and using strong Tor-independence, we get
⊗1≤i≤l+1Yi ⊂ m (⊗1≤i≤l+1Yi)β

R
0 (Kl+1), which, using the induction hypoth-

esis, gives the desired statement. Applying this result with j = n− 1 we get
m(⊗1≤i≤n−1Yi) = 0, i.e., ⊗1≤i≤n−1Yi is a vector space over the residue field
of R. Since TorR1 (⊗1≤i≤n−1Yi,Kn) = 0, the module Kn is free. Thus mn 6= 0.

Now if mn+1 = 0, the same reasoning shows that m2(⊗1≤i≤n−1Yi) = 0,
m(⊗1≤i≤nYi) = 0. The first isomorphism implies that there exists an exact
sequence of the form

0→ kan → ⊗1≤i≤n−1Yi → kbn → 0.

Tensoring this sequence by Kn and using the fact that, by the long
exact sequence of Tor’s, TorRj (⊗1≤i≤n−1Yi,Kn) = 0 for all j > 0,
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we get TorRi (Kn, k)an ' TorRi+1(Kn, k)bn for i > 0. It follows that
TorRi (Yn, k)an ' TorRi+1(Yn, k)bn for i ≥ 0. Thus the Betti series of Yn
is PRYn(t) = cn/(1− (an/bn)t). Analogously, we see that the Betti series
of the other modules Yi have the same form and we get PR⊗1≤i≤nYi

(t) =∏n
i=1 ci/

∏n
i=1(1− (ai/bi)t). Finally, since ⊗1≤i≤nYi is a vector space over

k and βR0 (k) = 1, the claim follows. �

Conjecture 4.6. If the semidualizing modules K0,K1, . . . ,Kn form a
chain, then mn 6= 0. If, under the same conditions, mn+1 = 0, then the Betti
series of k has the form 1/

∏n
i=1(1− dit) for some di.

Remark 4.7. Note that the conditions of the conjecture im-
ply, by Corollary 3.3, that the modules K0, HomR(K0,K1),
HomR(K1,K2), . . . ,HomR(Ki−1,Ki) are weakly Tor-independent for
every i ≤ n. It is not known whether these conditions imply strong
Tor-independence, which would be enough to prove the conjecture.

Theorem 4.8. Conjecture 4.6 holds for n ≤ 3.

Proof. First note that if the semidualizing modules K0,K1, . . . ,Kn form a
chain, then the modules R,K1, . . . ,Kn−1, D (where D is dualizing) also form
a chain. Thus we can assume that we have a chain of this form. For n = 1 the
statement hold trivially. The existence of two non-isomorphic semidualizing
modules already implies that m 6= 0, and the statement about the Betti series
of the residue field holds for all rings with m2 = 0. For n = 2 the mod-
ules K1 and Hom(K1, D) are Tor-independent and we are in the situation of
Theorem 4.5. For n = 3, by Theorem 4.5 everything would follow from the
strong Tor-independence of the modules K1,HomR(K1,K2),HomR(K2, D).
The weak Tor-independence follows from Corollary 3.3. To prove that any two
of these modules are Tor-independent it remains to apply Theorem 3.1 to the
triples (M,X1, X2) = (R,K1,K2), (K1,K2, D), (HomR(K1,K2),K2, D). �

Definition 4.9. An Artin ring R is called SD(n)-full if the following
conditions are satisfied:

(1) mn+1 = 0.
(2) There are strongly Tor-independent non-free semidualizing modules

K1,K2, . . . ,Kn such that for any subset I ⊂ {1, . . . , n} the module
⊗i∈IKi is semidualizing.

Remark 4.10. If the set of semidualizing modules satisfies condition (2)
in this definition, then the semidualizing modules X0 = R, Xk = ⊗1≤i≤kKi

form a chain by Proposition 3.5.
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Example 4.11. All non-Gorenstein rings with m2 = 0 are SD(1)-full. A
ring with m3 = 0 is SD(2)-full iff there exists a nontrivial semidualizing R-
module. The ring ⊗1≤i≤n

k k n kai , where ai > 1, is SD(n)-full according to
[G2].

Proposition 4.12. For an SD(n)-full ring R the module ⊗Ki is dualiz-
ing.

Proof. Suppose ⊗Ki is not dualizing. We prove that the semidualiz-
ing modules K1,K2, . . . ,Kn,Hom(⊗RKi, D) are strongly Tor-independent,
which, by Theorem 4.5, contradicts the first condition in the definition of an
SD(n)-full ring . Taking X1 = ⊗i∈IKi, X2 = ⊗i/∈IKi we obtain the following
isomorphisms:

X1⊗LR RHomR(X1 ⊗LR X2, D)

' RHomR(X2, X1 ⊗LR X2)⊗LR RHomR(X1 ⊗LR X2, D)

' RHomR(X2, D).

The first isomorphism is due to Proposition 3.5 and the second one is due to
Theorem 3.1. Hence

amp(⊗Li∈IKi ⊗L Hom(⊗LRKi, D)) = amp(Hom(⊗Li/∈IKi, D)) = 0. �

Remark 4.13. If the conditions of Conjecture 4.6 hold for a ring R and
if n ≤ 3 and mn+1 = 0, then R is SD(n)-full.

5. Semidualizing modules over SD(n)-full rings

The proofs of this section closely mimic that of the paper [Y]. We start with
basic facts about modules M with m2M = 0 having finite GK−dimension with
respect to a non-dualizing semidualizing module K. Throughout this section
we denote the module Hom(M,K) by M∗.

Proposition 5.1. If R is Artin, m2M = 0 and GK dimM = 0, then there
exists an integer c such that for the Bass numbers µi(K) we have µi+1(K) =
cµi(K) for all i > 0.

Proof. Starting with the short exact sequence 0 → ka → M → kb → 0,
writing down the long exact sequence for ExtiR(−,K), and using the fact
that ExtiR(M,K) = 0 for all i > 0, we obtain isomorphisms ExtiR(k,K)a '
Exti+1

R (k,K)b for all i > 0. Since K is not dualizing, Ext1
R(k,K) 6= 0. Thus,

(a/b)n dimk(Ext1
R(k,K)) = dimk(Extn+1

R (k,K)) is a positive integer for each
n ≥ 0, which implies b|a. �

Proposition 5.2. If R is Artin, m2M = 0 and GK dimM = 0, then
l(M∗) = l(M) and µ1(K) = µ0(K)2 − 1.
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Proof. Starting with the short exact sequence

0→ ka →M → kb → 0,

applying Hom(−,K), and using the fact that ExtiR(M,K) = 0 for all i > 0,
we obtain the short exact sequence

0→ kbµ
0(K) →M∗ → kaµ

0(K)−bµ1(K) → 0.

Counting the lengths gives

(5.1) l(M∗) = (a+ b)µ0(K)− bµ1(K) = l(M)µ0(K)− bµ1(K).

Analogously, starting with the sequence

0→ kbµ
0(K) →M∗ → kaµ

0(K)−bµ1(K) → 0,

we get

(5.2) l(M∗∗) = l(M∗)µ0(K)− (aµ0(K)− bµ1(K))µ1(K).

Finally, we have

(5.3) a+ b = l(M) = l(M∗∗).

Eliminating a and b from these equalities gives

l(M∗)µ1(K) = l(M)(µ0(K)2 − 1)

and
l(M)µ1(K) = l(M∗)(µ0(K)2 − 1),

and the proposition follows. �

Remark 5.3. If R is SD(n)-full, then takingK1,K2, . . . ,Kn to be the cor-
responding set of nontrivial semidualizing modules and setting Yi = Syz1(Ki),
it is easy to see from the proof of Theorem 4.5 that for every i ∈ {1, . . . , n}
the module ⊗j 6=iYj is annihilated by m2 and has finite GK−i-dimension, where
K−i = ⊗j 6=iKj .

Proposition 5.4. If R is SD(n)-full, K1,K2, . . . ,Kn are the corre-
sponding semidualizing modules, then for each i the Bass series of K−i
is IK−i(t) = (µ0(K−i)− t)/(1− µ0(K−i)t) and the Betti series of Ki is
PKi(t) = (β0(Ki)− t)/(1− β0(Ki)t).

Proof. The previous two propositions imply that

IK−i(t) =
µ0(K−i)− µ0(K−i)ct+ µ0(K−i)2t− t

1− ct
,

where µj+1(K−i) = cµj(K−i) for j > 0. It remains to prove that c = µ0(K−i).
By Remark 5.3 there exists an R-module M, annihilated by m2, which has
finite GK−i-dimension. Dualizing the exact sequence

0→ ka →M → kb → 0
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we get the exact sequence

0→ kbµ
0(K−i) →M∗ → kaµ

0(K−i)−bµ1(K−i) → 0.

As in the proof of Proposition 5.1, from these two exact sequences we get that

a/b = c = bµ0(K−i)/(aµ0(K−i)− bµ1(K−i)).

Substituting, by Proposition 5.2, µ1(K−i) = µ0(K−i)2 − 1, and rearranging
terms, we obtain the equality

(µ0(K−i)b− a)(b− µ0(K−i)a) = 0.

Since a/b is an integer, a = µ0(K−i)b. The statement about the Betti series
follows from the isomorphism RHomR(Ki,Ki⊗K−i) ' K−i and Proposition
4.12, which implies that PKi(t) = IK−i(t). �

Next we specialize to the case of SD(2)-full algebras over a field. Denote
a nontrivial semidualizing module by K.

Remark 5.5. Any finite algebra R with m3 = 0 is naturally graded ([Y,
Proof of Theorem 3.1, Step 7]), as are R-modules that are annihilated by m2.

Proposition 5.6. If R is an SD(2)-full ring and K a nontrivial semid-
ualizing module, then l(K) = l(R).

Proof. Dualizing with respect to K the exact sequence

0→ Syz1(K)→ Rβ0(K) → K → 0

we get the exact sequence

0→ R→ Kβ0(K) → Syz1(K)∗ → 0.

From Lemma 5.2 it follows that l(Syz1(K)) = l(Syz1(K)∗). Thus, counting
the lengths gives

β0(K) l(R)− l(K) = β0(K) l(K)− l(R),

which implies that l(K) = l(R). �

Lemma 5.7. If R is an SD(2)-full ring and K a nontrivial semidualizing
module, then socleR = m2 and for i ≥ 2 we have m Syzi(K) = m2Rβi−1(K).
In particular, there exists a natural grading on the minimal free resolution of
a module Syz1(K).

Proof. [HSV, Remark 2.4] applied to M = K,N = Hom(K,D), where
D is a dualizing module and K is a nontrivial semidualizing module, im-
plies socleR = m2. For the second statement we proceed as in the proof
of [HSV, Remark 2.4]. The inclusion m Syzi(K) ⊂ m2Rβi−1(K) is obvious.
Suppose x ∈ m2Rβi−1(K)\m Syzi(K). Since Syzi−1(K) is annihilated by m2,
x ∈ Syzi(K)\m Syzi(K). Since the Tor’s of Syzi(K) and Hom(K,D) vanish,
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Syzi(K) has no k’s as direct summands. Thus x is not annihilated by m, a
contradiction. �

Proposition 5.8. Let R be an SD(2)-full ring, and let K be a nontrivial
semidualizing module. Then we have the equalities

(1) dimk m2 = µ0(K)β0(K),
(2) dimk m/m2 = µ0(K) + β0(K),
(3) dimk m2K = µ0(K).

Proof. The first equality follows from the fact that Hom(K,K) ' R (and
thus dimk socleK dimkK/mK = dimk socleR) and Lemma 5.7. For the sec-
ond, consider the sequence

0→ Syz2(K)/m Syz2(K)→ (R/m2R)β1(K) → Syz1(K)→ 0,

which is exact by Lemma 5.7. Counting the lengths gives

dimk Syz2(K)/m Syz2(K) = β1(K)(1 + dimk m/m2)(5.4)

− dimk Syz1(K)/m Syz1(K) dimk m Syz1(K)

= β1(K)(1 + dimk m/m2)− β1(K)− β1(K)µ0(K)

= β1(K)(dimk m/m2 − µ0(K)),

where in the second equality we used the fact that dimk m Syz1(K) =
dimk(Syz1(K)/m Syz1(K))µ0(K) from the proof of Proposition 5.4. On the
other hand, from Lemma 5.7 we have

(5.5) dimk m Syz2(K) = β1(K) dimk m2 = β1(K)µ0(K)β0(K)

Finally, note that the module Syz2(K) also has finite GK-dimension. Thus,
as in the proof of Proposition 5.4,

(5.6) dimk m Syz2(K) = µ0(K) dimk Syz2(K)/m Syz2(K).

Combining (5.4), (5.5) and (5.6) gives dimk m/m2 = µ0(K)+β0(K). To obtain
the third equality of the proposition, take the short exact sequence

0→ Syz2(L)/m Syz2(L)→ (R/m2R)β1(L) → Syz1(L)→ 0,

where L is the semidualizing module Hom(K,D), and tensor it by K. The
sequence

0→ (Syz2(L)/m Syz2(L))⊗K → (K/m2K)β1(L) → Syz1(L)⊗K → 0

is also exact, by Remark 4.7. Counting the lengths gives

(5.7) β1(L)(l(K)− l(m2K)) = β2(L)β0(K) + (β0(L)− 1)l(R),

where the equality l(Syz1(L) ⊗ K) = (β0(L) − 1)l(R) follows from counting
the lengths in the short exact sequence

0→ Syz1(L)⊗K → Kβ0(L) → D → 0
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and using Proposition 5.6.
Rearranging (5.7) and using β0(L) = µ0(K), β1(L) = µ0(K)2 − 1 and

β2(L) = (µ0(K)2 − 1)µ0(K), which follows from Proposition 5.4, and l(R) =
(1 + µ0(K))(1 + β0(K)), we obtain the desired statement. �

Theorem 5.9. SD(2)-full rings are Koszul, i.e., satisfy ExtiR(k, k)j = 0
for i 6= j.

Proof. For M = Syz1(K),Syz1(Hom(K,D)) we have ExtiR(M,k)j = 0 for
i 6= j. Noting that the modules Syz1(K) and Syz1(Hom(K,D)) are Tor-
independent and their tensor product is annihilated by m, we obtain the
desired statement. �
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