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MODULES OF G-DIMENSION ZERO OVER LOCAL RINGS
OF DEPTH TWO

RYO TAKAHASHI

Abstract. Let R be a commutative noetherian local ring. Denote by
modR the category of finitely generated R-modules, and by G(R) the

full subcategory of modR consisting of all R-modules of G-dimension
zero. Suppose that R is henselian and non-Gorenstein, and that there
is a non-free R-module in G(R). Then it is known that G(R) is not
contravariantly finite in modR if R has depth at most one. In this
paper, we prove that the same statement holds if R has depth two.

1. Introduction

Throughout the present paper, we assume that all rings are commutative
noetherian rings and all modules are finitely generated modules.

Auslander [1] has introduced a homological invariant for modules, which
is called Gorenstein dimension, or G-dimension for short. This invariant has
a lot of properties similar to those of projective dimension. For example,
it is well-known that the finiteness of projective dimension characterizes the
regular property of the base ring: any module over a regular local ring has
finite projective dimension, and a local ring whose residue class field has finite
projective dimension is regular. The finiteness of G-dimension characterizes
the Gorenstein property of the base ring.

Over a Gorenstein local ring, a module has G-dimension zero if and only if
it is a maximal Cohen-Macaulay module. Hence it is natural to expect that
modules of G-dimension zero over an arbitrary local ring behave similarly to
maximal Cohen-Macaulay modules over a Gorenstein local ring.

A Cohen-Macaulay local ring is said to be of finite Cohen-Macaulay rep-
resentation type if it has only finitely many non-isomorphic indecomposable
maximal Cohen-Macaulay modules. Under a few assumptions, Gorenstein
local rings of finite Cohen-Macaulay representation type have been classified
completely, and it is known that all non-isomorphic indecomposable maximal
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Cohen-Macaulay modules over them can be described concretely; see [7] for
the details.

Thus we are interested in non-Gorenstein local rings which have only finitely
many non-isomorphic indecomposable modules of G-dimension zero, and par-
ticularly in determining all non-isomorphic indecomposable modules of G-
dimension zero over such rings.

Now, we form the following conjecture:

Conjecture 1.1. Let R be a non-Gorenstein local ring. Suppose that
there exists a non-free R-module of G-dimension zero. Then there exist infin-
itely many non-isomorphic indecomposable R-modules of G-dimension zero.

This conjecture is against our expectation that modules of G-dimension
zero over an arbitrary local ring behave similarly to maximal Cohen-Macaulay
modules over a Gorenstein local ring. Indeed, let S be a d-dimensional non-
regular Gorenstein local ring of finite Cohen-Macaulay representation type.
(Such a ring does exist; see [7].) Then the dth syzygy module of the residue
class field of S is a non-free maximal Cohen-Macaulay S-module. Hence the
above conjecture does not necessarily hold without the assumption that R is
non-Gorenstein.

For a local ring R, we denote by modR the category of finitely gener-
ated R-modules, and by G(R) the full subcategory of modR consisting of all
R-modules of G-dimension zero. We conjecture that even the following state-
ment that is stronger than Conjecture 1.1 is true. (It can be seen from the
proof of [5, Theorem 2.9] that Conjecture 1.2 implies Conjecture 1.1.)

Conjecture 1.2. Let R be a non-Gorenstein local ring. Suppose that
there exists a non-free R-module in G(R). Then the category G(R) is not
contravariantly finite in modR.

In [4] and [5], it is proved that Conjecture 1.2 is true if R is henselian and
has depth at most one:

Theorem 1.3 ([4, Theorem 1.2], [5, Theorem 2.8]). Let (R,m, k) be a
henselian non-Gorenstein local ring. Suppose that there exists a non-free R-
module in G(R). If the depth of R is zero (resp. one), then k (resp. m) does
not admit a G(R)-precover, and hence G(R) is not contravariantly finite in
modR.

The purpose of this paper is to prove that Conjecture 1.2 is true if R is
henselian and has depth two:

Theorem 1.4. Let R be a henselian non-Gorenstein local ring of depth
two. Suppose that there exists a non-free R-module in G(R). Then the category
G(R) is not contravariantly finite in modR.
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Under the assumptions of Theorem 1.4, take a non-split exact sequence

0→ R→M → m→ 0,

where m is the unique maximal ideal of R. (Such an exact sequence exists
because Ext1

R(m, R) 6= 0.) Then it can be proved that the R-module M does
not admit a G(R)-precover, and hence G(R) is not contravariantly finite in
modR.

In Section 2, we will state some definitions and auxiliary results necessary
to prove the theorem. The proof of the theorem is given in Section 3.

2. Background material

In this section, we provide some background material. Throughout this
section, let (R,m, k) be a commutative noetherian local ring. All R-modules
in this section are assumed to be finitely generated.

First, we recall the definition of G-dimension. We denote by modR the
category of finitely generated R-modules. Put M∗ = HomR(M,R) for an
R-module M .

Definition 2.1.

(1) We denote by G(R) the full subcategory of modR consisting of all
R-modules M satisfying the following three conditions.
(i) The natural homomorphism M →M∗∗ is an isomorphism.
(ii) ExtiR(M,R) = 0 for every i > 0.
(iii) ExtiR(M∗, R) = 0 for every i > 0.

(2) Let M be an R-module. If n is a non-negative integer such that there
is an exact sequence

0→ Gn → Gn−1 → · · · → G1 → G0 →M → 0

of R-modules with Gi ∈ G(R) for every i, 0 ≤ i ≤ n, then we say that
M has G-dimension at most n, and write G- dimRM ≤ n. If such an
integer n does not exist, then we say that M has infinite G-dimension,
and write G- dimRM =∞.

Of course, if an R-module M has G-dimension at most n, but does not
have G-dimension at most n− 1, then we say that M has G-dimension n and
write G- dimRM = n.

Let M be an R-module. We denote by ΩnM the nth syzygy module of M ,
and set ΩM = Ω1M . If F1

∂→ F0 → M → 0 is the minimal free presentation
of M , then we denote by TrM the cokernel of the dual homomorphism ∂∗ :
F ∗0 → F ∗1 . G-dimension is a homological invariant for modules sharing a lot
of properties with projective dimension. We state here just those properties
that will be used later.
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Proposition 2.2.

(1) The following conditions are equivalent.
(i) R is Gorenstein.
(ii) G- dimRM <∞ for any R-module M .
(iii) G- dimR k <∞.

(2) Let M,N be R-modules. Then G- dimR(M ⊕ N) = sup{G- dimRM,
G- dimRN}.

(3) If an R-module M belongs to G(R), then so do M∗, ΩM , TrM , and
any direct summand of M .

(4) Let 0 → L → M → N → 0 be an exact sequence of R-modules. If L
and N belong to G(R), then so does M .

The proof of this proposition and other properties of G-dimension are stated
in detail in [2, Chapter 3,4] and [3, Chapter 1].

Now we introduce the notion of a cover of a module.

Definition 2.3. Let X be a full subcategory of modR.

(1) Let φ : X →M be a homomorphism from X ∈ X to M ∈ modR.
(i) We call φ an X -precover of M if for any homomorphism φ′ :

X ′ →M with X ′ ∈ X there exists a homomorphism f : X ′ → X
such that φ′ = φf .

(ii) Assume that φ is an X -precover of M . We call φ an X -cover of
M if any endomorphism f of X with φ = φf is an automorphism.

(2) The category X is said to be contravariantly finite if every M ∈ modR
has an X -precover.

An X -precover (resp. an X -cover) is often called a right X -approximation
(resp. a minimal right X -approximation).

Proposition 2.4 ([5, Remark 2.6]). Let X be a full subcategory of modR
which is closed under direct summands, and let

0→ N
ψ→ X

φ→M

be an exact sequence of R-modules, where φ is an X -precover of M . Suppose
that R is henselian. Then there exists a direct summand L of N satisfying
the following conditions:

(i) ψ(L) is a direct summand of X.
(ii) Let N ′ (resp. X ′) be the complement of L (resp. ψ(L)) in N (resp.

X), and let

0→ N ′
ψ′→ X ′

φ′→M

be the induced exact sequence. Then φ′ is an X -cover of M .
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For R-modules M,N , we define a homomorphism

λM (N) : M ⊗R N → HomR(M∗, N)

of R-modules by λM (N)(m⊗n)(f) = f(m)n for m ∈M, n ∈ N and f ∈M∗.

3. Proof of the theorem

Now, let us prove our theorem.

Proof of Theorem 1.4. Let (R,m, k) be a henselian non-Gorenstein local
ring of depth two. Then, since Ext1

R(m, R) ∼= Ext2
R(k,R) 6= 0, we have a

non-split exact sequence

(1) σ : 0→ R→M → m→ 0.

Dualizing this, we obtain an exact sequence

0→ m∗ →M∗ → R∗
η→ Ext1

R(m, R).

Note that, by definition, the connecting homomorphism η sends idR ∈ R∗ to
the element s ∈ Ext1

R(m, R) corresponding to the exact sequence σ. Since σ
does not split, s is a non-zero element of Ext1

R(m, R). Hence η is a non-zero
map. Noting that Ext1

R(m, R) ∼= Ext2
R(k,R), we see that the image of η is

annihilated by m. Also noting that m∗ ∼= R∗ ∼= R, we get an exact sequence

(2) 0→ R→M∗ → m→ 0.

Claim 1. The modules HomR(G,M) and HomR(G,M∗) belong to G(R)
for every non-free indecomposable module G ∈ G(R).

Proof. Applying the functor HomR(G,−) to the exact sequence (1) gives
an exact sequence

0→ G∗ → HomR(G,M)→ HomR(G,m)→ Ext1
R(G,R).

Since G is non-free and indecomposable, any homomorphism from G to R fac-
tors through m, and hence HomR(G,m) ∼= G∗. Also, since G ∈ G(R), we have
Ext1

R(G,R) = 0. Thus Proposition 2.2.4 implies that HomR(G,M) ∈ G(R).
The same argument for the exact sequence (2) shows that HomR(G,M∗) ∈
G(R). �

We shall prove that the module M cannot have a G(R)-precover. Suppose
that M has a G(R)-precover. Then M has a G(R)-cover π : X → M by
Proposition 2.4. Since R ∈ G(R), any homomorphism from R to M factors
through π. Hence π is a surjective homomorphism. Setting N = Ker π, we
get an exact sequence

(3) 0→ N
θ→ X

π→M → 0,
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where θ is the inclusion. We see from Proposition 2.2.3, 2.2.4, and Waka-
matsu’s Lemma [6, Lemma 2.1.1] that ExtiR(G,N) = 0 for any G ∈ G(R) and
any i > 0. Dualizing the exact sequence (3), we obtain an exact sequence

0→M∗
π∗→ X∗

θ∗→ N∗.

Put C = Im(θ∗) and let µ : X∗ → C be the surjection induced by θ∗.

Claim 2. The homomorphism µ is a G(R)-precover of C.

Proof. Fix a non-free indecomposable module G ∈ G(R). Applying the
functors G ⊗R − and HomR(G∗,−) to the exact sequence (3) yields a com-
mutative diagram

0y
G⊗R N

λG(N)−−−−→ HomR(G∗, N)

G⊗Rθ
y HomR(G∗,θ)

y
G⊗R X

λG(X)−−−−→ HomR(G∗, X)

G⊗Rπ
y HomR(G∗,π)

y
G⊗RM

λG(M)−−−−→ HomR(G∗,M)y y
0 Ext1

R(G∗, N)

with exact columns. Noting that TrG ∈ G(R) by Proposition 2.2.3, we
see from [2, Proposition (2.6)] that Ker λG(N) ∼= Ext1

R(TrG,N) = 0 and
Coker λG(N) ∼= Ext2

R(TrG,N) = 0. This means that λG(N) is an isomor-
phism. It follows from the commutativity of the above diagram that the
homomorphism G⊗R θ is injective. Also, we have Ext1

R(G∗, N) = 0 because
G∗ ∈ G(R) by Proposition 2.2.3. Thus we obtain a commutative diagram

0 −−−−−→ G⊗R N
G⊗Rθ−−−−−→ G⊗R X −−−−−→ G⊗RM −−−−−→ 0

λG(N)

y∼= y y
0 −−−−−→ HomR(G∗, N) −−−−−→ HomR(G∗, X) −−−−−→ HomR(G∗,M) −−−−−→ 0
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with exact rows. Dualizing this diagram induces a commutative diagram

HomR(G∗, X)∗ −−−−→ HomR(G∗, N)∗ −−−−→ Ext1
R(HomR(G∗,M), R)y (λG(N))∗

y∼= y
(G⊗R X)∗

(G⊗Rθ)∗−−−−−−→ (G⊗R N)∗ −−−−→ Ext1
R(G⊗RM,R)

with exact rows. Since HomR(G∗,M) ∈ G(R) by Claim 1, we have
Ext1

R(HomR(G∗,M), R) = 0. From the above commutative diagram it is seen
that (G ⊗R θ)∗ is a surjective homomorphism. Note that there is a natural
commutative diagram

(G⊗R X)∗
(G⊗Rθ)∗−−−−−−→ (G⊗R N)∗y∼= y∼=

HomR(G,X∗)
HomR(G,θ∗)−−−−−−−−→ HomR(G,N∗)

with isomorphic vertical maps. Therefore the homomorphism HomR(G, θ∗) is
also surjective, and so is the homomorphism HomR(G,µ) : HomR(G,X∗) →
HomR(G,C). It is easy to see from this that µ is a G(R)-precover of C. �

According to Claim 2 and Proposition 2.4, we have direct sum decomposi-
tions M∗ = Y ⊕ L, X∗ = π∗(Y )⊕ Z, and an exact sequence

0→ L→ Z
ν→ C → 0,

where ν is a G(R)-cover of C. Since Y is isomorphic to the direct summand
π∗(Y ) of X∗, Proposition 2.2.3 implies that Y ∈ G(R). Wakamatsu’s Lemma
yields Ext1

R(G,L) = 0 for any G ∈ G(R).

Claim 3. The module HomR(G, Y ) belongs to G(R) for any G ∈ G(R).

Proof. We may assume thatG is non-free and indecomposable. The module
HomR(G, Y ) is isomorphic to a direct summand of HomR(G,M∗). Since the
module HomR(G,M∗) is an object of G(R) by Claim 1, so is the module
HomR(G, Y ) by Proposition 2.2.3. �

Here, by the assumption of the theorem, we have a non-free indecomposable
module W ∈ G(R). There is an exact sequence

0→ ΩW → F →W → 0

such that F is a free module. Applying the functor HomR(−, Y ) to this exact
sequence, we get an exact sequence

0→ HomR(W,Y )→ HomR(F, Y )→ HomR(ΩW,Y )→ Ext1
R(W,Y )→ 0.

Since HomR(W,Y ), HomR(F, Y ), and HomR(ΩW,Y ) belong to G(R) by Claim
3, the R-module Ext1

R(W,Y ) has G-dimension at most two, so in particular
it has finite G-dimension.
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On the other hand, there are isomorphisms

Ext1
R(W,Y ) ∼= Ext1

R(W,Y )⊕ Ext1
R(W,L)

∼= Ext1
R(W,M∗)

∼= Ext1
R(W,m),

where the last isomorphism is induced by the exact sequence (2). Applying
the functor HomR(W,−) to the exact sequence

0→ m→ R→ k → 0

and noting that HomR(W,m) ∼= W ∗ because W is a non-free indecompos-
able module, we obtain an isomorphism Ext1

R(W,m) ∼= HomR(W,k), and
hence Ext1

R(W,Y ) is a non-zero k-vector space. Therefore Proposition 2.2.1
and 2.2.2 say that R is Gorenstein, contrary to the assumption of our theo-
rem. This contradiction proves that the R-module M does not have a G(R)-
precover, which establishes our theorem. �
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