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MAPPING THE HOMOLOGY OF A GROUP TO THE
K-THEORY OF ITS C*-ALGEBRA

MICHEL MATTHEY

ABSTRACT. For a CW-complex X and for 0 < j < 2, we construct
natural homomorphisms ,BJX H;(X; Z) — K;(X) that are rationally

right-inverses of the Chern character. We show that ﬂJX is injective for

j=0and j =1. The case j = 3 is treated using Z[%}-coefﬁcients. The
study of these maps is motivated by the connection with the Baum-
Connes conjecture on the K-theory of group C*-algebras.

1. Introduction
For a countable discrete group T', there is an assembly map (see [19])
v : K.(BT) — K,(C:T),

called the Novikov assembly map, where K, (BT") is the K-homology of the
classifying space BT of T, and K, (C}T') is the topological K-theory of the re-
duced C*-algebra C’T" of I'. The strong Novikov conjecture is the statement
that vl is rationally injective. For I' torsion-free, the Baum-Connes conjec-
ture asserts that v! is even an isomorphism. More generally, for a countable
discrete group I' (not necessarily torsion-free), the Baum-Connes conjecture
predicts that the Baum-Connes assembly map

uE: KT (ED) — K.L(C;T)

is an isomorphism, where KI'(ET) denotes the I'-equivariant K-homology
with I'-compact supports of the classifying space for proper actions of T’
(see [3]). In fact, the maps v! and ul are also defined for I' not neces-
sarily countable (see, for instance, [20] and [26], or [39]). The connection
between both assembly maps is embodied by a canonical homomorphism
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¢l K. (BT) — KLI(ETL) such that vI' = ul o L. Moreover, ¢l is ratio-
nally injective for any group, and even an isomorphism, without tensoring
with Q, for torsion-free groups (cf. [39] and [37]).

The Chern character in K-homology yields an isomorphism

ch, ®1dg: K.(BT) ®z Q — H.(BT;Q) = H.(T; Q)

taking Ky to Hey and K7 to Hoqq. The following basic question arises: “Is
there any direct connection between the integral homology of I' and the K-
theory of its reduced C*-algebra?” As a first step towards answering this
question, we prove in Section 2 that the K-homology of a CW-complex of
dimension < 3 is isomorphic to its integral homology; we also discuss the
naturality properties of the isomorphism in detail. In Section 3, this result is
applied to the construction of natural homomorphisms

BX: Hj(X; Z) — K;j(X) (0<j<2),

where X is any pointed connected CW-complex. Several equivalent construc-
tions of these maps are provided, and we prove that they are rationally injec-
tive by showing that they are, rationally, cross-sections (i.e., right-inverses) of
the Chern character:

(chj ®1dg) o (6] ®1dg) =Idp,(x;q) (0<j<2).

This section also contains a uniqueness result for these maps. To make these
constructions as explicit as possible, for the purpose of allowing direct compu-
tations, we avoid the use of spectra. In Section 4, we establish the injectivity
of BJX for j = 0and 5 = 1. If X has its integral homology concentrated in even
degrees, except possibly for H; and Hz, we prove that 35 is also injective.
In general, 35 is not injective, as we will show in Section 5. In Section 6,
using the Postnikov tower of the connective K-theory spectrum, we construct
a natural transformation

B[] Ha(Xs 2[3]) — K0 (X) 2 23]

that is rationally a right-inverse of the Chern character in degree 3.

Section 7 contains our main application of these ideas that was already used
in [38] and in [37]. Namely, we show that if I' is torsion-free and satisfies the
Baum-Connes conjecture (or if er is merely injective), then the composition

vy o BP7: H;(T; Z) — K;(C;T)

is injective for j = 0 and j = 1, and also for j = 2 if moreover dim(BT") < 4.
On the other hand, as established in [22] and in [9], the map v o BPT is
rationally injective for any group I'. We prove that this map factorizes through
the homomorphism

Ur: Hi(T/Tr; Z) = (D/Tr)™ — Ki(C;T), (vIr)® — [,
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where Tt is the subgroup of I' generated by the torsion elements. Further-
more, Ur is rationally injective, and, if the Baum-Connes assembly map ulf is
injective, we show that

Urp: (T/Tr)* — K, (CIT).

This partially answers a question raised by Bettaieb and Valette in [9].

The assembly map pl is known to be an isomorphism, for example, for
amenable groups, free groups, surface groups, Coxeter groups, one-relator
groups, braid groups, pure braid groups, knot groups and Gromov hyperbolic
groups; it is known to be an injection for discrete subgroups of real Lie groups
with finitely many connected components. (See, for example, [51] and [39]
and the references therein.)

Acknowledgements. The author wants to express his deep gratitude to
Hervé Oyono-Oyono, Yuli Rudyak, Thomas Schick, Ulrich Suter and Alain
Valette for fruitful discussions.

2. B and K-homology of CW-complexes of dimension < 3

We start by fixing our notations and conventions. We then define the map
B and show that it is a split-injection. Next, as a very elementary application
of the Atiyah-Hirzebruch spectral sequence, we compute the K-homology of
CW-complexes of dimension < 3 in terms of integral homology.

Throughout this paper, we assume all CW-complexes and all maps be-
tween them to be pointed. Moreover, for the spectral sequence arguments, we
suppose that the 0-skeleton of any connected CW-complex is reduced to the
base-point (up to homotopy equivalence, this is no restriction).

We consider complex K-homology, the dual theory of the usual K-theory
based on complex vector bundles, associated to the BU-spectrum. By Bott
periodicity, both theories are 2-periodic and considered as being Z/2-graded.
We use the bordism-type description of K-homology, due to Baum and Dou-
glas [4], that we now briefly recall (see also Jakob [27][28]). If X is a connected
CW-complex, the K-homology group K.(X) = Ko(X) ® K1(X) is given by
suitable equivalence classes of triples [M, &, f], where M is a (not necessarily
connected) closed Spin“-manifold, f is a continuous map from M to X, and &
is a complex vector bundle over M; the Z/2-grading is given by the reduction
modulo 2 of the dimension of M. The equivalence relation imposed on such
triples involves bordism and vector bundle modification (we refer to [4] and
[27] for details). The group structure is given by taking disjoint unions. We
point out that K-homology has automatically compact supports, as opposed
to its counterpart defined via Kasparov’s K K-theory. The Chern character in
K-homology ch,: K.(X) — H.(X,Q) is the natural homomorphism given
by ch.([M, &, f]) = f«((ch*(£) UTA(M)) N [M]), where Td(M) is the Todd
class of the Spin® tangent bundle of M and ch* is the usual Chern character
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in K-theory. We denote by ch,,: K.(X) — H,(X; Q) the component of ch,
of degree m. The key property is that ch, is a rational isomorphism. Let
us also recall that a given closed connected Spin®-manifold M admits several
such structures: they are parameterized by H*(M; Z/2) ® 2 - H*(M; Z) (cf.
[34, p. 392]). A complex structure (or a Spin-structure) determines a Spin®-
structure in a canonical way. A closed connected Spin®-manifold M of dimen-
sion m is automatically orientable and also K-orientable. It has consequently
two ‘fundamental classes’, depending on the chosen Spin®-structure, namely
[M] € H,,(M; Z), the usual orientation class, and [M]x = [M, 1,7, Idy] €
K,, (M), the ‘fundamental K-homology class’ or ‘K-orientation class’. (We
denote the trivial 1-dimensional complex vector bundle over a space X simply
by 1)(.) N

Let us illustrate this by examples. For the n-sphere S™, one has K;(S™) =
Z, where j € {0, 1} is the reduction modulo 2 of n. The standard orientation
of S™, as a sub-manifold of R"™! determines the standard generator [S™]x by
the equality ch.([S™]x) = [S"] € H,(S™; Q). In the bordism-type description
of K-homology, [S"|x = [S™, 1gn, Idgn]|, where, for n # 2, S™ is equipped
with the unique Spin°-structure inducing the canonical orientation, and S? ~
CP! is equipped with the Spin°-structure associated to its canonical complex
structure. As usual, we orient X4, ‘the’ closed connected oriented surface of
genus g > 1, as a sub-manifold of the Euclidean space R3. The ‘fundamental
K-homology class’ of 3, is determined by ch,([X4]x) = [X4] € H2(Xy; Z). In
fact, [Yy]x = [Xg, 1x,, Idy, ], where ¥, is equipped with the Spin°-structure
associated to any Spin-structure. By the connectedness of the Teichmiiller
space and by means of the Riemann-Roch-Hirzebruch formula, one can show
that for any complex structure on X, the K-homology class [9,] € Ko(Z,)
associated to the corresponding Dolbeault operator 59 is the same, and that
one has [X,]x = [0y] + (g — 1) - [1] (see 2.1 (i) below and [46]). In the sequel,
we always consider the spheres (and in particular S') and the surfaces £, as
being equipped with the Spin®-structure we have just described.

The canonical isomorphism ch? : I@(S”) =5 H, (5™ Z), [S"]x — [S"],
clearly extends to wedges of spheres. We would like to define analogous ‘inte-
gral Chern characters’ for arbitrary CW-complexes. For convenience, we will
say that a homomorphism ¢: K;(X) — H,(X; Z) (with j = n mod 2) is
compatible with the Chern character if the diagram

K;(X)

ﬂ N
H,(X: Z) — Hy(X: Q)

is commutative (we do not require ¢ to be defined for all CW-complexes,
nor to be natural). We use the same terminology for a map in the reverse
direction. We will sometimes write H,(X) for H.(X; Z).
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PROPOSITION 2.1.  Let X be a connected CW-complex.

(i) There is a homotopy-invariant split-injection B3 : Ho(X; Z) — Ko(X)
that is compatible with the Chern character, and whose section will be
denoted by ch%. Both maps are canonical and natural. This yields in
particular the canonical and natural splitting

Ko(X) =7 -[1]® Ko(X) =Z & Ko(X),

with the element [1] representing [{zo}, luy, tz,], Where iy, is the in-
clusion of the base-point xoy of X.
(ii) If X is of dimension < 3, there are isomorphisms

chZ, :=chZ@®chl: Ko(X)— Ho(X; Z) & Hy(X; Z),
ch?,y:=ch? @ ch?: K\(X) > Hi(X; Z) ® Hs(X; Z),

that are compatible with the Chern character. For n = 0, 2 and 3,
ch% is canonical and natural for CW-complexes of dimension < 3.
(iii) The isomorphisms ch”, and ch”,4 of (ii) are canonical and natural for
CW-complexes of dimension < 2. For X = S, one has ch?([S']x) =
[S'], and for X = ¥, a closed oriented surface of genus g, we get an

isomorphism ch? : I?O(Eg) = Hy(X4; Z).
Proof. (i) The map 3 is defined as the composition

Ho(X; Z) = Ho({zo}; Z) — Ko({z}) — Ko(X).

The projection X — {x} yields a splitting of the last map. The rest is trivial.
Before proving (ii) and (iii), let us define a 2-periodic homology theory h.
on the category of finite CW-complexes by setting

| Ho(X;Q), ifniseven
hn(X) 1= { Hoqd(X; Q), ifnis odd

(iii) Since we are working with compact supports, we can assume that
X is a finite CW-complex of dimension < 2. The Atiyah-Hirzebruch spec-
tral sequence for reduced K-homology, namely Ei,q = H,(X; Kq(pt)) =

I?pﬂ (X), is trivial, i.e., all the differentials vanish. This yields the desired
natural isomorphisms. The compatibility with the Chern character ch, fol-
lows by comparing this spectral sequence with the corresponding one for h,.
Indeed, by naturality, ch, induces a morphism of spectral sequences that coin-
cides, at the level of the E2-pages, with the coefficient homomorphism induced
by Z — Q. The statement about the circle and the surfaces follows readily.
(ii) Similarly, the spectral sequence for K-homology is trivial and yields the
natural isomorphism ch”,, and 0 — H;(X) - K;(X) — H3(X) — 0, a
natural short exact sequence that must split (naturally or not) since H3(X)

is a free abelian group. We define ch? to be the above surjection, and ch% to

(ne€Z).
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be any choice of a retraction of «. The compatibility with the Chern character
follows as before. O

For dim(X) < 3, we do not know if there is a choice of the retraction
ch? that is natural and compatible with the Chern character. A completely
analogous result for 4-dimensional CW-complexes is stated as Proposition 4.3
below.

It is also possible to prove Proposition 2.1 by carefully comparing the long
exact sequences of the pair (X, A), where A is the skeleton of codimension
1 of X, for K-homology, integral homology and rational homology, using the
integral Chern characters for spheres (X/A has the homotopy type of a wedge
of spheres). This argument is slightly longer than the one presented here, but
it has the advantage of avoiding the repeated use of spectral sequences (see
also [5]).

3. Definition and first properties of 3 and 35

We first define the maps 55X and 35. Next, we prove that they are natural
homomorphisms and rationally right-inverses of the Chern character. We
provide a second construction, show that it is equivalent to the first one, and
give a uniqueness result for these maps. Finally, using Spin“-bordism, we
discuss a third equivalent construction.

In the following definition, integral coefficients are understood for homol-

ogy.

DEFINITION 3.1. Let X be a connected CW-complex, and let i,, denote
the inclusion of its n-skeleton X", Then the map Bi¥ is defined as the
composition

B Hy(X) %1, H (X %1. K (xB @t Ki(X),

where the isomorphism ch? is given by Proposition 2.1 (iii). Similarly, the
map 33 is defined as the composition

5 Hyx) SO gyt (D gy ) oy oL (),

where the isomorphism chg is given by Proposition 2.1 (ii).

The homomorphisms ch% and chg being natural for CW-complexes of di-
mension < 2 and < 3, respectively, those maps are well-defined (i.e., inde-
pendent of the CW-decomposition of X), natural, and compatible with the
Chern character. Together with Proposition 2.1 (i), this establishes the fol-
lowing result.
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PROPOSITION 3.2. For a connected CW-complex X and 0 < j < 2, the
maps ﬁJX are well-defined natural homomorphisms. They are rationally right-
inverses of the Chern character, i.e.,

(ch; ®1dg) o (B ®1dg) = Idp,(x;q) -

In particular, the maps BJX are rationally injective for 0 < j < 2. The map

B is split-injective, with splitting ch%.

The following proposition is a useful complement to this result. (The part
concerning CW-complexes of dimension 4 refers to Proposition 4.3.)

ProproOSITION 3.3.  For a connected CW-complex X of dimension < 3, one
has

chfoB¥ =Idy,x;2y (0<j<2),

so that ﬂJX is split-injective. (For j = 1, this is independent of the choice of
the retraction ch? ) If X is of dimension 4, the same holds for j =0 and 2.
(For j = 2, this is independent of the choice of the retraction chg. )

Proof. Assume that dim(X) < 3. For j = 0 and 2 the result is obvious.
For j = 1, we have to be more careful, because of the choice of the retraction
ch? in the exact sequence 0 — H;(X) —— K;(X) — Hs3(X) — 0, as in
the proof of Proposition 2.1 (ii). By the naturality of the latter sequence for
CW-complexes of dimension < 3, the diagram

X = (ch)—!

Hl(X[Q]) ) K1(x[2])
(i2). | J(i2).
X
Hy(X) - K1(X)
commutes. Since by definition 8 = (ig). o (ch¥) ™1 o (i2) 7! = X, we see that
for any choice of the retraction ch? of 1X, we have ch? 03X = Idg, (x;7)-
The case where X is of dimension 4 is completely similar. O

The following result gives another construction of G;%, referring to the
fundamental group 71 (X).

ProPOSITION 3.4. For any connected CW-complex X, the map
ap s m(X) — Ki(X), [f]— [$", Ls1, f] = fo([S"]x)

s a natural homomorphism. Factorizing through the Hurewicz homomorphism
hi< in degree 1, it defines a natural map of : H\(X; Z) — Ki(X) that
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coincides with B, so that we have the following commutative diagram.:

aX
(X)) —— K (X)

vl A

H(X; 7Z)

Proof. Since the bordism-type description of K-homology is homotopy-
invariant (by the ‘bordism relation’; see [28]), a5 is well-defined. Let us show
that it is a homomorphism. Let [f], [¢g] € m1(X). The product [f] - [g] in
m1(X) is given by the class [f - g] of the composition

Fog: St 81780 =gty gtV x
On the other hand, [S1, 151, f]+[S!, 151, g] = [STIISY, 1511141, f1Ig] holds.
It is easy to show that there is a continuous map h: M — X, where M is a
pair of pants, i.e., a compact, connected and orientable surface with boundary
OM = S'II S' 11 S, such that the restrictions of A to the three components
of OM are f, g and f - g, respectively. This shows that

&{(([fg]) = [517 ls1, fg] = [Sl HSla lsimst, ng]
= a; ([f]) + a7 ([9)-

The naturality of @ and of af is clear. To prove that af* and 3; coincide,
first observe that any homology class € Hy(X) is ‘Steenrod-representable’.
This simply means that there exists a pointed continuous map f: S' — X
such that fi.: Hi(S') — H;(X) takes [S!] to x; this is a direct consequence
of the surjectivity of the Hurewicz map hy : m;(X) — H;(X). By the nat-
urality of af and of 3, it is enough to check that o ([S']) = 85" ([S]).
The class [S!] is ‘Steenrod-represented’ by the identity map on S'; there-
fore o' ([S1]) = [S']k. The equality 85" ([S!]) = [S!]x is a consequence of
Proposition 2.1 (iii). O

Notice that a;%: w1 (X) — K;(X) is nothing but the Hurewicz homomor-
phism in K-homology.

For the second description of ﬁf , we discuss ‘Steenrod-representability’
further.

THEOREM 3.5. Consider a connected CW-complex X. Then any homology
class x € Ho(X; Z) is ‘Steenrod-representable’; in other words, there exists a
surface X4 of genus g > 1 and a pointed continuous map f: ¥y — X (with
both g and f depending on x) such that f.: Hy(X4; Z) — Ho(X; Z) takes
the fundamental class [L4] to x.

For z € Hy(X;Z), we write z = [X,, f] to express the fact that z is
‘Steenrod-represented’ by f: ¥, — X.
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This theorem is well-known; see [18] and [50]. (The condition on the genus,
namely g > 1, is no restriction, since the 2-sphere S? is a suitable quotient of
the 2-torus T?, and the quotient map takes [T?] to [S?].) We point out that in
[35, Lemma 2.2.4]), there is an ‘elementary’ proof of Theorem 3.5 for X = BT,
the classifying space of a discrete group I'. We also mention Zimmermann’s
paper [52] in connection with this result.

We now turn to the second description of 35 .

PROPOSITION 3.6. For any connected CW-compler X, the map B3 is
given by
B3 Hao(X; Z) — Ko(X), [Zg, fl— [Zy, 15, f1;
in other words, f.([24]) — f([Z4]K)-

Proof. The result follows from the following computation:

B ([Sg, f1) = B 0 fu([Sy, 1ds,]) = 55 0 fu([Sg]) = f+ 0 557 ([S))
:f*([ZQ]K):f*([Ega 1Eg7Ing]):[Zg’ 1Zg7f]' U

The next proposition follows from ‘Steenrod-representability’ and the fact
that the point, the circle and the surfaces X, are torsion-free. (For conve-
nience, we set [pt] := 1 € Ho(pt; Z) and [pt]x = [1] € Ko(pt). )

ProprosITION 3.7. Fizx 0 < j < 2; the map ﬁJX is the unique natural
transformation for connected CW-complexes satisfying either of the following
properties:

(i) BM([M]) = [M]k, for M = pt, S*, and S, for all g > 1, respectively.
(ii) It is rationally a right-inverse of the Chern character.

Finally, we give a description of the maps ﬂJX based on the Spin“-bordism
Qe The first few coefficient groups are Qi 7 i o SPine 7
and Q§p1n°: 0 (see, for example, Gilkey [24]). For a connected CW-complex
X, there is a natural map pX: Q5P (X)) — H,(X; Z), [M, f] — f.([M]),
and the Atiyah-Hirzebruch spectral sequence yields natural isomorphisms
Py Q?pinc(X) = H;(X;Z) for j =0, 1, and p. & p3 : o (X) =z o
Hy(X; Z), where p: X — pt (compare with 7.2 on page 17 of [18]). We write
(pxX)~! for the restriction of (p. @ p5 )~! to the direct summand Ho(X; Z).
On the other hand, there is a graded natural map X : Q3P (X) — K, (X),

[M, f] — f«([M]Kk). The following result follows readily from Propositions
3.4 and 3.6.

PRrROPOSITION 3.8. For a connected CW-complex X and for 0 < j < 2,
one has

ﬂJX = K/i( o (p]X)fl: H;j(X; Z) — K;j(X), f«([M]) — f([M]K).
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One could replace Q5P (X) by the complex bordism QY (X), since they
coincide in degree < 3 (cf. [24]). The fact that Q5P™ # 0 illustrates the
difficulties one faces in trying to define a natural map (35° by the same method:
there is a natural exact sequence

. c X
0 — Hy(X; Z) — Q5P™ (X) 25 Hy(X; Z) — 0,

but, in general, it does not split (see Lemma 6.1 and the proof of Theorem
2.1).

4. Injectivity of 3

We prove the injectivity of 5% for any connected CW-complex X. Roughly
speaking, the idea is to first prove injectivity for X = BZ and for X =
B(Z/n). This poses no difficulty, since their reduced integral homology is
concentrated in odd degree. As an application, we describe the K-homology
of CW-complexes of dimension < 4 in terms of the integral homology.

THEOREM 4.1.  The map B : Hi(X; Z) — K,(X) is injective for any
connected CW-complex X .

In the proof of Theorem 4.1, we need the following proposition that gives
a fourth description of the maps @X for j =1 and j = 2. We have to recall
some facts before stating it. We have defined a 2-periodic integral homology
theory h, in the proof of Proposition 2.1. Since we are working with compact
supports, it is defined for all connected CW-complexes. Consider the Atiyah-
Hirzebruch spectral sequence with E? . = Hy,(X; he(pt)) = Kpiq(X).
Convergence means that E° = Jp ¢/Jp—1,¢+1, where {J,, .} is the filtration

0=Jon CIin1C - ClpnpS-i.CnoC...C |J Jpg = Kn(X)
ptg=n

defined by J,, 4 := Im(K,;4(XP) — K, ,(X)). Notice that for 1 < j < 3,
there is a natural epimorphism H;(X; Z) = EZ  — E%, = Jj.0/Jj-1,1, with
Jo,1 = 0 (since Xl = pt, as a standing assumption) and Jq,1 = 0 because,

by Proposition 2.1 (iii), Ko(X™) = 0. We therefore get a natural map

05 Hy(X; Z) = B} o — E5% = Jj,0 = Im (K;(XV) — K;(X)) — K;(X),

for j=1and j=2.

PROPOSITION 4.2. Let X be a connected CW-complex. For j = 1 and
j =2, the map 5])-( coincides with BJX. In particular, BJX 1s injective if and only
if no non-zero differential reaches EJZ(Q] in the spectral sequence. Consequently,
if the reduced integral homology of X is concentrated in odd (resp. even) degree,
except possibly for Hy (resp. Hy and Hs), then 3;° (resp. BX ® B3 ) is injective.
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Proof. By naturality, it is enough to check the equality between both maps
in the case of S! for j = 1, and in the case of the surfaces X, for j = 2. This
is obvious. The injectivity of the map is clear. O

This proposition also illustrates the difficulty in trying to define a map 35 :
The group Ja, 1 is in general non-zero, since it is isomorphic to Hy(X; Z), by
virtue of Proposition 2.1 (iii).

We now turn to the main proof in this section.

Proof of Theorem 4.1. Let us first assume that H := H;(X; Z) is of finite
type (as, for example, is the case when X is finite). So, H is a finite direct
sum of cyclic groups. Let GG be a direct summand of H, isomorphic to Z or
to Z/n for some n > 2. The projection p: H — G together with the map
f:+ X — Bm(X) classifying the universal covering of X define a map

F: X L Bm(x) 25 BH 22 BG,
where 7: 7 (X) = 71 (X)® = H. Clearly, H,(F) is merely the projection p.
Since the reduced integral homology of G (i.e., of Z or of Z/n) is concentrated
in odd degree, by Proposition 4.2, the map #2¢ is injective. By the naturality
of By, one has a commutative diagram

(X Z) — e Ky(x)

H\(F) =p)| )
Hy(BG; 2) P K, (BG)

So, Ki(F) o 3 is injective on the direct summand G of H and is the zero
map on the supplementary direct summand. This establishes the injectivity
of B{¥ for X of finite type. Obviously, H;(X; Z) and K;(X) coincide with the
direct limits over the connected finite sub-complexes of X, of the correspond-
ing groups. Since the direct limit over a directed set is an exact functor, it
preserves injectivity (see [43, Theorem 2.18]). This shows that 5% is injective
for any X, as was to be shown. O

The following result can be proved in the same way as Proposition 2.1,
using Theorem 4.1 and Proposition 4.2.

PROPOSITION 4.3. For a connected CW-complex X of dimension < 4,
there are natural short exact sequences

ch%
0 — Hi(X; Z) — K1 (X) 25 Hy(X; Z) — 0,
~ ch?
0 — Hy(X; Z) — Ko(X) 2% Hy(X; Z) — 0.
The latter sequence splits and yields an (abstract) isomorphism

chZ @ chZ @ ch: Ko(X) = Ho(X; Z) ® Hy(X; Z) ® Hy(X; 7).
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In particular, if X is simply-connected, then Ch%: K (X) =, H3(X;Z) is a
canonical and natural isomorphism. The second short exact sequence above is
also valid and natural in case X is of dimension 5.

REMARK 4.4. In general, for a non-simply-connected CW-complex X
of dimension 4, one cannot expect an isomorphism K;(X) = Hy(X;Z) @
H3(X; Z). For example, the projective space RP? satisfies H;(RP*; Z) =
71 (RPY)% = 7,/2 and Hy(RP?; Z) = 7/2, whereas K;(RP*) = Z/4.

5. (Non-)Injectivity properties of 35

We prove an injectivity result for 85 (after inverting some primes) when
the cohomology group H3(X; Z) is “under control”. We also show that (5 is
in general not injective. For this purpose, we first establish a ‘Kiinneth-type’
result for 8.

The first injectivity result for 33 is contained in Proposition 4.2. Before
stating the second one, we state and prove the following lemma from standard
K-theory (for convenience, we set (—1)! :=1).

LEMMA 5.1.
(i) For a finite CW-complex X and for n > 0, there are canonical and

natural homomorphisms ch%r[ll ] and chz’[“rl1 | fitting in the following

[CESY)
commutative triangles:
2n . 2n+1 .
i afh) L 2y)
ChZV ChZ[W
K°(X) KH(X)
ChQX‘ cth\
H*"(X; Q) H" (X Q)
(ii) If X is finite and of dimension < 2n+1, then the map chy ., defined

as

&y chzj[%] ®ldgay: KO(X) @ Z[4] — HY(X; 2[4])
j=0
18 an tsomorphism.
iii) If X is finite and of dimension < 2n, then the map ch%%S, defined as
7 71]

n—1
D ebii @ty KN X) @ Z[5] — HOMX 2[5])
=0 '

s an isomorphism.
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Proof. (i) We first deal with the even case. For n = 0, the result is trivial, so
we suppose n > 1. The Chern character ch? is expressed in terms of the (ra-
tional) universal Chern classes as ch®” = (—1)"~! ﬁcn +Pu(cty oovy Cret)
with P, € Z[%] [*1, ..., Tp—1] a suitable polynomial without constant term
(see, for example, Karoubi [29, pp. 255 and 282]). This proves the existence
and naturality of Ch%? 1 The proof that this map is a homomorphism is the

same as for ch®” (cf. loc. cit.). The ‘compatibility’ with ch®" is clear. By
the very definition of ch®d the odd case is obtained by replacing X by its
suspension %X and invoking the suspension isomorphism in K-theory and in
cohomology.

(ii) For simplicity, we denote the ring Z[ﬁ] by A. From Peterson’s
computations [41] of the k-invariants of the infinite Grassmannians BU (k)
it follows that (BUA)?" Y the (2n + 1)st Postnikov approximation of BU
localized at A, is homotopically equivalent to the product (in the category of
CW-complexes) H;L:1 K(A, 2j). The equivalence is realized by the product
e x...xch of the Chern classes cé\ € H%(BU; A) (compare with Chapter VII

in [25]). It follows that for dim(X) < 2n+1, the map 2 &...&c: KO9(X)®
A — @?:1 H?/(X; A) is bijective (but in general not a homomorphism).
Now, the expression ch?® given in the proof of (i) above shows inductively
— with j ranging from 1 to n — that ch%v[ 1 is injective (recalling that P; is
without constant term). Surjectivity is proved in the same way.

(iii) Apply (ii) to X X. d

Let us also introduce a notation. For a finitely generated abelian group A,
we denote by Tors(A) its torsion subgroup, i.e., the subgroup of elements of
finite order in A; this subgroup is a finite direct summand of A.

PROPOSITION 5.2. Let X be a connected finite CW -complex. Assume that
there exists N > 1 (depending on X ) such that the composition

chyyy) ® Mz
K'(X)® L[5 —F— H*(X; Z[5%]) — Tors (H*(X; Z[5%]))
is surjective. (This assumption is, for example, fulfilled for N = n!/2 when X
is of dimension < 2n for some n > 2. ) Then the map (B @ B3) ® Idg;
18 injective.

1
b

Proof. By the Universal Coefficient Theorems in homology (see Spanier
[48, Theorem 5.5.12, p. 248]) and in K-homology (see Brown [13]), we have
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the commutative diagram with (non-naturally) split-exact rows
0= Bxt(H(X); 2 4 ]) —= Ha(XZ[ k) —= Hom(H?(X);Z[ ) — 0

N
[Ext(@dy 2] |oF ety [Hom(esz[))

D
0— Ext(K'(X); Z[55]) — Ko(X) ® Z[ %] — Hom(K°(X); Z[5%]) — 0

We have identified Ext(H*(X) ® Z[3]; Z[5%]) with Ext(H3(X); Z[5%]) in
the obvious way, and similarly for K' in place of H3. For the application
of Brown’s result note that a finite CW-complex is compact metrizable (see,
for instance, [23, Proposition 1.5.17]). By assumption, the left vertical map
is injective, and so is the right one, since the first Chern class map c¢; is

surjective. Now, the injectivity result follows from a diagram chase. O

We now turn to the ‘Kiinneth-type’ result for 85<.
In the bordism-type description of K-homology, for two connected CW-
complexes X and Y, the external cross product is given by

X: Kij(X)x K;j(Y) — K;y;(X xY)
([M, €, f1, [N, m, g]) — [M x N, £, fxg],

where the product M x N is endowed with the product Spin®-structure (see
[27, p. 18]). Here, Vect(M) x Vect(N) — Vect(M x N), (&, n) — EXn
denotes the external tensor product of vector bundles.

Let us explain our notation concerning the gradings: [K,(X)® K.(Y)]1 de-
notes (Ko(X)® K1 (Y))® (K1(X)® Ko(Y)); similarly, [Tor(K.(X); K.(Y))
stands for Tor(Ko(X); K1(Y)) @ Tor(K;(X); Ko(Y)), and so on. Now, we
recall that the Kiinneth Theorem in K-homology (see Bousfield [11]) states
that for two connected CW-complexes X and Y, and for n € Z, there is a
natural short exact sequence

0 — [K.(X)®K,(Y)]n = Kn(XxY) — [Tor(K,(X); K.(Y))]p_1 — 0.
(We do not know if the sequence splits.) For the next lemma, using the
decomposition Ko = Z® Ky of Proposition 2.1 (i), [K.(X)®K.(Y)]o identifies

with

((K1(X) ® K1(Y)) & Ko(X) @ f(o(Y)) & (Z @ (f(o(X) ®f~(0(Y)) )

Since (2 maps Hs in I~(0, the following statement makes full sense.
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LEMMA 5.3. Let X andY be two connected CW-complexes. Then the map
foy fits into the commutative diagram

(BB )®s eby

(Hi(X) @ H(Y)) ® Ha(X) & Hy(Y)
Xlg BXXY ><1
Hy(X xY) 2 » Ko(X xY)

In particular, ﬂfxy is injective if and only if the three maps B3 @ BY, B
and 3y are injective.

(K. (X) @ K. (Y)lo

Proof. The vertical maps are given by the corresponding Kiinneth Theo-
rem. We split the proof of the commutativity into two parts. First, by the
naturality and additivity of B3, the diagram

By &8y Fo(X) & Ro(Y)

(x)e © Giv)a | e 16+ Gv)-
Hy(X xY) @ Hy(X x Y) 22 5 Ko(X xY)® Ko(X xY)

+l XXY l+
Hy(X xY) 2 Ko(X xY)

Hy(X) @ Hay(Y)

commutes, where jx (resp. jy) denotes the inclusion (with respect to the
corresponding base-point) of X (resp. V) in X x Y. Both vertical composi-
tions coincide with the corresponding restrictions of the vertical maps in the
statement. This is well-known for the homology, and for the K-homology it
follows from the following explicit computation:

(Kj(X)®1) e (10 K;(Y)) < Ki(X xY),

([M7 Ev .ﬂ7 [N’ 777 g])'—)[Ma 57 fxcy0]+[N’ 777 Cwo Xg}
=[MIN, {1n, (fxcyo)H(cmo x g)]s

where c;, and ¢y, are the constant maps taking the base-point of X and Y,
respectively, as value, and j =0 or j = 1.

For the second part, let = [S1, f] € Hi(X) and y = [S', g] € Hi(Y)
be ‘Steenrod-represented’ homology classes. By the naturality of the exter-
nal cross product in homology, the left-hand square of the following diagram
commutes:

X Y
HsY e (Y 2298 1 (x) e m(v) 2RO g x0) e Ky ()

g < o

) — XD gy k(X xy)
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We claim that the right-hand square also commutes. For one composition

65(([817 f]) X 6%/([817 g]) = [Slv Lsn, .ﬂ X [Slv Lsn, g] = [TZ’ Ly, f X g}

holds. Since [S!] x [S1] = [T?], for the second composition, we first compute
[ST, f1 % [S%, gl = fu([S"]) x g«([S"]) = (f x 9)([T?]) = [T*, f x g],

from which we deduce that By Y ([S?, f] x [S', g]) = [T?, 1=, f x g], as
claimed.

Altogether, this proves that the diagram of the lemma commutes. The
statement about injectivity is clear. O

The ‘Kiinneth-type’ Lemma 5.3 allows us to construct an example of a finite
CW-complex for which 35 is not injective: Namely, we claim that the map
BEP*XRPY s not injective. For RP2, one has BRF°: 7,2 ~ H,(RP?; Z) —
Ki(RP?) 2= 7/2 and for RP?, Dfpélz 7)2 = H,(RP*; Z) — K (RP*) = 7Z/4,
and we see that 8P @ 82" is the zero map Z/2 — Z/2. The non-injectivity
of ﬁgRP *XRP* follows from Lemma 5.3, as claimed. Since for applications we are
mainly interested in classifying spaces of discrete groups, it is worth mention-

ing that the same argument shows that the map 55P0€XRP& is mot injective,

and, of course, RP> x RP is nothing but B(Z/2 & Z/2).

6. The map ﬂ?[%}

In this section, we construct the homomorphism 355 [%] of the Introduction

using the Postnikov tower of the connective K-theory spectrum.

Let bu denote the connective complex K-theory spectrum. We write
bu,(—) for the associated homology theory, namely connective K-homology,
on the category of CW-complexes (and similarly for other spectra). Recall
that there is a (connected covering) map x: bu — BU inducing the following
relation for the coefficients:

0, ifn<0
bu, (pt) =~ K, (pt) 2 Z, if n >0 is even
K,(pt) =0, ifn > 1is odd.
By Adams-Priddy [1] (see [44, Theorem VI.2.6]), the Postnikov tower of bu
is given by a diagram
Y'HZ  Y°HZ
J2 l J1
k2 P2 Py

w|  a o

Y"HZ YYHZ Y3HZ

ps3
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with k' as the Postnikov 2r-stage of bu, i.e., k¥ = bu®’). In particular,
there is a map 7o,: bu — k* that is an isomorphism on 7; for j < 2r, and
mj(k") = 0 for j > 2r. Note that the relation p, o 7o, =~ T9,_2 holds, and

for any CW-complex X, (72,).: bu,;(X) = k%(X) is an isomorphism for
j < 2r (by an easy comparison of the Atiyah-Hirzebruch spectral sequences).
Therefore, the cofiber sequence

SYHZ 2 k2 22k 22, YSHZ
yields the natural isomorphism (72), = (p2)« © (4)«: bu;(X) — ki (X) for
J<3.
LEMMA 6.1.  After localizing at Z[%} the spectrum k* splits as
k'[3] =~ HZ[;] v 2*HZ[3]
(but k' itself does not split).

Proof. The cofiber sequence X?HZ Tkl 2L HZ L YSHEZ yields, after
localizing at Z[%], the cofiber sequence

1
EQHZ[ ] [ ] kl[ Rt p1[ ] HZ[ ) 2z [2] ZSHZ[Q}

(see [44, Proposition I1.5.3]). By Adams-Priddy [1] (see also [44, Theorem

VI.2.6]), the map o is the composition

o1 =608q* o Hp: Hz 22 HZ/Z EQHZ/Q YA HZ,
where p is the reduction modulo 2, and § is the integral Bockstein morphism.
Since HZ/2[3] ~ * (all the homotopy groups being trivial by [44, Theorem
I1.5.4]), the map o1[%] is null-homotopic. It follows that k*[3] ~ HZ[3] Vv
E2HZ[%] (by [44, Proposition 11.1.17]), as was to be shown. The non-splitting
statement follows, since o7 is a non-trivial cohomology operation. O

Consequently, there exists a section s: HZ[%] — kl[%] ofpl[%] ; we choose
one. By [44, Theorem I1.5.4], for a CW-complex X, there is a natural isomor-
phism k3[3](X) 2 k}(X) ® Z[4]. This allows us to define the map 35 [3] as
follows.

DEFINITION 6.2. For a CW-complex X, the map 35 [%] is the composition

(r2)." © Z[5]

Hs(X; Z[1]) < k2[1](X) 2 KA(X) @ Z[1] buy(X) ® Z[3]

5 Z[3]
BRZ[3]

o~

K3(X) ® Z[3]



970 MICHEL MATTHEY

where B is the Bott periodicity isomorphism.
The main properties of this construction are collected in the next theorem.

THEOREM 6.3. Let X be a connected CW-complex. Then:

(i) ﬁ:ﬂ%] does not depend on the choice of the section s of pl[%] (more
precisely, s is unique up to homotopy).

(i) Bﬁ([%] is a natural homomorphism and is rationally a right-inverse of
the Chern character, that is, (chs3 ®Idg) o (85 [3] ®Idg) = Ida,(x, @)
holds.

(iii) Assume X is finite and that there exists N > 1 such that the Chern
maps ch%[%] ®Idz[%] and ch%[%} ®Idz[ﬁ] are surjective onto the tor-
sion like in Proposition 5.2 (as, for example, for N =n!/2 if X is of
dimension < 2n with n > 2); then (3 ®ldg ) @ (B3] ®1dg 1)
18 1njective.

(iv) For 0 < j <2, the map ,BJX[%] obtained by adapting definition 6.2 in
the obvious way coincides with ﬂJX after tensoring with ZB]

Proof. (i) By [44, Proposition I1.1.16], there is a canonical isomorphism
[Hzl3), mzf3] v sPHafd) | = [H2)3), Haj3)] @ [HZj3), 2rHz))

A choice of a section s provides an equivalence f: k*[] = HZ[$]VE*HZ[}],
and any other section s’ is, up to homotopy, uniquely determined by the
composition fo s’ € [HZ[%], HZ[%} \% EQHZ[%H, which is an element taken
to (Idgyzy), 0) via the above isomorphism, where 0 denotes the constant map.

It follows that the homotopy classes of sections of pl[%] are parameterized by
the group

(HZ[4))* (HZ[4]) = (HZ)* (HZ[3]) @ Z[4]
~ (HZ)*(HZ) ® Z[3] = 0.

[mz]3). 2uz)|

Here, the first equality is the definition of the cohomology associated to the
spectrum HZ[%}, the second follows from [44, Theorem I1.5.4], the third from
[44, Corollary I1.5.5], and the final equality is due to the standard fact that

(HZ)?(HZ) 2= colim H" (K (Z; n); Z) = H°(K(Z; 3); Z) =0

(adapt the argument in Switzer [49, pp. 446-447] to Z in place of Z/2 for the
indicated isomorphisms, and see Serre’s and Cartan’s computations in [45]
and [14] for the equality).

(ii) The additivity and the naturality of 35[1] are clear. We turn to the

Chern character. The composition bu, (X) == K, (X) hn, H,(X; Q) is
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given by the map of spectra Hp o 79: bu — HZ — HQ, where o is the
inclusion of Z in Q. The commutative diagram (up to homotopy)

buf}] P2y
SO ]
Hz{l) —— m7]}]

says that ((72);'®Z[1])os.: H3(X; Z[3]) — bus(X)®Z|[5] is a splitting of

7'0[%} .- 1t follows that the composition chs 083 [%] corresponds to the obvious

map of spectra HZ[%] — HQ, so it is the identity after tensoring with Q.

(iii) This follows from Lemma 5.1, by adapting the proof of Proposition
5.2.

(iv) By the Atiyah-Hirzebruch spectral sequence, we have natural isomor-
phisms H;(X) = bu;(X) fori=0and i =1, and Ho(X)® Ho(X) = bua(X),
and the composition ((2);'®Z[3])os. is merely the inclusion (tensored with
Z [%]) of H;(X) in bu;(X) for 0 < j < 2. It follows from Proposition 4.2 that,
under these identifications (modulo Bott periodicity), k. : bu;(X) — K;(X)
is precisely B in degree 0, f5 in degree 1, and 3 @ (5 in degree 2. The
result follows. O

7. Application to the K-theory of group C*-algebras

In this section, we apply the preceding results on the maps ﬂJX to the
K-theory of group C*-algebras, in connection with the strong Novikov and
the Baum-Connes conjectures. We illustrate the situation by examples. We
keep the same notations as in the Introduction, in particular, for the Novikov
assembly map v!' and the map ¢!': K,(BI') — KI'(ET) (and we do not
assume that T' is countable).

In the following statement, we use Bott periodicity implicitly, and we write
BJX[%] for ﬂJX ® Idg(1), and similarly for er ® Idz1) and for B3] ® Idg 1.

THEOREM 7.1. Let T be a discrete torsion-free group such that the Novikov
assembly map vl is injective. Consider the compositions

eroﬁ]BF: H;T; Z)— K,;(C;T) (0<j<2),
and v1[3] o BF[3]: H3(T; Z[3]) — K1(CiT) ® Z[3]. Then the following
holds:
(1) z/jr o BJBF is injective for j =0 and j = 1.
(ii) v§o(BBY @BLY) is injective if T has its integral homology concentrated

in even degree, except possibly for Hy and Hs, as, for example, if there
is a model for BT of dimension < 4.
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(iii) If BL is a finite CW-complex of dimension < 2n for some > 2,
then the maps Vo[%] o (?F[%] @ﬁzBF[ﬂ) and V1[$] o( {31"[%] o
5T [%]) are injective.

Proof. This follows immediately from Proposition 2.1 (i), Theorem 4.1,
Propositions 4.2 and 5.2, and from Theorem 6.3 (iii). O

Note that part (iii) of Theorem 7.1 can be improved, using the full state-
ments of Proposition 5.2 and Theorem 6.3 (iii).
In [36] and in [8] it is shown that the compositions v o 3FT are given by

vt o BB 7 = Hy(T; Z) — Ko(CrT), 1+ [1],
where [1] is the K-theory class of the unit, and
vi o By T = Hy(Is Z) — K (C]T), 7" — [,

where 7% is the class in T'% of an element v € I" and [4] is the corresponding
K-theory class. (For j = 0, this is plain, and for j = 1, it suffices to check it
for the easy case where I' = Z. ) The case j = 2 is also discussed in [36], [8]
and [38], in terms of the Hopf formula and of Steinberg symbols in algebraic
K-theory.

As shown by V. Lafforgue [32][33], the Baum-Connes assembly map pl
factorizes through the K-theory of ¢'T", the Banach algebra of ¢!-summable
complex valued functions on I', which injects in C}I". So there is a map,
sometimes called the Bost assembly map,

fin+ K (ELD) — K. (£'T).

This map is natural with respect to I', whereas for u! this is still an open
problem (that would follow from the Baum-Connes conjecture). It is con-
jectured that il is an isomorphism for any countable discrete group I'; this
is the Bost conjecture (see Skandalis [47]). Recently, Berrick, Chatterji and
Mislin [6] have proven the striking result that a discrete group I, all of whose
countable subgroups verify the Bost conjecture, satisfies the Bass conjecture
on the values taken by the Hattori-Stallings trace on Ko(CT') (and even a
more general version of it). This implies, for instance, that the Bass conjec-
ture holds for all amenable groups. In our situation, by a standard argument
(cf. [10, Proposition 3.4.1]), v} o BPT lifts to a map

BPT: Hi(T; Z) — K1 (£'T), 7" — 3]
THEOREM 7.2. Let T’ be a discrete group, and It the subgroup generated
by the torsion elements. Then the homomorphisms
¢l 0BT Hi(T; Z) — K{ (EL) and BP": Hy(T; Z) — Ky (¢'T)

factor through the canonical map Hy(T; Z) — Hy(T'/Tr; Z). The correspond-
ing factorization Hy(T/Tr; Z) — K} (ET) is injective. In particular, if the
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Baum-Connes assembly map u} is injective, then the homomorphism
Up: (T/Tr)® = H\(T/Tr; Z) — K, (C*T), (vIr)® — [1]
is injective. Furthermore, Ur is rationally injective for an arbitrary group T.

Proof. Consider the map ®}: I' — K, (¢'T") taking + to [y]. This map is
a natural homomorphism. If h € T" is a torsion element, let H := (h) be the
finite subgroup of I" generated by h. Then one has a commutative diagram

H—+ K\ ({*H)
inc 1 lincl*
r K, (¢'T)

As K1 (¢ H) vanishes, this shows that ®} is zero on the generators of T, and
hence on Tr. This allows us to define a map I'/Tr — K;(¢'T) taking 7Tt
to [y]. Since Kj(¢'T') is abelian, this determines the map H;(['/Tr; Z) —
K (0'T), (vIr)® — [y] we are looking for, since H;(T; Z) — H(T/Tr; Z)
precisely takes v*° to (yTt )%

Since KH(EH) = 0 for a finite group H, the same process shows that
ot o P factorizes through Hy(T'/Tr; Z).

Now, we prove that Hy(['/Tr; Z) — K1 (EL) is injective. There is an
‘induction map’ KL (ET) — K,(BT), where Bl := T'\E['. The I'-map
ET' — ET induces a map BI' — BI'. Recall that ET is a l-connected
-CW-complex, with set of stabilizers of vertices equal to the set of finite
subgroups of I'. By a result of Armstrong [2], it follows that m (ET) 2 T'/Tr,
so that Hy(BL; Z) = Hy(T'/Tr; Z). By the naturality of the map 35X, we have
a commutative diagram

BT

Hy(T; Z) = Hy(BT; Z) =+ K,(BI)
r
¥1

KT(ETL)

/ &BF\

Hy(T/Ty; Z) = Hy(BT; Z) —1—+ K (BI)

(The commutativity of the right triangle holds by the construction of ¢! and
by the naturality of the ‘induction map’; for the bottom triangle, commuta-
tivity follows from the commutativity of the rest of the diagram and of the
indicated surjectivity.) This establishes the required injectivity. The state-
ment concerning the injectivity of Ur when u! is injective is an immediate
consequence.
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In [22] and in [9], it is proven that v] o 3Pl is rationally injective for any
discrete group I'. We claim that I ®Q = (I'/Tt)**®Q. Indeed, by Corollary
VII.6.4 in [12], there is an exact sequence

Hy(Tr; Q)pyp. — Hi(I'; Q) — Hy(T'/Tr; Q) — 0,

and T ®Q = 0, since T’ is an abelian group generated by torsion elements.
Hence the claim is clear if it is finitely generated; a direct limit argument set-
tles the general case. It follows that the map Ur is always rationally injective,
and we are done. O

EXAMPLES 7.3.

(i) Consider the one-relator group I' := <:v, y | (xy:r’ly)3>. By the Karras-
Magnus-Solitar Theorem [30], we have T = <<myx*1y>>F (the normal closure
in T'), therefore I'/Tr = <x, y|xyx*1y>, which, by the same theorem, is
torsion-free. The Baum-Connes conjecture is known for one-relator groups
(cf. [5]), so, by Theorem 7.2, we have

(T/Tr)* = (2, y| [z, y], ¥*) L ZS Z/2 — K (C;T).

On the other hand, we have I'** = (z, y‘ [z, y], ¥5) = Z & Z/6, so that
I%/Tra = (2)pas = Z. This illustrates the fact that the group (I'/Tt)
may contain torsion, and that it is in general bigger than I'*® /T1as (the latter
always being torsion-free, as is easily seen for I' finitely generated, and then
extended to the general case by a direct limit argument). These observations,
together with Theorem 7.2, give a partial answer to a question raised by
Bettaieb and Valette in [9)].

(i) Generalizing Example (i), if " is any one-relator group, the main result
of [5] (in degree 1) can be reformulated by saying that

Ur: (T/TH)™ =5 K, (C*T).
(iii) The group I' := SLy(Z) is the amalgamated product Z/4 7,5 Z/6. It
follows that Tt = I'; in particular, the map
Z/12 = H, (SLy(L); Z) — K1 (C}(SLa(2))), 1" — [

is zero. In fact, K1(A) =0 for A = C}(SL2(Z)), C*(SLa(Z)) and ¢*(SLa(Z))
(see [40] and [47]); by [31], SL2(Z) satisfies the Baum-Connes conjecture.
(iv) Before Lafforgue’s work [32], no infinite group with Kazhdan’s property
(T') was known to satisfy the Baum-Connes conjecture. Moreover, if a group
I has property (T), then H{(T'; Q) = 0 (cf. [21, Proposition 1.7]). So, the
question of the injectivity of the map I'** — K;(C;T) taking v** to [v]
is interesting, but delicate. In [15, Theorem 3.1], groups of type-rotating
automorphisms of thick gg—buildings acting simply transitively on the set of
vertices are considered and shown to admit a presentation of the form

I'={Ve}zep "Yw'Ysz =1for (z,y,2) €7T),
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where P is a certain set of vertices of the building (namely, the set of vertices
of a given type that are neighbors of a given vertex of another type), and T
is a very specific subset of P x P x P. By a result of Zuk [53] (see also [17]),
such a group I has property (T'). These groups are known to have Jolissaint’s
property (RD) (“rapid decay”), by the work of Ramagge, Robertson, and
Steger [42]. From this and Lafforgue’s results [32], it follows that these groups
satisfy the Baum-Connes conjecture. If T contains no triple (x, z, z), such a
group is torsion-free (and most examples given in [16] satisfy this condition).
Since I'%? is finite (by the above remarks), it follows from the remark following
[15, Theorem 3.1] that ['*® contains a copy of Z/3. We conclude that there
are examples of infinite groups with property (7'), such that

/3 — Hy(D/Tr; Z) %5 Ky (CT),

In view of Theorem 7.2 and of the rational injectivity of Ur, we risk the
following conjecture that may survive even if the Baum-Connes conjecture
turned out to fail.

CONJECTURE 7.4. For any discrete group T, the following map is injec-
tive:
Ur: Hy(T/Tr; Z) — Ky (CT), (vIr)* = [].

Weaker forms of the conjecture are obtained by replacing the reduced C*-
algebra C*T' by the maximal C*-algebra C*T', or by the ¢!-algebra ¢'T. Tt
is worth mentioning that the proof of the rational injectivity of the map
Hy(T; Z) — Ki(C*T), ¥ +— [4], is considerably simpler than for the
reduced C*-algebra,; see [7] or [9]. The reason is precisely because the assign-
ments I' ~» C*T' ~ K,(C*T") are functorial, whereas I ~ C'T is not. (As
already mentioned, it would follow from the Baum-Connes conjecture that
I' ~ K, (C;T) is functorial; this functoriality is still an open question.)
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