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JACOBI FORMS OVER TOTALLY REAL FIELDS AND
CODES OVER Fp

YOUNGJU CHOIE AND EUNKYUNG JEONG

Abstract. In this paper we establish a connection between Jacobi
forms over a totally real field k = Q(ζ + ζ−1), ζ = e2πi/p, and codes

over the field Fp. In particular, we derive a theta series, which is a
Jacobi form, from the complete weight enumerator or the Lee weight
enumerator of a self-dual code over Fp.

1. Introduction

In 1972, Broué and Enguehard [4] studied a map between the space of in-
variant polynomials for a certain finite group and the ring of modular forms;
specifically, they showed that elliptic modular forms of weight n/2 can be
obtained from the complete weight enumerators CWeC(x, y) of binary type
II codes C by substituting the theta series θ3(2τ) and θ2(2τ) for x and y,
respectively. Because of this map, combinatorial problems in coding the-
ory are closely related to problems studied earlier and independently in pure
mathematics. An important problem in algebraic coding theory (see [14]) is
to determine, for a given class of self-dual codes, the ring of invariants to
which some weight enumerators belong. Not only codes over finite fields, but
also codes over finite rings and finite abelian groups have been studied exten-
sively, and polynomial analogues of modular forms of Jacobi form type (see
[1],[3],[6],[5]) and of Siegel modular forms (see [15]) have been discovered.

On the other hand, the first connection between Hilbert modular forms and
codes was described in [11] by considering Lee weight enumerators of self-dual
codes over Fp, where p is an odd prime. In this paper, we extend the relation
studied in [11] between the Lee weight enumerator WC(X1, . . . , X(p−1)/2) of a
self-dual code C over Fp and a certain Hilbert modular form to a connection
between the complete weight enumerators and the Lee weight enumerator of a
self-dual code C over Fp and a Jacobi form f(τ1, . . . , τ(p−1)/2, z1, . . . , z(p−1)/2)
over k = Q(ζ + ζ−1), ζ = e2πi/p. Letting z1 = z2 = · · · = z(p−1)/2 = 0,
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we recover the result given in [11]. More generally, we study a Broué and
Enguehard type map from a certain invariant space, in which the complete
weight enumerators (or Lee weight enumerators) of self-dual codes over Fp
live, to the space of Jacobi forms over k = Q(ζ + ζ−1), ζ = e2πi/p.

2. Definitions and notations

In this section we recall the definition of a Jacobi form over a totally real
number field. We follow the notations of [16].

Let K be an algebraic number field with finite degree d = [K : Q]. Let
σ1, . . . , σd : K → C be the different embeddings ofK into C, with σ1 = id. The
field K is called totally real if σj(v) ∈ R for all 1 ≤ j ≤ d; we set σj(v) = v(j),
v ∈ K. The norm and trace of v are defined by NK/Q(v) =

∏d
j=1 v

(j) and

TrK/Q(v) =
∑d
j=1 v

(j), respectively.
Next, we define the Jacobi group. The Jacobi group of a totally real number

field k of degree d over Q with ring of integers Ok is denoted by ΓJ(k) and
defined as

ΓJ(k) = SL2(Ok) ∝ O2
k.

This group acts on Hd × Cd for each conjugate of the field. The variables of
this space are denoted by (τ, z) = (τ1, . . . , τd, z1, . . . , zd). The actions of ΓJ(k)
on the space Hd × Cd are given by(
α β
γ δ

)
(τ, z) :=

(
ατ + β

γτ + δ
,

z

γτ + δ

)
:=
(
α(1)τ1 + β(1)

γ(1)τ1 + δ(1)
, . . . ,

α(d)τd + β(d)

γ(d)τd + δ(d)
,

z1

γ(1)τ1 + δ(1)
, . . . ,

zd
γ(d)τd + δd

)
,

where (
α β
γ δ

)
∈ SL2(Ok), (τ, z) ∈ Hd × Cd,

and

(τ, z)[λ, µ] := (τ, z + λτ + µ)

:= (τ1, . . . , τd, z1 + λ(1)τ1 + µ(1), . . . , zd + λ(d)τd + µ(d))

for all [λ, µ] ∈ O2
k.
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Let f : Hd × Cd → C be a function. Then we define the “slash operators”
as follows: for given ` ∈ Z and m ∈ Ok we define, for all

(
α β
γ δ

)
∈ SL2(Ok),

(
f |`,m

(
α β
γ δ

))
(τ, z) :=

 d∏
j=1

e
−2πim(j) γ(j)z2j

γ(j)τj+δ(j)


×

d∏
j=1

(γ(j)τj + δ(j))−`f
(
ατ + β

γτ + δ
,

z

γτ + δ

)
and, for all [λ, µ] ∈ O2

k,

(f |m[λ, µ]) (τ, z) :=

 d∏
j=1

e
−2πim(j)

(
λ(j)2

τj+2λ(j)zj
) f(τ, z + λτ + µ).

We are now in a position to define a Jacobi form over a totally real number
field.

Definition 2.1. A Jacobi form f of weight ` and index m ∈ Ok on a
totally real number field k is an analytic function f : Hd ×Cd → C satisfying

(2.1) (f |`,mM)(τ, z) = f(τ, z), M ∈ SL2(Ok)

and

(2.2) (f |m[λ, µ]) (τ, z) = f(τ, z), [λ, µ] ∈ Ok.

The form f must have a Fourier series expansion of the form

(2.3) f(τ, z) =
∑

N,R∈δ−1
k , N≥0

c(N,R)
d∏
j=1

e2πi(N(j)τj+R
(j)zj),

where N ≥ 0 means that N is totally positive or zero, each of the coefficients
c(N,R) is constant, and δ−1

k is the inverse different of k.

Remark 2.2.

(1) When z = 0, the form f(τ, 0) is simply a Hilbert modular form on
SL2(Ok).

(2) Jacobi forms over a totally real field have first been defined and stud-
ied in [16].

Next, we recall the definition and some basic facts of linear codes.
A linear code C of length n over the field Fp is an additive subgroup of

Fp. An element of C is called a codeword. We denote by |C| the number of
codewords in C. The inner product of x and y in Fnp is defined by

x · y = x1y1 + · · ·+ xnyn (mod p), x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fnp .



630 YOUNGJU CHOIE AND EUNKYUNG JEONG

The dual code C⊥ of C is defined as

C⊥ = {y ∈ Fnp | x · y = 0 for all x ∈ C}.

If C = C⊥, then C is called self-dual. The complete weight enumerator CWeC
of C over Fp is defined by

CWeC (X0, X1, . . . , Xp−2, Xp−1) =
∑
u∈C

X
n0(u)
0 X

n1(u)
1 . . . X

np−2(u)
p−2 X

np−1(u)
p−1 ,

where nj(u), 0 ≤ j ≤ p − 1, denotes the number of components of u which
are equal to j. The Lee weight enumerator WC of C over Fp is defined by

WC

(
X0, X1, . . . , X(p−1)/2

)
=
∑
u∈C

X
n0(u)
0 X

n1(u)
1 . . . X

n(p−1)/2(u)

(p−1)/2 ,

where n0(u) denotes the number of zero components of u, while nj(u), j 6= 0,
denotes the number of components of u which are equal to j or −j.

3. Jacobi theta series over number fields

In this section, we study Jacobi theta series. Here we follow the notations
of [11].

Let k be a totally real field with degree r = [k : Q]. Consider a vector
space V over k of finite dimension d = dimk V with a totally positive definite
scalar product · : V × V → k satisfying (v · v)(j) > 0 for all 1 ≤ j ≤ r and all
v ∈ V −{0}. Let Λ be a k-lattice in V , i.e., a finitely generated Ok-submodule
of V which contains a k-basis of V . Let {e1, . . . , erd} be a Z-basis of Λ. Then

∆(Λ) := det
(
Trk/Q(ei · ej)

)
is called the discriminant of Λ. The dual lattice Λ∗ of Λ is defined as

Λ∗ :=
{
w ∈ V | Trk/Q(w · v) ∈ Z, v ∈ Λ

}
.

One can check that Λ∗ is also a k-lattice in V (see [11, Prop. 5.6, p. 160]).
The lattice Λ is called unimodular if Λ∗ = Λ, integral if Trk/Q(v · w) ∈ Z for
all v, w ∈ Λ, and even if Trk/Q (Ok(v · v)) ∈ 2Z for all v ∈ Λ.

Let K = Q(ζ) be a cyclotomic field with ζ = e2πi/p, where p is an odd
prime. Then it is known that the ring of integers OK is the set

OK =

α =
p−2∑
j=0

ajζ
j

∣∣∣∣∣ aj ∈ Z, 0 ≤ j ≤ p− 2

 .

Let β := (1 − ζ) be the principal ideal of OK generated by the element
1− ζ ∈ OK . It is well-known (see [11, p. 130]) that

OK/β ∼= Z/pZ ∼= Fp;
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the map ρ : OK → Z/pZ sending α = a0 + a1ζ + · · · + ap−2ζ
p−2 to ρ(α) =

a0 + a1 + · · ·+ ap−2 (mod p) is a homomorphism with kernel β. The map ρ
can also be regarded as the reduction map (mod β) from OK to Z/pZ.

Next, we consider the totally real subfield k of K, which turns out to be
the field k = Q(ζ + ζ−1), where [K : k] = 2, and [k : Q] = (p− 1)/2. For the
remainder of this paper, K and k will always be defined in this way, i.e., we
set K = Q(ζ) and k = Q(ζ + ζ−1), where ζ = e2πi/p and p is an odd prime.

We recall the following useful properties (see [11, pp. 132–133]).

Remark 3.1.

(1) For v, w ∈ K, the map · : K ×K → k defined by

v · w := vw + vw,

where v denotes the complex conjugate of v, is a totally positive def-
inite scalar product on K.

(2) The map 〈 , 〉K : K ×K → R given by

〈x, y〉K = TrK/Q(x · y) = Trk/Q(xy + xy),

is a symmetric bilinear map.
(3) Let β be the principal ideal generated by (1−ζ) of the ring of integers
OK of K. Then β is a k-lattice in K. Furthermore, we have

TrK/Q

(
x · y
p

)
∈ Z, x, y ∈ β

and

TrK/Q

(
x · x
p

)
∈ 2Z, x ∈ β.

(4) Let β∗ be the dual lattice of β. Then β∗ = OK . Since OK/β ' Fp,
we have β∗ =

⋃p−1
j=0(j + β).

For each j, 0 ≤ j ≤ p − 1, and a fixed element y ∈ OK , define a theta
function θj,y(τ, z) := θj+β,y : H(p−1)/2 × C(p−1)/2 → C by

(3.1) θj,y(τ, z) := θj+β,y(τ, z) :=
∑
v∈j+β

eπiTrK/Q( v·vp τ)e2πiTrK/Q( v·yp z),

where

TrK/Q

(
v · v
p
τ

)
:= 2

(p−1)/2∑
s=1

(vv)(s)

p
τs,

TrK/Q

(
v · y
p
z

)
:=

(p−1)/2∑
s=1

(vy + vy)(s)

p
zs

and τi ∈ H, zi ∈ C.
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Remark 3.2. The transformation properties of θj+β(τ, 0) as a function
over H(p−1)/2 have been studied in [11, p. 162]. The above theta series gen-
eralizes that given in [11] to a function defined on H(p−1)/2 × C(p−1)/2.

We next derive a transformation formula for this theta series.

Lemma 3.3. Let β be the principal ideal generated by (1− ζ) in OK . For
each j, 0 ≤ j ≤ p− 1, and a fixed y ∈ OK we have

θj+β,y

(
−1
τ
,
z

τ

)
=

1√
∆(β)

e
πiTrK/Q

(
y·y
p
z2
τ

) (p−1)/2∏
s=1

(τs
i

) p−1∑
`=0

e2πi j`p θ`+β,y(τ, z).

Proof. We modify the argument of [11, p. 162]. Let

Z =


τ1E2

τ2E2

. . .
τ(p−1)/2E2

 , W =


z1E2

z2E2

. . .
z(p−1)/2E2

 ,

where E2 = ( 1 0
0 1 ). For given x0, Y ∈ Rp let

gY,x0(x) := e−πi(x+x0)Z−1(x+x0)te2πi(x+x0)Z−1WY t .

For v ∈ Rp let

ĝY,x0(v) :=
∫
Rp

gY,x0(x)e−2πixvt dx.

Then

ĝY,x0(v) = e−2πix0v
t

∫
Rp

e−πixZ
−1xte2πixZ−1WY te−2πixvt dx,

upon substituting x− x0 by x.
We have∫

Rp

e−πixZ
−1xte2πixZ−1WY te−2πixvt dx

=
∫
Rp

e
−πi

(
x2
1
τ1

+
x2
2
τ1
···+

x2
p−1

τ(p−1)/2
+

x2
p

τ(p−1)/2

)

× e
2πi

(
x1z1y1
τ1

+
x2z1y2
τ1

···+
xp−1z(p−1)/2yp−1

τ(p−1)/2
+
xpz(p−1)/2yp
τ(p−1)/2

)

× e−2πi(x1v1+x2v2+···+xpvp) dx1 . . . dxp

= det
(
Z

i

)1/2

e
πi

(
y2

1
z21
τ1

+y2
2
z21
τ1

+···+y2
p

z2(p−1)/2
τ(p−1)/2

)

× eπi(v
2
1τ1+v2

2τ1+···+v2
p−1v

2
pτ(p−1)/2)

× e−2πi(v1z1y1+v2z1y1+···+vp−1z(p−1)/2yp−1+vpz(p−1)/2yp),
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where x = (x1, . . . , xp), Y = (y1, . . . , yp), v = (v1, . . . , vp) ∈ Rp. From this
identity we obtain

ĝY,x0(v) = det
(
Z

i

)1/2

e−2πix0v
t

eπiY Z
−1WY teπivZv

t

e−2πivWY t .

On the other hand, for each s with 1 ≤ s ≤ (p− 1)/2, R becomes a k-
module, which we will denote by ks, via the map

k × R 3 (x, ρ)→ σs(x) · ρ.

Then the space Ks := K ⊗k ks is a real vector space of dimension 2, which
contains K via the map K 3 v → v ⊗ 1. The scalar product

K ×K → ks, (v, w)→ σs(v · w)

can be extended to a scalar product on Ks that is R-bilinear. Since Ks

can be considered as an Euclidean vector space, we have an isomorphism
Ls : Ks → R

2 with σs(v · w) = Ls(v) · Ls(w) for all v, w ∈ Ks. Next, using
the embedding

L : K → R
p,

v → L(v) :=
(
L1(v), L2(v), . . . , L(p−1)/2(v)

)
one can realize L(β) as a lattice in Rp, with L(β∗) = L(β)∗. Hence the theta
series can be written as

θj+β,y(τ, z) =
∑
v∈j+β

eπiTrK/Q( v·vp τ)e2πiTrK/Q( v·yp z)

=
∑

V ∈L(j+β)

eπi
V ·V
p τe2πiV ·Yp z

=
∑

V ∈L(β)

eπi
(V+L(j))·(V+L(j))

p τe2πi
(V+L(j))·Y

p z.

Applying the Poisson summation formula, we obtain, on letting Y =
L(y) = (L1(y), . . . , L(p−1)/2(y)),

θj+β,y

(
−1
τ
,
z

τ

)
=

∑
V ∈L(β)

g Y√
p ,
L(j)
p

(
V
√
p

)

=
1√

∆(β)

∑
V ∈L(β)∗

ĝ Y√
p ,
L(j)√
p

(
V
√
p

)

=
1√

∆(β)

∑
V ∈L(β)∗

ĝ Y√
p ,
L(j)√
p

(
−V
√
p

)
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=
1√

∆(β)
det
(
Z

i

)1/2

eπi
YWZ−1WtY t

p

×
∑

V ∈L(β∗)

e2πi
L(j)V t

p eπi
V ZV t

p e2πiVWY t

p

=
1√

∆(β)
e
πiTrK/Q

(
y·y
p
z2
τ

) (p−1)/2∏
s=1

(τs
i

)
×
∑
v∈β∗

eπiTrK/Q( j·vp )eπiTrK/Q( v·vp τ)e2πiTrK/Q( v·yp z)

=
1√

∆(β)

(p−1)/2∏
s=1

(τs
i

)
× eπiTrK/Q

(
y·y
p
z2
τ

) p−1∑
`=0

e2πi j`p θ`+β,y(τ, z). �

4. Lattices induced by codes over Fp

We first recall the construction of a lattice from a code over Fp.
Let ρ : O `

K → F
`
p be the natural homomorphism defined by the reduction

modulo the principal ideal β = (1 − ζ) in each coordinate (see Section 3).
Then the lattice induced by a code C over Fp is defined as

ΛC :=
1
√
p
ρ−1(C).

Let x, y ∈ O `
K , x = (x1, . . . , x`), y = (y1, . . . , y`), with xi, yi ∈ OK , 1 ≤

i ≤ `. The symmetric bilinear form 〈 , 〉K defined in Remark 3.1 induces a
symmetric bilinear form on 1√

pO
`
K by

(4.1) 〈x , y〉K :=
∑̀
i=1

Trk/Q

(
xi · yi
p

)
, xi, yi ∈ OK .

The following properties have been derived in [11].

Lemma 4.1. Let C ⊂ F `p be a code of dimension t with C ⊂ C⊥. Then
the following properties hold:

(1) If C is self-dual, then `(p− 1) ≡ 0 (mod 8).
(2) The lattice ΛC , endowed with the symmetric bilinear form 〈x , y〉K

defined in (4.1), is an even integral lattice of rank `(p − 1) and dis-
criminant p`−2t. If C is self-dual, then ΛC is unimodular.

(3) Λ∗C = ΛC⊥ .

Proof. See Lemma 5.5, Proposition 5.2, and Corollary 5.1 in [11]. �



JACOBI FORMS OVER TOTALLY REAL FIELDS AND CODES OVER Fp 635

We now study the theta series over the lattice ΛC induced by the code C
over Fp.

Lemma 4.2. Let C be a code of length ` over Fp and let ΛC be a lat-
tice induced by C. Given Y ∈ ΛC , define the theta series ΘC,Y : H(p−1)/2 ×
C

(p−1)/2 → C by

ΘC,Y (τ, z) :=
∑
x∈ΛC

eπiTrK/Q((x·x)τ)e2πiTrK/Q((x·Y )z),

where

TrK/Q((x · x)τ) := 2
(p−1)/2∑
j=1

(xx)(j)τj

and

TrK/Q((x · Y )Z) :=
(p−1)/2∑
j=1

(xY + xY )(j)zj .

Then

ΘC,Y

(
−1
τ
,
z

τ

)
=

1√
∆(ΛC)

e
πiTrK/Q

(
(Y ·Y ) z

2
τ

) (p−1)/2∏
s=1

(τs
i

)`
×
∑
v∈Λ∗C

eπiTrK/Q((v·v)τ)e2πiTrK/Q((v·Y )z).

Proof. The functional equation can be established by applying the Poisson
summation formula. The argument is similar to the proof of Lemma 3.3, so
we omit the details. �

Using the above properties, we now derive the following result.

Theorem 4.3. Let C be a self-dual code over Fp of length `. Let Y =
1√
p (y, y, . . . , y) ∈ ΛC be such that Y Y ∈ Ok. Then ΘC,Y (τ, z) is a Jacobi

form over the field k with weight ` and index Y Y = `yy/p over the full group
SL2(Ok).

Proof. Since SL2(Ok) is generated by the transformations
(

1 γ
0 1

)
, γ ∈ Ok,

and
(

0 −1
1 0

)
(see, for example, [9],[10],[13],[17]), to show the modularity of the

Jacobi form it is enough to establish the appropriate transformation formula
for these two types of transformations. First, we have(

ΘC,Y |`,Y Y

(
1 γ
0 1

))
(τ, z) = ΘC,Y (τ + γ, z) = ΘC,Y (τ, z),
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because TrK/Q((x · x)γ) is even for all x ∈ ΛC and γ ∈ OK . Second, using
Lemma 4.2 and the fact that Λ∗C = ΛC⊥ , we have(

ΘC,Y |`,Y Y

(
0 −1
1 0

))
(τ, z)

= e−2πiTrk/Q(Y Y z2/τ)
(p−1)/2∏
s=1

(τs)−`ΘC,Y

(
−1
τ
,
z

τ

)
= i−`(p−1)/2∆(ΛC)−1/2ΘC⊥,Y (τ, z) = ΘC,Y (τ, z),

since `(p−1) ≡ 0 (mod 8) and the self-duality of C implies the unimodularity
of ΛC (see Lemma 4.1, (2)) and, therefore, ∆(ΛC) = 1.

Next, we establish the second transformation formula. For any [λ, µ] ∈ O2
k,

(ΘC,Y |Y Y [λ, µ])(τ, z) = e2πiTrK/Q((Y ·Y2 )(λ2τ+2λz))ΘC,Y (τ, z + λτ + µ)

= eπiTrK/Q((Y ·Y )λ2τ)e2πiTrK/Q((Y ·Y )λz)

×
∑
v∈ΛC

eπiTrK/Q((v·v)τ)e2πiTrK/Q((v·Y )z)

× e2πiTrK/Q((v·Y )λτ)e2πiTrK/Q((v·Y )µ)

=
∑
v∈ΛC

eπiTrK/Q((v+λY )·(v+λY )τ)e2πiTrK/Q(((v+λY )·Y )z)

= ΘC,Y (τ, z).

This follows from the fact that ΛC is integral lattice, i.e., Trk/Q(µ(v ·Y )) ∈ Z,
and that v + λY ∈ ΛC for any v, Y ∈ ΛC and µ, λ ∈ Ok.

Finally, we show that ΘC,Y has the required Fourier series expansion:

ΘC,Y (τ, z) =
∑
x∈ΛC

eπiTrK/Q((x·x)τ)e2πiTrK/Q((x·Y )z)

=
∑
x∈ΛC

e2πiTrk/Q(xx)τ)e2πiTrk/Q((xY+xY )z)

=
∑
x∈ΛC

q
(xx)(1)

1 . . . q
(xx)((p−1)/2)

(p−1)/2 ζ
(xY+xY )(1)

1 . . . ζ
(xY+xY )((p−1)/2)

(p−1)/2

=
∑

N,R∈δ−1
k , N≥0

c(N,R)qN
(1)

1 . . . qN
((p−1)/2)

(p−1)/2 ζR
(1)

1 . . . ζR
(p−1)/2

(p−1)/2 ,

where qs := e2πiτs , ζs := e2πizs , 1 ≤ s ≤ (p− 1)/2. The last step follows
from the fact that N (j) := (xx)(j) > 0 for all x ∈ ΛC \ {0} and for each
j, and thus, N := xx ≥ 0 for all x ∈ ΛC . Also, note that R := xx and
xY + xY ∈ O∗k = {v ∈ k | Trk/Q(vOk) ⊂ Z} = δ−1

k . The Fourier coefficient
c(N,R) is defined by

c(N,R) := #
{
x ∈ ΛC | xx = N, xY + xY = R

}
. �
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5. The complete weight enumerators

In this section we exhibit a connection between Jacobi forms over the field
k = Q(ζ + ζ−1) and the complete weight enumerators of the code C over Fp.

Let ΛC be the lattice induced by C in the sense of Section 4.

Theorem 5.1. Let C ⊂ F `p be a code with C ⊂ C⊥ and Y = 1√
p (y, . . . , y) ∈

ΛC . Let ΘC,Y (τ, z) be the theta series defined in Lemma 4.2. Then the fol-
lowing identity holds:

ΘC,Y (τ, z) = CWeC (θ0,y(τ, z), . . . , θp−1,y(τ, z)) .

Here θj,y(τ, z) is the theta function defined in (3.1).

Proof. Let u be a codeword of C. Setting Y = 1√
pY0 = 1√

p (y, . . . , y), we
have ∑

x∈ 1√
pρ
−1(u)

e2πiTrk/Q((xx)τ)e2πiTrk/Q((xY+xY )z)

=
∑

x∈ρ−1(u)

e2πiTrk/Q(( xxp )τ)e2πiTrk/Q

(
xY0+xY0

p z
)

=

∑
x∈β

e2πiTrk/Q( xxp τ)e2πiTrk/Q( xy+xy
p z)

n0(u)

. . .

. . .

 ∑
x∈β+p−1

e2πiTrk/Q( xxp τ)e2πiTrk/Q( xy+xy
p z)

np−1(u)

= θ0,y(τ, z)n0(u) . . . θp−1,y(τ, z)np−1(u),

where nj(u) denotes the number of components of u that are equal to j.
Using the relation ΛC = 1√

pρ
−1(C) and summing over all codewords in C

yields Theorem 5.1. �

6. The Lee weight enumerators

In this section we derive a connection between a Jacobi form over the field
k = Q(ζ+ζ−1) and the Lee weight enumerator of a code C over Fp. Using the
correspondence between Jacobi forms over k and complete weight enumerators
of codes over Fp obtained in the previous section, we derive the main result
of the paper by a particular choice of the value y in the theta series. This is
the analogue of the theory given in [11] for functions on H(p−1)/2 ×C(p−1)/2.

Theorem 6.1. Let C ⊂ F `p be a code with C ⊂ C⊥. Let Y = 1
p (y, . . . , y) ∈

ΛC be such that θj,y(τ, z) = θp−j,y(τ, z) for each j ∈ {0, 1, . . . , p − 1}. Then
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the following identity holds:

ΘC,Y (τ, z) = WC

(
θ0,y(τ, z), . . . , θ(p−1)/2,y(τ, z)

)
.

Here θj,y(τ, z) is defined by (3.1).

Proof. Using the relation θj,y(τ, z) = θp−j,y(τ, z), the result follows from
Theorem 5.1. We omit the details. �

Remark 6.2. In particular, if one chooses Y = 1√
p (y, y, . . . , y) with y =

−y, then θj,y(τ, z) = θp−j,y(τ, z). To see this, note that

θj,y(τ, z) =
∑
x∈β+j

e2πiTrk/Q( xxp τ)e2πiTrk/Q( xy+xy
p z)

=
∑
x∈β+j

e2πiTrk/Q( (−x)(−x)
p τ)e2πiTrk/Q( (−x)(−y)+(−x)(−y)

p z)

=
∑
x∈β−j

e2πiTrk/Q( xxp τ)e2πiTrk/Q( xy+xy
p z)

= θp−j,y(τ, z),

since −x ∈ β − j and y = −y.

Example 6.3. Let p = 3, y = 1 + 2ζ, ζ = e2πi/3. In this case,

θ1,y(τ, z) = q1/3
∑

(a,b)∈Z2

qa
2+b2−ab+a+1ξ−a+2b

and
θ2,y(τ, z) = q

4
3

∑
(m,n)∈Z2

qm
2+n2−mn+2mξ−m+2n.

Replacing m by a+2 and n by b+1, one can verify that θ1,y(τ, z) = θ2,y(τ, z).

The theta functions ΘC,Y (τ, 0), corresponding to the case z = 0, have been
used to obtain a connection between Hilbert modular forms over SL2(Ok)
and Lee weight enumerators of the code C over Fp, which can be stated as
follows (see [11, p. 141]).

Corollary 6.4. Let C be a self-dual code of length ` over Fp and let
Y = 1√

p (y, . . . , y) ∈ ΛC . Then ΘC,Y (τ, 0) is a Hilbert modular form of weight

` on the full group SL2(Ok), where k = Q(ζ + ζ−1), ζ = e2πi/p.

Proof. Note that if z = (zj) = 0, then θj,y(τ, 0) = θp−j,y(τ, 0) for each
j ∈ {0, 1, . . . , p− 1}, since the theta series ΘC,Y (τ, 0) is independent of Y . In
this case, it is known that a Jacobi form over k is simply a Hilbert modular
form over SL2(Ok). �
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7. Invariant spaces, self-dual codes over Fp, and Hilbert-Jacobi
forms over k = Q(ζ + ζ−1), ζ = e2πi/p

In this section we give a homomorphism between a certain invariant space,
to which the complete weight enumerators of the self-dual codes over Fp be-
long, and a ring of Jacobi forms over the field k = Q(ζ + ζ−1), ζ = e2πi/p.

The invariant space under the action of the group G is the set C[X1, X2, . . . ,
Xt]G of homogeneous polynomials satisfying L · f(X) = f(X) for all L ∈ G,
where X = (X0, . . . , Xt). Here, a t× t matrix L acts on the polynomial ring
C[X1, . . . , Xt] by

L · f(X1, . . . , Xt) = f

 ∑
1≤j≤t

b1jXj , . . . ,
∑

1≤j≤t

b`jXj

 ,

where f ∈ C[X1, . . . , Xt] and B = (bij).
We recall the well-known MacWilliams identity for the complete weight

enumerators (or Lee weight enumerators) for codes over Fp.

Lemma 7.1 (MacWilliams Identity). Let C ⊂ F `p be a code with C ⊂ C⊥.
Then the following identity for the complete weight enumerators of codes over
Fp holds:

CWeC⊥(X0, X1, . . . , Xp−1) = CWeC((X0, X1, . . . , Xp−1)Mp).

Here,

Mp :=
1
√
p


1 1 . . . . . . . . . 1
1 ζ ζ2 . . . . . . ζp−1

1 ζ2 ζ4 . . . . . . ζ2(p−2)

. . . . . . . . . . . . . . . . . .

1 ζp ζ2p . . . . . . ζ(p−1)2

 .

Proof. This is well known; see, for instance, [14, pp. 143–144]. Alterna-
tively, one can derive this identity using the transformation formula of the
theta series ΘC,Y (τ, z) given in Lemma 4.2 and the connection of this series
to the weight enumerators of the code over Fp given in Theorem 5.1. �

Lemma 7.2. Let C be a self-dual code of length ` over Fp. Let Gp(γ) be a
group generated by Mp, Np(γ), for all γ ∈ Ok, where Mp is as in Lemma 7.1
and

Np(γ) := Diagonal
(
e2πij2γ/p

)
, 0 ≤ j ≤ p− 1.

Then the complete weight enumerators CWeC(X0, X1, . . . , Xp−1) are contained
the invariant space

C[X0, X1, . . . , Xp−1]Gp(γ).
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Proof. Let Y0 = 1√
p (y, y, . . . , y) ∈ Ok and consider the theta series

ΘC,Y0(τ, z), defined in Lemma 4.2, on the lattice ΛC induced by the code
C. Then for all γ ∈ Ok we have, using the periodicity of ΘC,Y0(τ, z),

CWeC (θ0,y(τ, z), . . . , θp−1,y(τ, z))

= ΘC,Y0(τ, z)

= ΘC,Y0(τ + γ, z)

= CWeC(θ0,y(τ + γ, z), . . . , θp,y(τ + γ, z))

= CWeC

(
θ0,y(τ, z), . . . , e2πi j

2γ
p θj,y(τ, z), . . . , e2πi

(p−1)2γ
p θp−1,y(τ, z)

)
= CWeC ((θ0,y(τ, z), . . . , θp−1,y(τ, z))Np(γ)) ,

since C is self-dual. From the algebraic independence of the theta series
θ0,y(τ, z), θ1,y(τ, z), . . . , θp−1,y(τ, z) it follows that

Np(γ) · CWeC(X0, . . . , Xp−1) = CWeC(X0, . . . , Xp−1), γ ∈ Ok.

On the other hand, the self-duality of C combined with the MacWilliams
identity of Lemma 7.1 imply that

Mp · CWeC(X0, . . . , Xp−1) = CWeC(X0, . . . , Xp−1).

This proves the theorem. �

More generally, the following theorem shows the existence of a ring homo-
morphism from the invariant space of Gp(γ) to a ring of Jacobi forms over
the field k = Q(ζ + ζ−1).

Theorem 7.3. Let f(X0, . . . , Xp−1) be a homogeneous polynomial of de-
gree `, satisfying `(p − 1) ≡ 0 (mod 8), in the invariant space C[X0, X1, . . . ,
Xp−1]Gp(γ), for all γ ∈ Ok. Let y ∈ OK ,K = Q(ζ), be such that `yy/p ∈ Ok.
Then

f (θ0,y(τ, z), θ1,y(τ, z), . . . , . . . , θp−1,y(τ, z))

is in the space of Jacobi forms of weight ` and index `yy/p over the field
k = Q(ζ + ζ−1), via the map

f(X0, . . . , Xp−1) −→ f (θ0,y(τ, z), . . . , θp−1,y(τ, z)) .

Proof. Since SL2(Ok) is generated by the transformations
(

1 γ
0 1

)
, γ ∈ Ok,

and
(

0 −1
1 0

)
(see [9],[10],[13],[17]), the transformation formulas of theta series

together with the MacWilliams identity in Lemma 7.1 give the modularity.
To obtain the elliptic property, a direct computation shows that, for each
j = 0, . . . , p− 1,

e2πi yyp (z+λτ)θj,y(τ, z + λτ + µ) = θj,y(τ, z), (λ, µ) ∈ Z2.
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This implies that

e2πi` yyp (z+λτ)f (θ0,y(τ, z + λτ + µ), . . . , θp−1,y(τ, z + λτ + µ))

= f (θ0,y(τ, z), . . . , θp−1,y(τ, z)) .

Finally, the Fourier expansion can again be checked directly, using the expan-
sions of θj,y(τ, z). �

Next, as a special case of the above theorem, we have the following relation.

Lemma 7.4 (MacWilliams Identity). Let C ⊂ F `p be a code with C ⊂ C⊥.
Let y ∈ OK , K = Q(ζ), be such that θj,y(τ, z) = θp−j,y(τ, z), for each
j ∈ {1, 2, . . . , (p− 1)/2}. Then the following identity for the Lee weight enu-
merators of codes over Fp holds:

WC⊥
(
X0, X1, . . . , X(p−1)/2

)
= CWeC

((
X0, X1, . . . , X(p−1)/2

)
Ap
)

Here,

Ap :=
1
√
p


1 2 . . . . . . . . . 2
1 ζ + ζp−1 ζ2 + ζp−2 . . . . . . ζ

p−1
2 + ζ

p+1
2

1 ζ2 + ζ2(p−2) . . . . . . . . . ζ2 p−1
2 + ζ2 p+1

2

. . . . . . . . . . . . . . . . . .

1 ζp−1 + ζ(p−1)2
. . . . . . . . . ζ(p−1) p−1

2 + ζ(p−1) p+1
2

 .

Proof. This is well known; see, for instance, [14, pp. 145–146]. Alterna-
tively, one can derive the result using the relation θj,y(τ, z) = θp−j,y(τ, z) and
Lemma 7.1. �

Lemma 7.5. Let C be a self-dual code of length ` over Fp. Let Hp(γ) be
a group generated by Ap, Bp(γ), γ ∈ Ok, where Ap is as in Lemma 7.4 and

Bp(γ) := Diagonal
(
e2πij2γ/p

)
, 1 ≤ j ≤ p− 1

2
.

Then the Lee weight enumerator WC

(
X0, X1, . . . , X(p−1)/2

)
is in the invariant

space
C

[
X0, X1, . . . , X(p−1)/2

]Hp(γ)
.

Proof. This is an immediate consequence of Lemma 7.2. �

More generally, the following corollary shows the existence of a ring homo-
morphism from an invariant space of Hp(γ) to a ring of Jacobi forms over k.

Corollary 7.6. Let g(X0, . . . , X(p−1)/2) be a homogeneous polynomial of
degree `, satisfying `(p−1) ≡ 0 (mod 8), in the invariant space C[X0, X1, . . . ,
X(p−1)/2]Hp(γ), for all γ ∈ Ok. Let y ∈ OK , K = Q(ζ), be such that `yy ∈ Ok
and θj,y(τ, z) = θp−j,y(τ, z), for each j ∈ {1, 2, . . . , (p− 1)/2}. Then

g(θ0,y(τ, z), θ1,y(τ, z), . . . , θ(p−1)/2,y(τ, z))
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is in the space of Jacobi forms of weight ` over k = Q(ζ + ζ−1), via the map

g(X0, . . . , Xp−1) −→ g
(
θ0,y(τ, z), . . . , θ(p−1)/2,y(τ, z)

)
.

Proof. This is an immediate consequence of Theorem 7.3. �

8. Conclusion

This is the first attempt at obtaining a connection between Jacobi forms
over a totally real number field k = Q(ζ + ζ−1), ζ = e2πi/p, and codes defined
over Fp. Our results generalize those given in [11], which provide a connection
between the codes over Fp and Hilbert modular forms. Using results from cod-
ing theory, one may obtain number theoretic information such as interesting
identities among theta series. We hope to continue this investigation in the
near future.
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