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JACOBI FORMS OVER TOTALLY REAL FIELDS AND
CODES OVER T,

YOUNGJU CHOIE AND EUNKYUNG JEONG

ABSTRACT. In this paper we establish a connection between Jacobi
forms over a totally real field k = Q(¢ + ¢™1), ¢ = €2™/P and codes
over the field Fp,. In particular, we derive a theta series, which is a
Jacobi form, from the complete weight enumerator or the Lee weight
enumerator of a self-dual code over Fy,.

1. Introduction

In 1972, Broué and Enguehard [4] studied a map between the space of in-
variant polynomials for a certain finite group and the ring of modular forms;
specifically, they showed that elliptic modular forms of weight n/2 can be
obtained from the complete weight enumerators CWe¢(z,y) of binary type
IT codes C' by substituting the theta series 03(27) and 63(27) for = and v,
respectively. Because of this map, combinatorial problems in coding the-
ory are closely related to problems studied earlier and independently in pure
mathematics. An important problem in algebraic coding theory (see [14]) is
to determine, for a given class of self-dual codes, the ring of invariants to
which some weight enumerators belong. Not only codes over finite fields, but
also codes over finite rings and finite abelian groups have been studied exten-
sively, and polynomial analogues of modular forms of Jacobi form type (see
[1],3],[6],[5]) and of Siegel modular forms (see [15]) have been discovered.

On the other hand, the first connection between Hilbert modular forms and
codes was described in [11] by considering Lee weight enumerators of self-dual
codes over IF,,, where p is an odd prime. In this paper, we extend the relation
studied in [11] between the Lee weight enumerator We(X1,. .., X(,—1)/2) of a
self-dual code C over ), and a certain Hilbert modular form to a connection
between the complete weight enumerators and the Lee weight enumerator of a
self-dual code C over ), and a Jacobi form f(71,...,T(p—1)/2, 215+ -+ Z(p—1)/2)

over k = Q(C+¢7Y), ¢ = &®™/P, Letting 21 = zp = --- = Z(p—1y/2 = 0,
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we recover the result given in [11]. More generally, we study a Broué and
Enguehard type map from a certain invariant space, in which the complete
weight enumerators (or Lee weight enumerators) of self-dual codes over F,
live, to the space of Jacobi forms over k = Q(¢ + (1), ¢ = e27/P.

2. Definitions and notations

In this section we recall the definition of a Jacobi form over a totally real
number field. We follow the notations of [16].

Let K be an algebraic number field with finite degree d = [K : Q]. Let
01,-..,0q4: K — C be the different embeddings of K into C, with o1 = id. The
field K is called totally real if o;(v) € R for all 1 < j < d; we set oj(v) = v,
v € K. The norm and trace of v are defined by Nk q(v) = H?Zl v and
Trig(v) = Z;l:l v respectively.

Next, we define the Jacobi group. The Jacobi group of a totally real number
field k of degree d over Q with ring of integers Oy is denoted by I'/(k) and
defined as

I'7(k) = SLy(Oy,) x O3,
This group acts on H? x C? for each conjugate of the field. The variables of

this space are denoted by (7,2) = (71,...,74,21,...,24). The actions of '’ (k)
on the space H? x C? are given by

a B _(ar+p z
(v 5>(T’Z)'_<w+6’w+6>

o YD 507 Dy 4§D AWy 4 Q)7 Nd) 7y 454 )
where
a p d o ~d
(7 6) € SLy(O), (1,2) € H* x CY,
and

(7, 2) A ] i= (7,2 4+ Ar + )
= (T1y oy Tay 21+ AT+ M2y + XDy (D)

for all [\, u] € OF.
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Let f: HY x C* — C be a function. Then we define the “slash operators”
as follows: for given £ € Z and m € Oy, we define, for all (ﬁ ?) € SLy(Op),

~ () 2 2

d
(f|£,m (?y‘ g)) (T, Z) = H 6_2mm Oz +5(J)

Xﬁ (7)7- + 86Uty artp _ 2
’YT+5 YT 46

j=1
and, for all [\, u] € 02,
d

—omim@ (A2 (@) 5.
Flmlost) (7,2) o= [ [Le 27 O 74292) ) 42 4ar + ).
j=1

We are now in a position to define a Jacobi form over a totally real number
field.

DEFINITION 2.1. A Jacobi form f of weight ¢ and index m € Oy on a
totally real number field & is an analytic function f: H? x C? — C satisfying

(2.1) (flemM)(7,2) = f(7,2), M € SLy(Ok)
and
(22) (f|m[)‘7ﬂ]) (Ta Z) = f(Tv Z)? P‘v :U‘] € Oy.

The form f must have a Fourier series expansion of the form

d
(2.3) flr,2z) = Z ¢(N,R) H 627T’L-(N(J)T]‘+R(J)Z]‘)’
N,Res; ", N>0 j=1

where N > 0 means that N is totally positive or zero, each of the coefficients
¢(N, R) is constant, and &; ! is the inverse different of k.

REMARK 2.2.

(1) When z = 0, the form f(7,0) is simply a Hilbert modular form on
SLay(Ok).

(2) Jacobi forms over a totally real field have first been defined and stud-
ied in [16].

Next, we recall the definition and some basic facts of linear codes.

A linear code C of length n over the field F, is an additive subgroup of
F,. An element of C is called a codeword. We denote by |C| the number of
codewords in C'. The inner product of z and y in F is defined by

Ty =ay1+ Ty, (mod p), = (21,...,2n), Y= (Y1,.-..yn) € F
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The dual code C+ of C is defined as
Cl:{yeF;\x~y:0forallxeC}.
If C = C+, then C is called self-dual. The complete weight enumerator CWec
of C over IF,, is defined by
CWec (Xo, X1, -, Xpoo, Xpo1) = D Xgo@ X L x w2 x ()

p—1
ueC

where n;(u), 0 < j < p — 1, denotes the number of components of u which
are equal to j. The Lee weight enumerator W of C' over F,, is defined by

no(u ni(u p— (u)
We (Xo, X1, Xpo1y2) = Z Xoo( )X11( )---X(Z(_nl)//zz v,
ueC

where ng(u) denotes the number of zero components of w, while n;(u), j # 0,
denotes the number of components of v which are equal to j or —j.

3. Jacobi theta series over number fields

In this section, we study Jacobi theta series. Here we follow the notations
of [11].

Let k be a totally real field with degree r = [k : Q]. Consider a vector
space V over k of finite dimension d = dimy V' with a totally positive definite
scalar product -: V x V — k satisfying (v - v)(j) >0forall 1 <j<randall
v € V—{0}. Let A be a k-lattice in V| i.e., a finitely generated Op-submodule
of V' which contains a k-basis of V.. Let {ey, ..., eqq} be a Z-basis of A. Then

A(A) = det (Trk/Q(ei . ej))
is called the discriminant of A. The dual lattice A* of A is defined as
A ={weV|Tryg(w-v)eZ, veA}.

One can check that A* is also a k-lattice in V' (see [11, Prop. 5.6, p. 160]).
The lattice A is called unimodular if A* = A, integral if Try,q(v - w) € Z for
all v,w € A, and even if Try, g (Ox (v -v)) € 2Z for all v € A.

Let K = Q(¢) be a cyclotomic field with ¢ = €2>™/P, where p is an odd
prime. Then it is known that the ring of integers Ok is the set

p—2
Ok = a:Zaj(j a; €Z,0<j<p—2
j=0

Let 8 := (1 — ¢) be the principal ideal of Ok generated by the element
1— (¢ € Ok. It is well-known (see [11, p. 130]) that

Ok /8= L[pL = TFy;
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the map p: O — Z/pZ sending a = ag + a1 + -+ + a,—2(P~2 to p(a) =

ap+ a1+ -+ ap—2 (mod p) is a homomorphism with kernel 5. The map p

can also be regarded as the reduction map (mod () from Ok to Z/pZ.
Next, we consider the totally real subfield k£ of K, which turns out to be

the field k = Q(¢ + ¢~ 1), where [K : k] =2, and [k : Q] = (p — 1)/2. For the

remainder of this paper, K and k will always be defined in this way, i.e., we

set K = Q(¢) and k = Q(¢ + ¢ 1), where ¢ = €*™/P and p is an odd prime.
We recall the following useful properties (see [11, pp. 132-133]).

REMARK 3.1.

(1)

(4)

For v,w € K, the map -: K x K — k defined by
VW =W + vw,
where ¥ denotes the complex conjugate of v, is a totally positive def-
inite scalar product on K.
The map (, )x: K x K — R given by
(2, y)x = Trr gz - y) = Try o2y + Ty),
is a symmetric bilinear map.

Let 3 be the principal ideal generated by (1— () of the ring of integers
Ok of K. Then (3 is a k-lattice in K. Furthermore, we have

Trg /g <I]fl> €Z, x,yep
and
TIK/Q (%) €27, x¢€p.

Let 8* be the dual lattice of 5. Then * = Ok. Since Ok /B ~ F,,
we have §* = U?;é(j + ).

For each j, 0 < j < p—1, and a fixed element y € Ok, define a theta
function 0, (7, 2) :==015,4: HP-D/2 x Clr=1)/2 _, C by

(3.1)

where

9j,y(7',z) = 0j+ﬁ,y(7—72) = Z e‘fl'iTI“K/Q(UI;—UT)eQTriTrK/Q(%Z)’
vej+B

) (P=1)/2 / _\(s)
v UT> . (vD)

Tr R T,
K/Q< p ~  p
p-1/2 ,
- vy \ (vg + vy) )
rgiQ | —2 ) = 7z
P — P

and 7, € H, z; € C.
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REMARK 3.2. The transformation properties of 6;,3(7,0) as a function
over HP~1)/2 have been studied in [11, p. 162]. The above theta series gen-
eralizes that given in [11] to a function defined on H(®P~1)/2 x C(P—1)/2,

We next derive a transformation formula for this theta series.

LEMMA 3.3.  Let 3 be the principal ideal generated by (1 —¢) in Ok. For
each 7, 0 < j<p—1, and a fired y € Og we have

0, <_1 Z> - emTrK/Q(%é) (pi_l[)/2 (E> }72162”%9 (1,2)
AANEE A(B) puir R e
Proof. We modify the argument of [11, p. 162]. Let
71 Eg 71K
7 TolEo W= 2o 7
TR 2o

where Eo = ({ {). For given z(,Y € RP let
9vz0 (.I) — efwi(z+:vo)Z_1(m+zg)t€27ri(az+zg)2_1WY”.
For v € RP let
~ _omizyt
O I
Rp
Then

. t -1t -1 t ot
gY,xo (’U) — 6727rzzov / efﬂsz x e27rsz wYy 67271'19:'0 dl’,
RP
upon substituting x — xg by x.
We have
-1t . -1 t oo ot
/ e il Tx eQTrsz wy e 2mizv dx
RP
2

7ﬂi<ﬁ+ﬁ_“+”€771+17p)
= / e momn T(p=1)/2  T(p—1)/2
RP

S myz1yy | woziys | Fp—1%(p—1)/2Yp—1 | TPE(p—1)/2YP
Xem( T R Py 7 S R OO T )

x e 2ri@iviteavatt -t apvp) g dx,

2 2 22
) = z —1)/2
et (Z)l/2 M<yf%+y§%+»--+y§ﬁ>
= de —_- e
7
> em’(vfn—&-vgﬁ+~~+'u?,71vgr(p,1)/2)

% 6—27ri(v1Zlyl+'U221yl+"'+’Up—1z(p71)/2yp—1+’U1’z(1771)/2yp)
9
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where x = (z1,...,2p), ¥ = (y1,...,Yp), v = (v1,...,v,) € RP. From this
identity we obtain

1/2

Nyt e gt o

0y .o (U) — det( _ e 2mizov errzYZ wy e‘n'wZv e 2mivWYyY .
7

On the other hand, for each s with 1 < s < (p—1)/2, R becomes a k-
module, which we will denote by ks, via the map

kExR> (x,p) = os(z) - p.

Then the space K, := K ®y ks is a real vector space of dimension 2, which
contains K via the map K 3> v — v ® 1. The scalar product

KxK—ks (vyw)—os(v-w)

can be extended to a scalar product on K, that is R-bilinear. Since K
can be considered as an Euclidean vector space, we have an isomorphism
Ls: Ky — R? with o4(v-w) = Lg(v) - Lg(w) for all v,w € K. Next, using
the embedding
L: K - RP,
v— L(v) := (Ll(v), Ls(v),..., L(p,l)/g(v))

one can realize L(f3) as a lattice in RP, with L(5*) = L()*. Hence the theta
series can be written as

Oipy(r2) = Y em Tra(5m) 2mTrca(51)
veF+S

V.-V V.Y
§ eﬂ'z—p 76271'1 5 2

VeL(j+B)
_ Z i VHLG) (VHLG)) - gy (VAHLG)-Y
= e P e P .

VEeL(B)

Applying the Poisson summation formula, we obtain, on letting ¥ =
L(y) = (L1(y), - > Lp—1)/2(v)),

1 z \%4
() 5 v ()

VEL(p)
1 . Vv
9y L)\ —=
AB) v &rsy- V7V VP
__ 1! ; i)
A(D) 5\ Vb
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_ 1 det (g) 1/2 em"/wz*plwtyt
A(B) v

SL(HV?E cvzvt vwyt
% § : 6271'2 > eﬂ"L > 62772 »

0y (P—1)/2

= ) T ()
(3

s=1

% Z emTyK/Q(%)emTrK/Q('Ub'vr)ezmTyK/Q(%z)

4. Lattices induced by codes over [,

We first recall the construction of a lattice from a code over IF,,.

Let p: Of} — IF]f be the natural homomorphism defined by the reduction
modulo the principal ideal 8 = (1 — () in each coordinate (see Section 3).
Then the lattice induced by a code C over [, is defined as

1
Ac = —p_l C).
Let Z,y € OIZ(a T = (xlv"'ax€)7 Yy = (yla"'aye)a with iy Yi S OK;I S
i < ¢. The symmetric bilinear form (, )k defined in Remark 3.1 induces a
symmetric bilinear form on ﬁ(’) £ by

¢
(4.1) (T, YK = ZTrk/Q ( py ) ., %Y € Ok.

i=1

The following properties have been derived in [11].

LEMMA 4.1. Let C C Flf be a code of dimension t with C C C*+. Then
the following properties hold:
(1) If C is self-dual, then £(p —1) =0 (mod 8).
(2) The lattice Ac, endowed with the symmetric bilinear form (x, y)k
defined in (4.1), is an even integral lattice of rank ¢(p — 1) and dis-

criminant p*=2t. If C is self-dual, then Ac is unimodular.
(3) AL =Age.

Proof. See Lemma 5.5, Proposition 5.2, and Corollary 5.1 in [11]. O
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We now study the theta series over the lattice A¢ induced by the code C
over .

LEMMA 4.2. Let C be a code of length £ over F, and let Ac be a lat-
tice induced by C. Given Y € Ac, define the theta series ©c¢y : HP=1/2 %
Cc=1/2 5 C by

zEAC
where
(p—1)/2 '
Trgsg((z-2)7) =2 Y (a7)V7
j=1
and
(b-1)/2 .
Trg/o((x-Y)Z) := Z (xY.FfY)(])zj.
7j=1
Then

cy (~1.2) = e mwele0) ()
’ T T A(Ae) ol 7
> Z eﬂ'iTI"K/@((U'U)T)eQﬂ'iTFK/Q((U'Y)Z).
vEAL
Proof. The functional equation can be established by applying the Poisson

summation formula. The argument is similar to the proof of Lemma 3.3, so
we omit the details. O

Using the above properties, we now derive the following result.

THEOREM 4.3. Let C be a self-dual code over F), of length £. LetY =
ﬁ(y,yw..,y) € Ac be such that YY € O. Then Ocy(1,z2) is a Jacobi

form over the field k with weight £ and index Y'Y = {y3j/p over the full group
SLs(Of).

Proof. Since SL2(Oy) is generated by the transformations ((1) "{), v € O,
and (9 ') (see, for example, [9],[10],[13],[17]), to show the modularity of the
Jacobi form it is enough to establish the appropriate transformation formula
for these two types of transformations. First, we have

1
(90,Y|e,y7 (0 f{)) (1,2) =Ocy (T +7,2) = Ocy(T,2),
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because Trg, q((z - 2)7) is even for all z € A¢ and v € Ok. Second, using
Lemma 4.2 and the fact that A}, = A-1, we have

(90,Ye,yy (? _01>) (7,2)

| BN 1 2
_ 6—271-1Trk,/@(YYz /7-) H (Ts)ilec,Y <__, _>

T T
s=1
=i "PTURA(A)T?O001 v (7,2) = Oy (7, 2),

since £(p—1) = 0 (mod 8) and the self-duality of C' implies the unimodularity
of A¢ (see Lemma 4.1, (2)) and, therefore, A(A¢) = 1.
Next, we establish the second transformation formula. For any [\, u] € O3,

(Ocy lyy A u))(r,2) = 62“TYK/Q((%)()‘QTHAZ))@QY(T, Z+ AT+ p)

_ eﬂ'iTrK/Q((Y~Y))\2T)e27riTrK/Q((Y‘Y)Az)

X Z e Tric /o ((v0)7) 210 Tre o ((vY)2)
vEAC
o 2T Tric o (Y )AT) 20 Tr e o (0¥ )
_ Z o8 Tr i /g (VHAY)-(VHAY)T) 270 Tri o ((14AY)-Y ) 2)
vEAC
= Oc,y (T, 2).
This follows from the fact that Ac is integral lattice, i.e., Tryo(u(v-Y)) € Z,

and that v + \Y € Ag for any v,Y € Ag and p, A € Ok.
Finally, we show that ©¢ y has the required Fourier series expansion:

@CY(T, Z) — Z eﬂ'i TI‘K/@((I‘LE)T)ezﬂ'i Trg/o((zY)2)

T€EAC
— 2 eQﬂ'iTrk/Q(zE)‘r)€27riTrk/Q((m?—l-EY)z)

z€EAC
_ Z (zz)® (zz)(P=V/D (Y +zY)D C(m7+fy)((p—l)/2)
-2 n ey S e S-1)/2

z€AC

_ N N@=1/2) g Rp—1)/2
= Z (N, R)ar - qp_1y2 G - Cp1y/2
N,Res; ', N>0

where g, := e?™s (, = 2™* 1 < s < (p—1)/2. The last step follows
from the fact that NU) := (27)) > 0 for all # € A¢ \ {0} and for each
j, and thus, N := 2% > 0 for all x € Ac. Also, note that R := 2T and
2Y +7Y € Of = {v € k | Try,)o(vOy) C Z} = §;'. The Fourier coefficient
¢(N, R) is defined by

¢(N,R):=#{x€Ac|az=N, Y +7Y =R}. O
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5. The complete weight enumerators

In this section we exhibit a connection between Jacobi forms over the field
k= Q(¢+¢™') and the complete weight enumerators of the code C over F,,.
Let A¢ be the lattice induced by C' in the sense of Section 4.

THEOREM 5.1. LetC C Fé be a code with C C C+ andY = ﬁ(y, ..,Y) €

Ac. Let Ocy (7, 2) be the theta series defined in Lemma 4.2. Then the fol-
lowing identity holds:

Oc,y (1,2) = CWec (00,4(T,2), ..., 0p—1,4(7,2)) .
Here 0; (1, 2) is the theta function defined in (3.1).

Proof. Let u be a codeword of C. Setting Y = IPYO = ip(y, ceyY), we

S

have
Z eQTri Trk/@((wE)T)GQﬂ'i Try o (Y +ZY)2)

we2p (u)

= Z eQmTrk/Q((%)T)eQMTrk/@(@z)

zep~!(u)
no(u)
= ZeQﬂiTrk/@(%T)ezmTrk/Q(@z)
zeB
np—1(u)
Z 62""i Trk/@(z?i'r) 627ri Trk/@( L@:Iy z)
z€/+p—1

= 90’?/ (T7 Z)"o(u) e prl,y (7'7 Z)npfl(u%

where n;(u) denotes the number of components of u that are equal to j.
Using the relation A¢ = %p’l(O) and summing over all codewords in C'
yields Theorem 5.1. O

6. The Lee weight enumerators

In this section we derive a connection between a Jacobi form over the field
k= Q(¢+¢ 1) and the Lee weight enumerator of a code C over F,,. Using the
correspondence between Jacobi forms over k and complete weight enumerators
of codes over IF), obtained in the previous section, we derive the main result
of the paper by a particular choice of the value y in the theta series. This is
the analogue of the theory given in [11] for functions on HEP-D/2 5 clp=1)/2,

THEOREM 6.1. Let C C sz be a code with C C C+. LetY = %(y, ..,Y) €
Ac be such that 0; ,(T,2) = 0p_; (T, 2) for each j € {0,1,...,p—1}. Then
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the following identity holds:
@C’y(T, Z) = WC (eo’y(T, Z), ey 9([)_1)/277!(7', Z)) .
Here 0; (7, 2) is defined by (3.1).

Proof. Using the relation 6, (1, 2z) = 6,—; (7, ), the result follows from
Theorem 5.1. We omit the details. (]

REMARK 6.2. In particular, if one chooses Y = ﬁ(y, Yy...,y) with g =
—y, then 6, ,(7,2) = 0,_; (7, z). To see this, note that
O;y(T,2) = Z e2mi Trijo(577) o2mi Tre o (455 2)
z€B+]
_ Z 27 Tricjq (22D r) o Ty, o CRLEVHERED) )
zEf+)
_ Z o2 Tri o (57 7) p2mi Try o (#0572 2)
z€f—j
= Op—jy(7,2),

since —T € §—j and § = —y.

EXAMPLE 6.3. Let p=3,y =14 2(, ¢ = e2™/3, In this case,

01y(r,2) =¢"* Y R
(a,b)eZ?
and
92 U(T Z) — q% Z qm2+n2—mn+2m£—m+2n.
(m,n)€z?

Replacing m by a+2 and n by b+ 1, one can verify that 6y (7, z) = 02 (7, 2).

The theta functions ©¢ y (7, 0), corresponding to the case z = 0, have been
used to obtain a connection between Hilbert modular forms over SL2(Of)
and Lee weight enumerators of the code C over F,, which can be stated as
follows (see [11, p. 141]).

COROLLARY 6.4. Let C be a self-dual code of length { over ), and let

Y = ﬁ(y7 ...,Y) € Ac. Then ©c¢,y (1,0) is a Hilbert modular form of weight

¢ on the full group SLy(O4), where k = Q(¢ 4+ ¢~ 1), ¢ = 2m/P,

Proof. Note that if z = (z;) = 0, then 6,,(7,0) = 6,—,,(7,0) for each
j€1{0,1,...,p— 1}, since the theta series ©¢ y (7,0) is independent of Y. In
this case, it is known that a Jacobi form over k is simply a Hilbert modular
form over SLo(Oy). O
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7. Invariant spaces, self-dual codes over F,, and Hilbert-Jacobi
forms over k= Q(¢C + (1), ¢ = £27i/p

In this section we give a homomorphism between a certain invariant space,
to which the complete weight enumerators of the self-dual codes over F,, be-
long, and a ring of Jacobi forms over the field k = Q(¢ + ¢~ 1), ¢ = >™/P.

The invariant space under the action of the group G is the set C[ X, X, . ..,
X;]¢ of homogeneous polynomials satisfying L - f(X) = f(X) for all L € G,
where X = (Xy,...,X;). Here, a t X ¢ matrix L acts on the polynomial ring
(C[Xl, e ,Xt] by

L-f(Xy,....,X)=f Zbleja"-,ZijXj ;
1<5<t 1<j<t
where f € C[X3,..., X] and B = (b;;).
We recall the well-known MacWilliams identity for the complete weight
enumerators (or Lee weight enumerators) for codes over F),.

LEMMA 7.1 (MacWilliams Identity). Let C C Fé be a code with C C C*.
Then the following identity for the complete weight enumerators of codes over
F, holds:

CWec (X0, X1,..., X, 1) = CWee (X0, X1, ..., Xp_1)M,).
Here,
1 1 ... 1
. 1 1 C(2 gz Cg(’;i;)
R U
1 ¢ (oL ... (e

Proof. This is well known; see, for instance, [14, pp. 143-144]. Alterna-
tively, one can derive this identity using the transformation formula of the
theta series ©¢ y (7, z) given in Lemma 4.2 and the connection of this series
to the weight enumerators of the code over F, given in Theorem 5.1. O

LEMMA 7.2. Let C be a self-dual code of length £ over F,,. Let Gp(7y) be a
group generated by M,, N,(v), for all v € Oy, where M, is as in Lemma 7.1
and

Ny (7) := Diagonal (ezﬂij%/p) , 0<j<p-1.

Then the complete weight enumerators CWec(Xo, X1, ..., Xp—1) are contained
the invariant space

C[Xo,Xl, . ,Xp_l]Gp(’Y).
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Proof. Let Yy = ﬁ(y,y,...,y) € Oy and consider the theta series

Oc¢,v, (7, %), defined in Lemma 4.2, on the lattice A¢ induced by the code
C. Then for all v € Oy, we have, using the periodicity of ¢y, (T, 2),

CWec (60,y(7,2), ..., 0p—1,4(T, 2))
= Oc,v, (T, %)
=00y, (T +7,2)
= CWec 0o,y (T +7,2),...,0p (T +7,2))

2
omi =D

= CWec (GO,y(T, 2)y. ., 627”'%9]‘@(7', 2)y. . ,€ P Op1,y(T, z))
= CW@C ((90,@/(7—7 Z)v e vepfl,y(’rv Z))Np(’y)) 9

since C' is self-dual. From the algebraic independence of the theta series
00,y(T,2), 01,4(7,2), ..., Op_1,4(T, 2) it follows that

Np(’}/) . Cwec(X(), R 7,Xp,1) = CWec(Xo, ey prl), S Ok.

On the other hand, the self-duality of C' combined with the MacWilliams
identity of Lemma 7.1 imply that

Mp . CWec'(Xo, ven ,Xp_l) = CVVec(AXVO7 PPN 7Xp—1)-

This proves the theorem. O

More generally, the following theorem shows the existence of a ring homo-
morphism from the invariant space of G,(7) to a ring of Jacobi forms over
the field k = Q(¢ +¢71).

THEOREM 7.3. Let f(Xo,...,Xp—1) be a homogeneous polynomial of de-
gree £, satisfying £(p — 1) = 0 (mod 8), in the invariant space C[Xg, X1,...,
X, 1] for all v € O. Lety € Ok, K = Q(), be such that Lyy/p € Oy.
Then

[ 00,y(T,2),01,4(T,2), ...\t 0p14(T, 2))
is in the space of Jacobi forms of weight ¢ and index Lyy/p over the field
k=Q(¢+¢™Y), via the map

f(Xo, N 7Xp,1) — f (907y(7, Z), N 79;,,,144(7', Z)) .

Proof. Since SL2(Oy) is generated by the transformations ((1) '{), v € O,
and (9 ') (see [9],[10],[13],[17]), the transformation formulas of theta series
together with the MacWilliams identity in Lemma 7.1 give the modularity.
To obtain the elliptic property, a direct computation shows that, for each
ji=0,...,p—1,

627”.%(2—"_)\7)9]'73/(7', z+ AT + :u') = 0j7y (T7 Z)a ()‘7 .U’) € ZQ'
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This implies that
T CHEA) p (00 (T 2+ AT 4 1), Oy (T 2+ AT+ 1)
= f (‘90,@/(7’ Z)a s 79p—1,y(7—7 Z)) .

Finally, the Fourier expansion can again be checked directly, using the expan-
sions of 6; , (7, 2). O

Next, as a special case of the above theorem, we have the following relation.

LEMMA 7.4 (MacWilliams Identity). Let C C Ff be a code with C C C*.
Let y € Ok, K = Q(C), be such that 8;,(1,2) = 0,_;,(7,2), for each

je{1,2,...,(p—1)/2}. Then the following identity for the Lee weight enu-
merators of codes over IF), holds:

WCL (XQ,Xl, ey X(p—l)/Z) = CWEC ((Xo,Xl, ey X(p—l)/2) Ap)

Here,

1 2 2
Ll ke ewe L T T
p—1 p+1
pi=— | 1 (24202 T4+
VP
1 o¢plgce-v® L DB g DB

Proof. This is well known; see, for instance, [14, pp. 145-146]. Alterna-
tively, one can derive the result using the relation 6; (7, z) = 6,—; (7, 2) and
Lemma 7.1. O

LEMMA 7.5. Let C be a self-dual code of length £ over F,. Let H,(7y) be
a group generated by A,, By(v), v € Ok, where A, is as in Lemma 7.4 and

g -1
By(y) := Diagonal (62”232”’/17) , 1<5< pT

Then the Lee weight enumerator We (Xo, Xi,... ,X(p,l)/g) is in the invariant

space

C [Xo, X1, Xporyo)

Proof. This is an immediate consequence of Lemma 7.2. O

More generally, the following corollary shows the existence of a ring homo-
morphism from an invariant space of H,(7) to a ring of Jacobi forms over k.

COROLLARY 7.6.  Let g(Xo, ..., X(p—1)/2) be a homogeneous polynomial of
degree £, satisfying £L(p—1) =0 (mod 8), in the invariant space C[ Xy, X1, ...,
X(p_l)/2]HP(7), forally € Ok. Lety € Ok, K = Q((), be such that lyy € Oy
and 0;,,(1,2) = 0p_; (7, 2), for each j € {1,2,...,(p—1)/2}. Then

9(00,4(T,2),01,4(7,2), ..., 9(1,_1)/2)11(7', z))
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is in the space of Jacobi forms of weight £ over k = Q(¢ + (1), via the map

g(X07 ey Xp—l) —4g (QO,y(T7 Z)a ey 0(1)—1)/2,3}(7-7 Z)) .
Proof. This is an immediate consequence of Theorem 7.3. (]

8. Conclusion

This is the first attempt at obtaining a connection between Jacobi forms

over a totally real number field & = Q(¢ + ¢~ 1), ¢ = €>™/P and codes defined
over F),. Our results generalize those given in [11], which provide a connection
between the codes over IF,, and Hilbert modular forms. Using results from cod-
ing theory, one may obtain number theoretic information such as interesting
identities among theta series. We hope to continue this investigation in the
near future.

(1]
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