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IDEAL CONSTRUCTIONS AND IRRATIONALITY
MEASURES OF ROOTS OF ALGEBRAIC NUMBERS

PAULA B. COHEN AND ALFRED J. VAN DER POORTEN

Abstract. This paper addresses the problem of determining the best
results one can expect using the Thue-Siegel method as developed by

Bombieri in his equivariant approach to effective irrationality measures
to roots of high order of algebraic numbers, in the non-archimedean
setting. As an application, we show that this method, under a non-
vanishing assumption for the auxiliary polynomial which replaces the
appeal to Dyson’s Lemma type arguments and together with a version of

Siegel’s Lemma due to Struppeck and Vaaler, yields a result comparable
to the best results obtained to date by transcendence methods.

1. Introduction

This paper is motivated by recent work of van der Poorten [18] on some con-
jectures of Bombieri, Hunt and van der Poorten [8]. It addresses the question
of the best result one can hope for with the Thue-Siegel method as developed
by Bombieri [4] in his equivariant approach to effective approximations to
roots of high order of algebraic numbers. To simplify the computations, we
shall in fact work in the non-archimedean situation as in [6], but the auxiliary
construction will be a polynomial and not an interpolation determinant. One
should be able to treat the archimedean case in a similar manner.

We obtain in our Theorem 4.2 an analogue of Theorem 1 of [6] by applying
the Thue-Siegel principle using (α, 1) as anchor pair, where α is an r-th root of
a non-zero number a in an algebraic number field K. The new feature is that
we assume the non-vanishing of the auxiliary polynomial in two variables at
a point (α, αγ−1), γ ∈ K, which is well-approximated in an appropriate non-
archimedean valuation by (1, 1). We thereby forgo any appeal to a Dyson’s
Lemma type argument. We do not introduce powers of the anchor pair as in
[6] as the gain in Dyson’s Lemma by having more points no longer applies.
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Our Theorem 4.2 represents in the above sense the limit of the method of [6].
Our auxiliary construction is universal in the sense that it depends only on r
and not on α, so that the non-vanishing assumption at (α, αγ−1) seems not
unreasonable to attain. Nonetheless, experience has shown it to be elusive and
to represent one of the main technical difficulties of the Thue-Siegel method.

Combining Theorem 4.2 with a version of Siegel’s Lemma due to Struppeck
and Vaaler [16], we obtain in Theorem 6.2 a result showing that under this
non-vanishing assumption our application of the Thue-Siegel method can yield
effective irrationality measures for roots of high order of algebraic numbers
comparable to the best results obtainable to date by transcendence techniques.

We also make some comparisons to recent work of Bennett [3] and of
Bombieri-Cohen [7]. The method of [3] uses a so-called “almost-perfect”
construction derived from Padé approximation techniques for which the non-
vanishing assumption is immediate. We show that even Bennett’s conjectured
bounds for the height of the resulting auxiliary polynomial are too weak to
allow this method to be applied to our situation. This justifies the less than
almost-perfect method applied in [7] whereby requiring less vanishing of the
auxiliary construction at (1, 1) enables one to reduce the height of the auxil-
iary polynomial.

2. The main results

We use the same notation as in [6]. Therefore, if K is a number field, then
the absolute values | |v in K are normalised by requiring that, for x ∈ K,

|x|v = ‖x‖dv/dv ,

where [Kv : Qv] = dv, [K : Q ] = d and where ‖x‖v is the unique extension to
the completion Kv of the ordinary real or p-adic absolute value in Qv. For a
vector x = (x1, . . . , xm) in Km and a place v ∈MK , we define

|x|v = max(|x1|v, . . . , |xm|v).
The (homogeneous) absolute height of x is defined as

H(x) =
∏

v∈MK

|x|v .

The logarithmic absolute height of x is then defined as

h(x) = logH(x).

For x ∈ K we denote by H(x) the height of the vector (1, x) ∈ K2, so that

H(x) =
∏

v∈MK

max(1, |x|v).

The logarithmic absolute height of x is then given by h(x) = logH(x).
This height definition may be further extended to polynomials P in several

variables with coefficients in K by taking H(P ) to be the absolute height
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of the vector of all the coefficients of P , with the corresponding logarithmic
absolute height h(P ) = logH(P ). For v ∈MK , we let |P |v be the maximum
of the v-adic valuations of the coefficients of P .

Let v ∈MK and v
∣∣p where p is a rational prime. Denote by fv the residue

class degree and by ev the ramification index of the extension Kv/Qv. Let
a be a non-zero element of K which is not a root of unity. Suppose that
|a − 1|v < 1. Let r be a positive integer coprime with p. Then a has an
r-th root α ∈ Kv satisfying 0 < |α − 1|v < 1. We wish to obtain an effective
irrationality measure µ > 0 for α of the form

(2.1) |αγ−1 − 1|v ≥ c(α)H(γ)−µ, for all γ ∈ K \ {0}.
Here, the positive constant c(α) is effectively computable and may depend on
α but not on γ.

In making the auxiliary construction in §3, we assume the existence of
a non-zero polynomial P = P (x, y) with rational integer coefficients, which
vanishes to high order at all (ε, ε) with εr = 1.

Let γ ∈ K, γ 6= 0. We make the further strong assumption that we can
ensure P (α, α′) 6= 0, where α′ = αγ−1. This replaces the Dyson’s Lemma
type arguments of [4, p. 70] and [6, p. 209]. We then examine the dependence
of the above irrationality measure µ on the logarithmic absolute height h(P )
of P . In particular, if N1 is the degree in x and N2 the degree in y of P , we
know by existing versions of Siegel’s Lemma (see §6) that we can choose P in
such a way that we have an upper bound for its height of the form

(2.2) h(P ) ≤ N1l1 +N2l2 ,

for N1 and N2 sufficiently large. Here l1 and l2 are positive, finite and inde-
pendent of N1 and N2, although of course they in general may depend on the
other parameters of the problem, and in particular on α and α′. We assume
from now on an upper bound for h(P ) of the form (2.2).

We show in Theorem 1 of §4 that, under the above assumptions, we can ob-
tain using the equivariant Thue-Siegel method an effective irrationality mea-
sure of the form

(2.3) |α′ − 1|v ≥ {exp(l2)H(α′)}−µ,
where

(2.4) µ =
4

2− δ
· 1

Λ
· (h(a) + rl1),

and

(2.5) Λ = log |α− 1|−1
v .

The parameter 0 < δ < 2 measures the amount of vanishing imposed on
P (x, y) at (x, y) = (ε, ε), εr = 1 (see §3). The higher the vanishing, the
smaller is δ, so that the overdetermined situation would correspond to δ = 0.
In general, the quantity (2 − δ)−1 can be easily controlled. Intrinsic to the
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expression for the irrationality measure is an “anchor condition” as in previous
papers (see [8]), whereby the quality of the effective irrationality measure µ
depends on how close we can take α to 1 with respect to the valuation v, that
is, on how large is Λ. This is of course the essence of the Thue-Siegel Principle.
Indeed, regardless of the quality of the bound for h(P ) (that is, even supposing
that up to constants l1 is bounded above by h(α) and l2 is bounded above by
h(α′)), the expression (2.4) shows that the best irrationality measure we can
hope for with these methods would be of the form, for some absolute constant
c > 0,

(2.6) |αγ−1 − 1|v ≥ c(α)H(γ)−ch(a)/Λ.

In §6 we use results of Struppeck and Vaaler [16] to obtain estimates for
l1(P ) and l2(P ) which show that the assumption P (α, α′) 6= 0 allows one to
obtain, with existing versions of Siegel’s Lemma, an irrationality measure in
(2.1) of the form

(2.7) µ = c′h(a)(D∗v)3 log
(

r

h(a)
+ 1
)
,

for some absolute constant c′ > 0 and D∗v = max(1, d/fv log p). This same
irrationality measure (up to the constants depending on K and v) is the
best obtainable from current methods using linear forms in logarithms. The
archimedean analogue of the fact that this follows using logarithmic forms
was announced in a 1994 lecture of Baker [1], and both the archimedean and
non-archimedean logarithmic forms proof is worked out in more recent work
of Bugeaud [11]. For a general treatment of archimedean forms in logarithms
see [2], and of non-archimedean forms in logarithms see [19], [20].

In §5 we derive a version of the Thue-Siegel Lemma as applied to our
situation using a construction derived from [3]. By design, this yields an
auxiliary polynomial satisfying the non-vanishing assumption at (α, α′) but
at the cost of having a height which seems unreasonably large for applications.
Finally, in §7 we end with some remarks about the motivating work [18] of
van der Poorten.

3. The auxiliary construction

For I = (i1, i2) ∈ Z≥0, set DI for the partial derivative

DI =
1
i1!

1
i2!

∂i1

∂xi1
∂i2

∂yi2
,

which is to act on polynomials in C[x, y]. Let L be a field of characteristic
0, and suppose that (β1, β2) ∈ L2. For real M1, M2 > 0 and a polynomial
P (x, y) ∈ L[x, y], the index of P at (β1, β2) relative to (M1,M2) is defined as

ind(β1,β2)(P ;M1,M2) = min
{
i1
M1

+
i2
M2
| DIP (β1, β2) 6= 0

}
.
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Let N1 and N2 be positive integers. In what follows, our estimates are true
for N1 and N2 sufficiently large. We suppose further that for any fixed choice
of a finite positive real number z we can ensure that

(3.1) lim
N1,N2 7→∞

N1/N2 = z.

This should pose no problem, as our discussion should go through quite gen-
erally; in particular it is to be expected that our postulated upper bound (2.2)
for h(P ) should be derivable for general large N1 and N2, as are the other
results of this paper.

Theorem 3.1 (Box Principle Lemma). Let 0 < θi ≤ 1, i = 1, 2, and
0 < δ < 2. Let T = 1

2θ1θ2 satisfy rT = (1− 1
2δ). Then there is a polynomial

P ∈ Z[x, y], P 6= 0, with degxP ≤ N1 and degyP ≤ N2, and with index

ind(ε,ε)(P ; θ1N1, θ2N2) ≥ 1

at every point (ε, ε), εr = 1, for N1 and N2 sufficiently large.

Proof. The vanishing requirement gives rise to a system of
1
2
rθ1θ2N1N2 +O

(
max(N1, N2)

)
homogeneous linear equations over the rationals in (N1+1)(N2+1) unknowns,
namely the coefficients of P . As rT < 1, the lemma follows by basic linear
algebra. �

We let

(A.1) rT =
(

1− 1
2
δ

)
, 0 < δ < 2

denote the assumption of the above lemma, and suppose that there exists a
polynomial P as in the Box Principle Lemma with

(A.2) P (α, α′) 6= 0.

As remarked in §2, the assumption (A.2) is of course very strong, replacing
in one fell swoop a Dyson’s Lemma type argument, as in [4, p. 70] and [6,
p. 209]. It also considerably simplifies the computations.

4. The Thue-Siegel Principle

Continuing with the situation of §3, let P be a polynomial as in the Box
Principle Lemma, with logarithmic absolute height h(P ) bounded as in (2.2),
and which satisfies (A.2). Let L = K(α, ζ) where ζ is a primitive r-th root of
unity. We recall the product formula in the form∑

w6 | v

log |P (α, α′)|w = −
∑
w|v

log |P (α, α′)|w,
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the sum being over the valuations w of L. Following standard practice, we
shall estimate the left hand side trivially and the right hand side using the
vanishing to high order of P at the points (ε, ε) with εr = 1.

If w6
∣∣ v and w6

∣∣∞ then we have

(4.1) log |P (α, α′)|w ≤ log |P |w +N1 max(1, |α|w) +N2 max(1, |α′|w).

If w6
∣∣ v and w

∣∣∞ then we have
(4.2)
log |P (α, α′)|w ≤ log |P |w+N1 max(1, |α|w)+N2 max(1, |α′|w)+O(logN1N2).

If w
∣∣v, then we expand P in a Taylor series around (ε, ε) where εr = 1 and ε

will be chosen suitably. We have, with J = (j1, j2),

P (α, α′) =
∑
J 6∈G

DJP (ε, ε)(α− ε)j1(α′ − ε)j2

where

G =
{

(i1, i2) :
i1

θ1N1
+

i2
θ2N2

< 1
}
.

As w6
∣∣∞, the binomial coefficients caused by the differentiation in Taylor’s

formula do not contribute and we obtain, for an appropriate choice of ε (see
[6]),

log |P (α, α′)|w ≤ log |P |w + max
(j1,j2) 6∈G

{j1 log |α− ε|w + j2 log |α′ − ε|w}

≤ log |P |w −min
(
N1θ1 log |α− ε|−1

w , N2θ2 log |α′ − ε|−1
w

)
= log |P |w − δ̃w min

(
N1θ1 log |α− 1|−1

v , N2θ2 log |α′ − 1|−1
v

)
where δ̃w = [Lw : Kv]/[L : K]. As

∑
w|v δ̃w = 1, we have from the product

formula that

(4.3) min(N1θ1 log |α− 1|−1
v , N2θ2 log |α′ − 1|−1

v )

≤ h(P ) +N1h(α) +N2h(α′) +O(logN1N2).

Let

(4.4) Λ = log |α− 1|−1
v , Λ′ = log |α′ − 1|−1

v .

We choose

(4.5) z =
θ2Λ′

θ1Λ
.

Dividing by N2, taking the limit when N1, N2 go to infinity and multiplying
by θ1Λ in (4.3), we have

θ1θ2ΛΛ′ ≤ θ1Λ lim
N2→∞

h(P )
N2

+ θ2Λ′h(α) + θ1Λh(α′).
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Then, using (2.2) we deduce

(4.6) θ1θ2ΛΛ′ ≤ θ2Λ′
(
l1 + h(α)

)
+ θ1Λ

(
l2 + h(α′)

)
.

Therefore, if

(4.7) θ1Λ ≥ 2{l1 + h(α)},

we deduce from (4.6) that,

(4.8) θ2Λ′ ≤ 2{l2 + h(α′)}.

The above computations may be summarised as follows.

Theorem 4.1 (Thue-Siegel Lemma). Let 0 < θi ≤ 1, i = 1, 2, and 0 <
δ < 2 with rθ1θ2 = 2 − δ. Suppose that there exists a polynomial P as in
the Box Principle Lemma, with h(P ) bounded above as in (2.2), and which
satisfies (A.2). Then, under the anchor condition

(4.9) |α− 1|v ≤ {exp(l1)H(α)}−2/θ1 ,

we have
|α′ − 1|v ≥ {exp(l2)H(α′)}−2/θ2 .

We may rewrite (A.1) as

(4.10) 2/θ2 =
(
2/(2− δ)

)
rθ1.

We can rewrite condition (4.9) of the Thue-Siegel Lemma as

(4.11) rθ1Λ ≥ 2{rl1 + h(a)}.

Setting
µ = 2/θ2,

from (4.10) and (4.11) we deduce that we can take

µ =
4

2− δ
· 1

Λ
·max(h(a) + rl1).

We therefore have the following result.

Theorem 4.2 (Theorem 1). Suppose that there exists a polynomial P as
in the Box Principle Lemma, with h(P ) bounded above as in (2.2), and which
satisfies (A.2). Then we have

|α′ − 1|v ≥ {exp(l2)H(α′)}−µ,

where

µ =
4

2− δ
· 1

Λ
· (h(a) + rl1).
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Notice that if for a fixed 0 < δ < 2 we have an ideal height estimate for
our auxiliary construction of the form

h(P ) ≤ c3N1h(α) + c4N2h(α′),

then the Thue-Siegel Lemma implies a resulting irrationality measure for α
of the form

(4.12) log
1

|α− 1|v
· log

1
|α′ − 1|v

≤ c5rh(α)h(α′).

5. Some comparisons between Padé techniques and the
Thue-Siegel Principle

In this section we make some comparative remarks about an old construc-
tion of Mahler, recently reapplied in [3] to obtain irrationality measures to
roots of rational numbers, and the approach of [7] which exploits an equi-
variant Thue-Siegel principle to obtain general irrationality measures to roots
of algebraic numbers. Both Mahler’s construction and a limiting case of the
construction of [7] can be seen as special cases of the auxiliary construction
of the Box Principle Lemma of §3 of the present paper.

In [6], an auxiliary polynomial P (x, y) ∈ Z[x, y] is constructed which van-
ishes to high order at all (ε, ε) with εr = 1 as in the Box Principle Lemma.
The irrationality measure for α is then obtained by working with the product
formula applied to the algebraic number P ∗(α, α′), where P ∗ is an appropri-
ate derivative of P chosen using Dyson’s Lemma. In [7], by only working with
derivatives with respect to x, we were able to replace the two variable Dyson’s
Lemma argument by a Wronskian argument, thereby rendering the method
completely elementary. This in fact leads to a better irrationality measure
than that of [6]. Of course in these approaches we do not assume (A.2) of §3.

It is not difficult to see that the auxiliary construction of [7] can be de-
rived from that of [6], and for convenience we now explain why. We take a
polynomial P ∈ Z[x, y] and write it as

(5.1) P (x, y) =
N1∑
j1=0

N2∑
j2=0

a(j1, j2)xj1yj2 .

We now apply the vanishing condition at (ε, ε) of the Box Principle Lemma
for the case θ2 = 1/N2 and θ1 = k/N1 where k is an integer and rk < N1N2,
so that we require

(5.2) D(l,0)P (ε, ε) = 0, l = 0, . . . , k − 1; εr = 1.

From (5.1), we can write this as

(5.3)
N1∑
j1=0

N2∑
j2=0

(
j1
l

)
a(j1, j2)εj1−lεj2 = 0, l = 0, . . . , k − 1; εr = 1.
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Multiplying, for each ε with εr = 1 and each t = 0, . . . , r − 1, the above
equation by εl−t and averaging over all ε we derive the kr new equations,

(5.4)
∑

j1+j2≡tmod r

(
j1
l

)
a(j1, j2) = 0, l = 0, . . . , k − 1; t = 0, . . . , r − 1,

where in the above sum 0 ≤ j1 ≤ N1, 0 ≤ j2 ≤ N2. Let N2 = s < r,
N1 = nr + s and consider the equation with t = s, namely,

(5.5)
∑

j1+j2≡smod r

(
j1
l

)
a(j1, j2) = 0, l = 0, . . . , k − 1,

where in the above sum 0 ≤ j1 ≤ nr + s, 0 ≤ j2 ≤ s. In the range of this
sum, we have therefore that j1 is of the form ri + s − j for j = j2 = 0, . . . , s
and i = 0, . . . , n. This is equivalent to constructing an auxiliary polynomial
of the form

(5.6) Q(x, y) =
s∑
j=0

Aj(xr)xs−jyj ,

where the Aj(x) are polynomials of degree at most n, such that Q(x, 1) van-
ishes to order k at x = 1.

The auxiliary construction of [7] (with the parameter l = 1 of that paper)
has the form (5.6) with k < (s + 1)(n + 1), and with the coefficients of
the polynomials Aj rational numbers (which will in general have controlled
denominators in what follows). The condition that Q(x, 1) vanish to order k <
(n+1)(s+1) at x = 1 is equivalent to the construction of a Padé approximation
to the algebraic function (1− z)1/r. Indeed, there is a polynomial H(x) such
that

(5.7) Q(x, 1) = (1− x)kH(x).

Consider the multivalued function u(z) = (1 − z)1/r. We have (after an
appropriate choice of branch) a formal power series expansion of u(z) around
z = 0, convergent in the disc |z| < 1, as follows:

(5.8) u(z) = 1 +
∞∑
i=1

(−1)i
(

1/r
i

)
zi.

Substituting x = u(z) into (5.6), we have

Q(u(z), 1) =
( ∞∑
i=1

(−1)i+1

(
1/r
i

)
zi
)k
H
(
u(z)

)
,

which is divisible by zk in C[[z]]. That is, the formal power series Q(u(z), 1)
converges in the disc |z| < 1 and has a zero of order k at z = 0. Setting
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Bj(z) = Aj(1− z), we have a Padé approximation for (1− z)1/r,

(5.9) R(z) := Q(u(z), 1) =
s∑
j=0

Bj(z)u(z)s−j .

Conversely, suppose that we have a solution to the Padé approximation
problem as in (5.9). Then,

1
l!
dl

dzl

(
s∑
j=0

Bj(z)u(z)s−j
)∣∣∣∣∣

z=0

= 0, l = 0, . . . , k − 1,

which implies, on changing variables to x = u(z),

1
l!

(
1

rxr−1

d

dx

)l( s∑
j=0

Aj(xr)xs−j
)∣∣∣∣∣

x=1

= 0, l = 0, . . . , k − 1.

This gives back inductively the system,

1
l!
dl

dxl

(
s∑
j=0

Aj(xr)xs−j
)∣∣∣∣∣

x=1

= 0, l = 0, . . . , k − 1.

We understand the almost perfect situation, corresponding to the case k =
(n+ 1)(s+ 1)− 1, for the above Padé approximation problem. The functions
(1 − z)j/r for j = 0, . . . , s are normal at (n, n, . . . , n) ∈ Zs+1 and, up to a
constant, the remainder function R(z) is uniquely determined as
(5.10)

R(z) =
s∑
j=0

Bj(z)(1−z)
s−j
r =

1
2πi

∫
C

s∏
j=0

n∏
l=0

(
ζ −

(
s− j
r

)
− l
)−1

(1−z)ζdζ,

where C is a closed contour containing all the ( s−jr ) + l, j = 0, . . . , s. By
multiplication by a suitable constant, we can take the above expression to
have the form (see [3, §3]) used by Mahler

R(z) = R(z, n) =
s∑
j=0

rj(z, n)(1− z)(s−j)/r,

where

rj(z, n) = (−1)(n+1)(s+1)−1(n!)s
n∑
l=0

(1− z)l
s∏

h6=j

n∏
h′ 6=l

(
j − h
r

+ (l − h′)
)−1

.

Now with k = (s+ 1)(n+ 1)− 1, let

Rh(z, n) =
s∑
j=0

Bhj(z)(1− z)
s−j
r

be the solution of the almost perfect Padé approximation problem, deg(Bhj) ≤
n for h 6= j and deg(Bhh) ≤ (n + 1). We use the same normalisation of the
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Bhj as in [3, §3], but instead of the notation Aij(z, r) we use Bhj(z), and
instead of the parameters m, n, r we use, respectively, s+ 1, r, n+ 1. Mahler
[15] showed that there is an explicit non-zero constant λr,n,s such that

(5.11) det
(
Bhj(z)

)
h,j=0,...,s

= λr,n,sz
(n+1)(s+1).

Let Ahj(z) = Bhj(1 − z), h, j = 0, . . . , s. Then we see from (5.11) that, if
a 6= 1, then

(5.12) det
(
Bhj(1− a)

)
h,j=0,...,s

= det
(
Ahj(a)

)
h,j=0,...,s

6= 0.

For h = 0, . . . , s, let

Qh(x, y) =
s∑
j=0

Ahj(xr)xs−jyj .

From (5.12) we deduce that, for some h ∈ {0, . . . , s}, we have

β = βh = α−sQh(α, α′) =
s∑
j=0

Ahj(a)γ−j 6= 0.

We then apply the product formula to β ∈ K, that is∑
w∈MK

log |β|w = 0,

estimating log |β|w in a trivial way when w 6= v, and using a two-variable
Taylor expansion when w = v. This represents a departure from the method
of [3].

For every w 6= v we have

log |β|w ≤ (n+ 1) log+ |a|w + s log+ |1/γ|w + max
j

log |Ahj |w,

where |Ahj |w is the maximum of the w-adic valuations of the coefficients of
Ahj . If instead w = v, we have |α − 1|v < 1 and we may assume that also
|α′ − 1|v < 1. The Taylor series of Qh(x, y) with center (1, 1) has rational
coefficients because Qh(x, y) ∈ Q[x, y]. The divided differentiation occasioned
by the Taylor expansion introduces no new denominators into the coefficients
of the Ahj . Moreover, by construction, the polynomial Qh(x, 1) has a zero of
order at least (s+ 1)(n+ 1) at x = 1. Therefore,

log |β|v = |α−sQh(α, α′)|v

≤ max
(
|α− 1|(s+1)(n+1)

v , |α′ − 1|v
)

+ max
j

log |Ahj |v.

Combining these estimates with the product formula we find

min((s+ 1)(n+ 1)Λ,Λ′) ≤ (n+ 1)h(a) + sh(γ) + max
j
h(Ajh),
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where Λ ≤ log(1/|α − 1|v) and Λ′ ≤ log(1/|α′ − 1|v). Now, as Ahj(z) =
Bhj(1− z), we have

h(Ahj) ≤ h(Bhj) + (n+ 1) log 2 + log(n+ 1).

Therefore,

min((s+ 1)(n+ 1)Λ,Λ′)

< (n+ 1)h(a) + (s+ 1)h(γ) + max
j
h(Bhj) + (n+ 1) log 2 + log(n+ 1).

So finally we have the following result.

Theorem 5.1 (Almost-Perfect Thue-Siegel Lemma). Suppose that, for
Λ ≤ log(1/|α− 1|v), we have

Λ ≥ h(a)
s+ 1

+
h(γ)
n+ 1

+
1

(s+ 1)(n+ 1)

(
max
j
h(Bhj) + (n+ 1) log 2 + log(n+ 1)

)
.

Then
log(1/|α′ − 1|v) ≤ (s+ 1)(n+ 1)Λ .

In order to apply this lemma, it is therefore crucial to have a good bound
for maxj h(Bhj), which is precisely one of the major preoccupations of [3].
Inspection of the estimates of that paper show, in particular, that the ap-
plicability of the Almost-Perfect Thue-Siegel Lemma above is governed by
the contribution to maxj h(Bhj) of the denominators of the coefficients of the
Bhj . These are bounded in turn by numbers ∆s+1,r,n+1, studied in [3] where,
following [12], estimates are obtained for the limit

Chrs+1
r := lim sup

n→∞

1
n

log ∆s+1,r,n+1.

Unfortunately, the upper bounds for the Chrs+1
r calculated in [3] and indeed

even the conjectured bounds of §3 of that paper are not of a quality which
seems readily exploitable for an application of the Almost-Perfect Thue-Siegel
Lemma. This problem can be avoided by requiring vanishing to smaller order
than the nominal (n+ 1)(s+ 1)− 1 in (5.2), however, at the expense of deal-
ing with a vector space of equivariant auxiliary functions (5.1) of dimension
greater than 1. This is the less than almost-perfect situation of the method
applied in [7].

6. An estimate for the height of the auxiliary construction

In this section we use an estimate for the height h(P ) of the auxiliary
construction P to derive from the Thue-Siegel Lemma of §4 an effective irra-
tionality measure for α under the assumption (A.2). This estimate for h(P ) is
certainly not the best possible and indeed it is hoped that the methods being
developed in [18] will indicate how to obtain better results. Nonetheless, it
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leads to a result (subject to (A.2)) which compares well with the best known
results to date using linear forms in logarithms. The vanishing condition for
P at the points (ε, ε), εr = 1, required by the Box Principle Lemma of §3
leads to a linear system whose solution space over Q is the space of solutions
of the matrix equation

A~x = ~0,

where ~x is in Q(N1+1)(N2+1) and

A =
((

u
i1

)(
v
i2

)
εu−i1h εv−i2h

)
.

Here, the columns of A are indexed by (u, v) with 0 ≤ u ≤ N1 and 0 ≤ v ≤ N2

and so are C = (N1 + 1)(N2 + 1) in number. The R rows of A are indexed
by (i1, i2, h), where h = 1, . . . , r indexes the r-th roots εh of unity and where
(i1, i2) are the solutions to

i1
θ1N1

+
i2

θ2N2
< 1.

We have R = rTN1N2 + O
(
max(N1, N2)

)
and by the hypothesis of the Box

Principle Lemma we have R < C. The linear system defined byA is equivalent
to a linear system defined over Q (see [4], proof of Lemma 1). Let V be the
vector subspace of Q(N1+1)(N2+1) generated over Q by the solution space to
this linear system. It has dimension C − S where S = rank(A). Equation
1.11 of Theorem 2 and Corollary 6 in [16] give directly the following estimate
for the height H(V) of V (as defined in [10]):

(6.1) logH(V) ≤ rTN1N2

{
N1 ·

1
3
θ1

(
log(1/4θ1

)
+

11
18

)
+N2 ·

1
3
θ2

(
log(1/4θ2) +

11
18

)}
.

By [10, Th. 9] we know that there is a basis B of V in ZC−S with

(6.2)
∏
~x∈B

H(~x) ≤ H(V),

where H(~x) is just the maximum of the absolute values of the components
of ~x. Hence, there is a polynomial P satisfying the requirements of the Box
Principle Lemma with
(6.3)

h(P ) ≤ rT

1− rT

{
N1 ·

1
3
θ1

(
log(1/4θ1) +

11
18

)
+N2 ·

1
3
θ2

(
log(1/4θ2) +

11
18

)}
We have shown the following theorem.
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Theorem 6.1 (Siegel’s Lemma). There is a polynomial P = P (x, y) sat-
isfying the requirements of the Box Principle Lemma and with h(P ) bounded
above as in (2.2) for

(6.4) li =
rT

1− rT

{
1
3
θi

(
log(1/4θi) +

11
18

)}
, i = 1, 2.

We now put this estimate for h(P ) into the Thue-Siegel Lemma of §4. Let
X = rT = 1 − δ/2, and suppose that 0 < X < 1/2. We then set µ = 2/θ2,
so that θ1 = 2X/rθ2 = Xµ/r. For (4.9) of the Thue-Siegel Lemma to be
satisfied we must have

(6.5) Λ ≥ 2X
1−X

(
1
3

log
(

r

4Xµ

)
+

11
54

)
+

2h(a)
Xµ

.

By inspection of the above inequality, as we may suppose that r > µ, we see
that (6.5) follows from the two conditions

(6.6)
X

1−X

(
1
3

log
(

r

4Xµ

)
+

11
54

)
≤ 1

4
Λ , h(a) ≤ 1

4
ΛXµ .

There is an appropriate constant c6 > 0 such that the first inequality in
(6.6), is fulfilled with

(2− δ) = 2X = c6(D∗v)−2(log(
r

µ
) + 1)−1,

where 1/D∗v = min(1, fv log p/d), and d is the degree of K over Q. We have
used Lemma 1 of [6] which remarks that we always have Λ ≥ fv log p/d.
There is an absolute constant c7 > 0 such that the second inequality in (6.6)
is satisfied once

µ ≥ c7h(a)(D∗v)3

(
log
(
r

µ

)
+ 1
)
.

For l2 we have the expression

l2 =
X

1−X

(
1
3

2
µ

log
(µ

8

)
+

11
54

)
,

which is bounded by an absolute constant once µ is itself larger than some
absolute constant.

We have proved the following theorem.

Theorem 6.2 (Theorem 2). Let P ∈ Z[x, y] be as in Siegel’s Lemma and
suppose it satisfies (A.2). Then, there are effective positive absolute constants
c1 and c2 such that if 0 < κ < 1 and

(6.7) r ≥ c1(D∗v)3κ−1(log(κ−1) + 1)h(a)

and

(6.8) h(α′) ≥ c2,
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we have

|α′ − 1|v ≥ H(α′)−κr.

7. Determinants and ideal height estimates

The paper [8] discusses attempts to predict best ideal estimates for the
asymptotic quantities l1(P ) and l2(P ) as defined in (2.2) for P a polynomial
with vanishing much as in the Box Principle Lemma and satisfying (A.2).
Specifically, let α1, α2 be generators of some algebraic number field of degree
r over Q. In the first instance, the vanishing demanded is at the r conjugates
of the point (α1, α2). However, the authors note (see [5] for general principles,
and [9] for details of the cubic case) that in the case r = 3, and in the case
α1 = r√a1, α2 = r√a2, each an r-th root of some rational, it suffices to
construct an ‘invariant’ P independent of the particular generators. In the
cubic case, r = 3, the polynomial P must vanish at the three points (0, 0),
(1, 1) and (∞,∞); in the r-th root case, P is to vanish at the r points (ε, ε)
with εr = 1.

It seems best to illustrate the state of play as regards the construction of
those invariant polynomials P by sketching some examples.

Consider the simultaneous approximation problem of constructing polyno-
mials A0, . . . , Am satisfying degAj < ρj , with ρ0 + · · ·+ ρm = σ, so that

R(z) = A0(z)(1− z)α0 +A1(z)(1− z)α1 + · · ·+Am(z)(1− z)αm = O(zσ−1) .

These are σ − 1 equations in σ unknowns. On adding the normalisation
R(σ−1)(z) = 1, say, one could endeavour to solve this problem professionally
by the Bombieri–Vaaler Siegel Lemma [10], or näıvely by Cramer’s rule for
systems of linear equations. One discovers, of course not just fortuitously,
that the determinants one is led to study are the same. Nonetheless, the first
principles viewpoint encourages one to rewrite R(z) as

∑m
i=0

∑ρi
h=1 aih(1 −

z)αi+h−1 and to determine the coefficients aih. Cramer’s rule now tells us
that each coefficient aih is the quotient ∆ih/∆ of two determinants. Here
the σ × σ ‘master’ determinant ∆ has entry

(
αi+h−1
j−1

)
in its j-th row and

(i, h)-th column. ∆ih is ∆ with its (i, h)-th column replaced by the column
[0, 0, . . . , 0, 1].

There is modern literature on evaluating recalcitrant determinants, very
usefully summarised in [13]. Among the many valuable principles [13] rec-
ommends to the reader is the advice that ‘the more parameters the better’.
That’s why our example, which is no more than a generalisation of the Padé
approximation problem (5.10), has its present frills.

Indeed, it is plain that ∆ vanishes whenever two of the quantities αi+h−1
and α′i + h′ − 1 — with the pair (i, h) different from (i′, h′) — happen to
coincide. It follows that, with a lexicographic ordering on the pairs, the
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difference product

(7.1)
∏

(i,h)<(i′,h′)

(
(αi + h− 1)− (α′i + h′ − 1)

)
divides ∆. But it is easy to check that both this product, and the determinant
∆, has degree ρi(σ − ρi) in each αi, and is of total degree 1

2 (σ2 −
∑m
i=0 ρ

2
i )

in the α’s. Plainly therefore, (7.1) gives ∆ up to an easily evaluated constant
multiplier.

It is now relatively straightforward to see which difference factors are re-
spectively missing from each ∆ih and to rediscover the formulas given by the
integrals of §5.

The above evaluation is trivial. ∆ is just a Vandermonde determinant in
very slight disguise. However, let

R(x, y) = A0(x)(1− x)α0 +A1(x)(1− x)α1y + · · ·+Am(x)(1− x)αmym .

Then the simultaneous Padé approximation problem

R(x, 1) = O(xτ0) ,
...

Ryl(x, 1) =
∂l

∂yl
R(x, y)

∣∣
y=1

= O(xτl),

...

say, with
∑
τl = σ − 1, is rather less penetrable.

It happens that the case αk = kα, for each k, is an appropriate spe-
cialisation. Denote the σ × σ determinant of this system by M(α), and its
determinant by ∆(α). With α = a, a positive integer, R(x, y) is a polynomial
in x and y.

Specifically, degRyl(x, 1) = maxl≤k≤m ka + ρk. If this is less than τl − 1
for one or more l = 0, 1, . . . , the approximation problem has redundant
constraints and its master matrix M(α) is of rank less than σ for α = a. Say
its rank is σ − t. Then the master determinant ∆(α) = det

(
M(α)

)
has a

factor (α − a)t. One can similarly discover factors α + a by putting α = −a
and considering the degree maxl≤k≤m(ρk + (m− k)a) of (1− x)maRyl(x, 1).

Perhaps surprisingly, the cubic case also gives rise to a Padé approximation
problem of the present shape (see [17, §7] or [18]); that is, just as that of the
r-th root case. This is applied in [18], where both the conjectured evaluations
of [8, §5] are established. Krattenthaler and Zeilberger [14] had already proved
the second of those conjectures. They introduce a parameter into the deter-
minant and then carefully manipulate the determinant to discover its factors.
In contrast, [18], though strongly guided by [14], views the determinants as
belonging to Padé approximation problems.
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That motivates the introduction of apparently natural parameters, which,
once specialised to functions of a single parameter α, allows factors of the
determinant to be discovered by way of blatant reduction in its row or column
rank.

The particular specialisation αk = kα seems to be ‘appropriate’ for the
following reason. For each l the conditions Ryl(x, 1) = O(xτl) are the same as

(1− x)−lαRyl(x, 1) = O(xτl) .

Now differentiate these conditions with respect to α and then divide by log(1−
x). Remarkably, we obtain conditions equivalent to

Ryl+1(x, 1) = O(xτl−1) .

In this way one discovers yet additional multiplicity of already discovered
factors of ∆(α), allowing it to be completely evaluated, at any rate in the
two cases studied in detail in [18]. Careful consideration of the phenomenon
suggests always choosing αk = kα+ ck, for some constants ck. A conjecture,
mildly supported by experiment, to the effect that the determinants take
values ‘of a combinatorial nature’ further suggests that one can then succeed
in evaluating the master determinant ∆(α) by the techniques applied in [18].

However, a successful application of these ideas seems at the least to require
that the parameter N2 of §5, thus m of the present remarks, be allowed to be
arbitrarily large. The work [18] struggles to detail the general case m = 2.
It does indeed deal with a special case of general m, but so special that that
case is actually that of arbitrary powers of the case m = 1.
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