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UNIQUENESS THEOREMS FOR p-ADIC HOLOMORPHIC
CURVES

MIN RU

1. Introduction

It is well known that two non-constant polynomials f and g over an alge-
braically closed field of characteristic zero are identical if there exist two dis-
tinct values a and b such that f(x) = a⇔ g(x) = a and f(x) = b⇔ g(x) = b.
In 1926, R. Nevanlinna [Ne] extended this result to meromorphic functions by
showing that two non-constant meromorphic functions of a complex variable
which attain five distinct values at the same points must be identical.

It has been observed that p-adic entire functions behave in many ways more
like polynomials than like entire functions of a complex variable. Confirming
this observation, W.W. Adams and E.G. Straus [AS] proved the following
result.

Theorem A. Let f and g be two non-constant p-adic entire functions so
that for two distinct (finite) values a and b we have f(x) = a⇔ g(x) = a and
f(x) = b⇔ g(x) = b. Then f ≡ g.

For p-adic meromorphic functions, Adams and Straus obtained the follow-
ing result, which is an analog of Nevanlinna’s result.

Theorem B. Let f and g be two non-constant p-adic meromorphic func-
tions so that there exist four distinct values a1, a2, a3, and a4, such that
f(x) = ai ⇔ g(x) = ai for i = 1, 2, 3, 4. Then f ≡ g.

The aim of this paper is to extend Theorem B to p-adic holomorphic curves
in projective spaces.
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2. Uniqueness problems without counting multiplicity

Before we state our theorems, we recall some definitions and known results.
Let p be a prime number, and let | |p be the standard p-adic valuation on Q
normalized so that |p|p = p−1. Let Qp be the completion of Q with respect to
this valuation, and let Cp be the completion of the algebraic closure of Qp. As
is well known, Cp is algebraically closed. For simplicity, we denote the p-adic
norm | |p on Cp by | |. We note that the results of this paper also hold for a
general complete, algebraically closed non-Archimedean field of characteristic
zero.

It is known that an infinite sum converges in a non-Archimedean norm if
and only if its general term approaches zero. Thus a function of the form

h(z) =
∞∑
n=0

anz
n, an ∈ Cp

is well defined whenever

|anzn| → 0 as n→∞.

Functions of this type are called p-adic analytic functions. If h is analytic on
Cp, then h is called a p-adic entire function. Let

h(z) =
∞∑
n=0

anz
n, an ∈ Cp

be a p-adic analytic function on |z| < R. For 0 < r < R, define Mh(r) =
max|z|=r |h(z)|. We have the following lemma (see [AS]).

Lemma 2.1. The following statements hold:
(1) We have Mh(r) = maxn≥0 |an|rn.
(2) The maximum on the right of (1) is attained for a unique value of

n except for a discrete sequence of values {rν} in the open interval
(0, R).

(3) If r 6∈ {rν} and |z| = r < R, then |h(z)| = Mh(r).
(4) If h is a non-constant p-adic entire function, then Mh(r) → ∞ as

r →∞.
(5) We have Mh′(r) ≤Mh(r)/r (r > 0).
(6) We have Mfg(r) = Mf (r)Mg(r) for any analytic functions f and g,

A p-adic holomorphic curve f is a map f = [f0 : · · · : fn] : Cp → P
n(Cp),

where f0, . . . , fn are p-adic entire functions without common zeros. The map
f = (f0, · · · , fn) : Cp → C

n+1
p − {0} is called a reduced representation of

f . The p-adic holomorphic curve f : Cp → P
n(Cp) is said to be linearly

non-degenerate if f(Cp) is not contained in any proper subspace of Pn(Cp).
Hyperplanes H1, . . . ,Hq in Pn(Cp) are said to be in general position if any
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n + 1 of them are linearly independent. The following theorem generalizes
Theorem B.

Theorem 2.1. Let f1, f2, . . . , fλ : Cp → P
n(Cp) be linearly non-degenerate

p-adic holomorphic curves. Denote by fi a reduced representation of fi for 1 ≤
i ≤ λ. Let H1, . . . ,Hq be hyperplanes in Pn(Cp) located in general position,
and assume that f−1

1 (Hj) = · · · = f−1
λ (Hj). Let Dj = f−1

1 (Hj), D = ∪qj=1Dj,
and assume that for i 6= j, Di ∩Dj = ∅. Let l ∈ {2, 3, . . . , λ} be the minimal
index such that for any increasing sequence 1 ≤ j1 < j2 < · · · < jl ≤ λ, we
have fj1(z)∧ · · ·∧ fjl(z) = 0 for every point z ∈ D, where ∧ is the usual wedge
product, and suppose that q ≥ λn

λ−l+1 +n+ 1. Then f1, . . . fλ are algebraically
dependent over Cp, i.e., f1(z) ∧ · · · ∧ fλ(z) ≡ 0 on Cp.

In the case of λ = 2, Theorem 2.1 gives the following result:

Theorem 2.2. Let f, g : Cp → P
n(Cp) be two p-adic linearly non-degene-

rate holomorphic curves. Let H1, . . . ,H3n+1 be hyperplanes in Pn(Cp) located
in general position. Assume that f−1(Hj) = g−1(Hj) for 1 ≤ j ≤ 3n + 1
and that f−1(Hi) ∩ f−1(Hj) = ∅ for i 6= j. If f(z) = g(z) for every point
z ∈ ∪qj=1f

−1(Hj), then f ≡ g.

We will first give a proof of Theorem 2.2, and then outline the proof of
Theorem 2.1.

Proof of Theorem 2.2. Let f , g : Cp → C
n+1
p − {0} be the reduced repre-

sentations of f and g, and write f = (f0, . . . , fn), g = (g0, . . . , gn). Let

Hj = {w = [w0 : . . . : wn] ∈ Pn(Cp) : aj0w0 + · · ·+ ajnwn = 0}, 1 ≤ j ≤ q,
and set Lj(X) = aj0x0 + · · · + ajnxn, where X = (x0, . . . , xn) and Lj is the
corresponding linear form of Hj .

Without loss of generality, we can assume that there exists a sequence
zk ∈ Cp such that rk = |zk| → ∞, rk 6∈ {rν}, where the set {rν} is the discrete
set appearing in part (2) of Lemma 2.1, Lj(f)(zk) 6= 0 for 1 ≤ j ≤ 3n+ 1, and

(2.1) |f0(zk)| ≥ max
0≤i≤n

{|fi(zk)|, |gi(zk)|}.

Define

Ψ =
W (f0, . . . , fn) · (f0g1 − f1g0)n∏3n+1

j=1 Lj(f)
,

where W (f0, . . . , fn) is the Wronskian of f0, . . . , fn. Since f is linearly non-
degenerate, we have W (f0, . . . , fn) 6≡ 0. We first show that Ψ is p-adic entire.
In fact, since the sets f−1(Hi) are disjoint, each point z ∈ ∪3n+1

j=1 f−1(Hj) satis-
fies z ∈ f−1(Hi0) for some i0 with 1 ≤ i0 ≤ 3n+1, and z 6∈ f−1(Hj) for j 6= i0.
Hence Lj(f)(z) 6= 0 when j 6= i0. Assume that Li0(f) vanishes at z with van-
ishing order m. Then, since W (f0, . . . , fn) = a−1

i00W (Li0(f), f1, . . . , fn) (where
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we assume, without of generality, that ai00 6= 0), W (f0, . . . , fn) vanishes at
z with order at least m − n. On the other hand, by assumption we have
f(z) = g(z), so (f ∧ g)(z) = 0. Thus, (f0g1 − f1g0)n vanishes at z with order
at least n. Hence, by the definition of Ψ, Ψ is continuous at z, so Ψ is p-adic
entire.

Now, for each fixed zk, by rearranging the indices we may assume that

|L1(f)(zk)| ≤ |L2(f)(zk)| ≤ · · · ≤ |L3n+1(f)(zk)|.

Solving the system of linear equations

Lj(f)(zk) = aj0f0(zk) + · · ·+ ajnfn(zk), 1 ≤ j ≤ n+ 1,

we obtain

|f0(zk)| ≤ B|Ln+1(f)(zk)| ≤ · · · ≤ B|L3n+1(f)(zk)|,

where B > 0 is a constant independent of zk. Hence

(2.2)

|Ψ(zk)| = |W (f0, . . . , fn)(zk)||(f0g1 − f1g0)(zk)|n

|
∏3n+1
j=1 Lj(f)(zk)|

≤ B2n|W (f0, . . . , fn)(zk)||(f0g1 − f1g0)(zk)|n

|L1(f)(zk)| · · · |Ln+1(f)(zk)||f0(zk)|2n
.

By Lemma 2.1,

M (Lj(f))′

Lj(f)

(r) ≤ 1
r
.

Since for 1 ≤ i ≤ n,

(Lj(f))(i)

Lj(f)
=

(Lj(f))(i)

(Lj(f))(i−1)
· · · (Lj(f))′

Lj(f)
,

it follows that

M(Lj(f))(i)/Lj(f)(r) ≤
1
ri
,

and hence

(2.3)
∣∣∣∣ (Lj(f))(i)

Lj(f)
(zk)

∣∣∣∣ ≤ 1
|zk|i

.

By the properties of the Wronskian and the assumption that the hyperplanes
are in general position, we have

(2.4)
|W (f0, . . . , fn)(zk)|

|L1(f)(zk)| · · · |Ln+1(f)(zk)|
=
C|W (L1(f , . . . , Ln+1(f))(zk)|
|L1(f)(zk)| · · · |Ln+1(f)(zk)|

,
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where C > 0 is a constant. By the properties of the p-adic norm and (2.3),
we have

(2.5)

|W (L1(f)(zk), . . . , Ln+1(f)(zk)|
|L1(f)(zk)| · · · |Ln+1(f)(zk)|

≤ max
i1+···+in+1=n

∣∣∣∣ (L1(f))(i1)

L1(f)
(zk)

∣∣∣∣ · · · ∣∣∣∣ (Ln+1(f))(in+1)

Ln+1(f)
(zk)

∣∣∣∣
≤ 1
|zk|n

.

On the other hand, by (2.1) and the properties of the p-adic norm, we also
have

(2.6) |(f0g1 − f1g0)n(zk)| ≤ |f0(zk)|2n.
Combining (2.2), (2.4), (2.5) and (2.6) yields

|Ψ(zk)| ≤ B2nC

|zk|n
→ 0 as k →∞,

where B > 0 and C > 0 are two constants which depend only on the hyper-
planes. This implies that Ψ ≡ 0. Hence

g1

g0
≡ f1

f0
.

Similarly, we can prove that, for 1 ≤ i ≤ n,
gi
g0
≡ fi
f0
.

So f ≡ g. This completes the proof of Theorem 2.2. �

Proof of Theorem 2.1. Let fλ = (fλ,0, . . . , fλ,n) be the reduced represen-
tation of fλ. Without loss of generality, we can assume that there exists a
sequence zk ∈ Cp such that rk = |zk| → ∞, Lj(f1)(zk) 6= 0 for 1 ≤ j ≤ 3n+ 1
and

|f1,0(zk)| ≥ max
0≤i≤n,1≤t≤λ

{|ft,i(zk)|}.

Assume that f1, . . . fλ are not algebraically dependent over Cp, i.e., f1 ∧ · · · ∧
fλ 6≡ 0. Take a non-trivial component h(z) of f1 ∧ · · · ∧ fλ and set

Φ =
W (f1,0, . . . , f1,n) · h(z)

n
λ−l+1∏q

j=1 Lj(f1)
,

where q ≥ nλ
λ−l+1 + n + 1. Let Ψ = Φλ−l+1. We now show that Ψ is p-adic

entire. In fact, since Di ∩ Dj = ∅ for i 6= j, each point z ∈ D = ∪qj=1Dj

satisfies z ∈ f−1
1 (Hi0) for some i0 with 1 ≤ i0 ≤ q, and z 6∈ f−1

1 (Hj) for
j 6= i0. Thus, Lj(f1)(z) 6= 0 when j 6= i0. Assume that Li0(f) vanishes at z
with vanishing order m. Then W (f1,0, . . . , f1,n) vanishes at z with order at
least m − n. On the other hand, it is easy to verify, using the assumptions
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of Theorem 2.1, that for any z ∈ D, |h(z)|
n

λ−l+1 vanishes at z with vanishing
order at least n. Therefore Ψ is continuous at z, and hence Ψ is p-adic entire.
The rest of proof follows that of Theorem 2.2. �

3. Uniqueness problems counting multiplicity

The results in Section 2 are concerned with uniqueness problems without
counting multiplicity. In this section we consider the uniqueness problem
counting multiplicity. In this case, the result is simple and elegant:

Theorem 3.1. Let f, g : Cp → P
n(Cp) be two p-adic holomorphic curves,

at least one of which is linearly non-degenerate. Let H1, . . . ,Hn+2 be hy-
perplanes in Pn(Cp) located in general position such that f(Cp) 6⊂ Hj and
g(Cp) 6⊂ Hj for 1 ≤ j ≤ n+ 2. Denote by Lj the linear form associated with
Hj, and assume that Lj(f)/Lj(g), 1 ≤ j ≤ n + 2, is non-vanishing on Cp
(i.e., that Lj(f) and Lj(g) vanish at the same points with the same vanishing
order). Then f ≡ g.

Proof. Without loss of generality, we can assume that g is linearly non-
degenerate. We recall the fact that any non-vanishing p-adic entire function
must be constant (see [R1]). Consider the functions

hj =
Lj(f)
Lj(g)

, 1 ≤ j ≤ n+ 2.

Each hj is a non-vanishing p-adic entire function, so hj = cj , where cj is
constant. Without loss of generality, we may assume that the hyperplanes Hj

are represented by

Hj = {w = [w0 : · · · : wn] ∈ Pn(Cp) | wj−1 = 0}, 1 ≤ j ≤ n+ 1

and
Hn+2 = {w = [w0 : · · · : wn] ∈ Pn(Cp) | w0 + · · ·+ wn = 0}.

Thus we can write cn+1(g0 + · · ·+ gn) = f0 + · · ·+ fn, and hence

(cn+1 − c0)g0 + · · ·+ (cn+1 − cn)gn = 0.

By the linear-nondegeneracy condition, this implies c0 = c1 = · · · = cn+1.
Hence f ≡ g.

�
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