UNIQUENESS THEOREMS FOR p-ADIC HOLOMORPHIC CURVES

MIN RU

1. Introduction

It is well known that two non-constant polynomials f and g over an algebraically closed field of characteristic zero are identical if there exist two distinct values a and b such that $f(x) = a \Leftrightarrow g(x) = a$ and $f(x) = b \Leftrightarrow g(x) = b$. In 1926, R. Nevanlinna [Ne] extended this result to meromorphic functions by showing that two non-constant meromorphic functions of a complex variable which attain five distinct values at the same points must be identical.

It has been observed that p-adic entire functions behave in many ways more like polynomials than like entire functions of a complex variable. Confirming this observation, W.W. Adams and E.G. Straus [AS] proved the following result.

THEOREM A. Let f and g be two non-constant p-adic entire functions so that for two distinct (finite) values a and b we have $f(x) = a \Leftrightarrow g(x) = a$ and $f(x) = b \Leftrightarrow g(x) = b$. Then $f \equiv g$.

For p-adic meromorphic functions, Adams and Straus obtained the following result, which is an analog of Nevanlinna's result.

THEOREM B. Let f and g be two non-constant p-adic meromorphic functions so that there exist four distinct values a_1, a_2, a_3 , and a_4 , such that $f(x) = a_i \Leftrightarrow g(x) = a_i$ for i = 1, 2, 3, 4. Then $f \equiv g$.

The aim of this paper is to extend Theorem B to p-adic holomorphic curves in projective spaces.

Received December 10, 1999; received in final form June 16, 2000.

²⁰⁰⁰ Mathematics Subject Classification. Primary 11J99. Secondary 32H30.

The author is supported in part by NSF grant DMS-9800361 and by NSA grant MDA904-01-1-0051. The United State Government is authorized to reproduce and distribute reprints notwithstanding any copyright notation herein.

488 MIN RU

2. Uniqueness problems without counting multiplicity

Before we state our theorems, we recall some definitions and known results. Let p be a prime number, and let $| \cdot |_p$ be the standard p-adic valuation on \mathbb{Q} normalized so that $|p|_p = p^{-1}$. Let \mathbb{Q}_p be the completion of \mathbb{Q} with respect to this valuation, and let \mathbb{C}_p be the completion of the algebraic closure of \mathbb{Q}_p . As is well known, \mathbb{C}_p is algebraically closed. For simplicity, we denote the p-adic norm $| \cdot |_p$ on \mathbb{C}_p by $| \cdot |$. We note that the results of this paper also hold for a general complete, algebraically closed non-Archimedean field of characteristic zero.

It is known that an infinite sum converges in a non-Archimedean norm if and only if its general term approaches zero. Thus a function of the form

$$h(z) = \sum_{n=0}^{\infty} a_n z^n, \ a_n \in \mathbb{C}_p$$

is well defined whenever

$$|a_n z^n| \to 0 \text{ as } n \to \infty.$$

Functions of this type are called *p-adic analytic functions*. If h is analytic on \mathbb{C}_p , then h is called a *p*-adic entire function. Let

$$h(z) = \sum_{n=0}^{\infty} a_n z^n, \ a_n \in \mathbb{C}_p$$

be a p-adic analytic function on |z| < R. For 0 < r < R, define $M_h(r) = \max_{|z|=r} |h(z)|$. We have the following lemma (see [AS]).

Lemma 2.1. The following statements hold:

- (1) We have $M_h(r) = \max_{n>0} |a_n| r^n$.
- (2) The maximum on the right of (1) is attained for a unique value of n except for a discrete sequence of values $\{r_{\nu}\}$ in the open interval (0, R).
- (3) If $r \notin \{r_{\nu}\}$ and |z| = r < R, then $|h(z)| = M_h(r)$.
- (4) If h is a non-constant p-adic entire function, then $M_h(r) \to \infty$ as $r \to \infty$.
- (5) We have $M_{h'}(r) \leq M_h(r)/r \ (r > 0)$.
- (6) We have $M_{fg}(r) = M_f(r)M_g(r)$ for any analytic functions f and g,

A p-adic holomorphic curve f is a map $f = [f_0 : \cdots : f_n] : \mathbb{C}_p \to \mathbb{P}^n(\mathbb{C}_p)$, where f_0, \ldots, f_n are p-adic entire functions without common zeros. The map $\mathbf{f} = (f_0, \cdots, f_n) : \mathbb{C}_p \to \mathbb{C}_p^{n+1} - \{0\}$ is called a reduced representation of f. The p-adic holomorphic curve $f : \mathbb{C}_p \to \mathbb{P}^n(\mathbb{C}_p)$ is said to be linearly non-degenerate if $f(\mathbb{C}_p)$ is not contained in any proper subspace of $\mathbb{P}^n(\mathbb{C}_p)$. Hyperplanes H_1, \ldots, H_q in $\mathbb{P}^n(\mathbb{C}_p)$ are said to be in general position if any

n+1 of them are linearly independent. The following theorem generalizes Theorem B.

THEOREM 2.1. Let $f_1, f_2, \ldots, f_{\lambda} : \mathbb{C}_p \to \mathbb{P}^n(\mathbb{C}_p)$ be linearly non-degenerate p-adic holomorphic curves. Denote by \mathbf{f}_i a reduced representation of f_i for $1 \leq i \leq \lambda$. Let H_1, \ldots, H_q be hyperplanes in $\mathbb{P}^n(\mathbb{C}_p)$ located in general position, and assume that $f_1^{-1}(H_j) = \cdots = f_{\lambda}^{-1}(H_j)$. Let $D_j = f_1^{-1}(H_j)$, $D = \cup_{j=1}^q D_j$, and assume that for $i \neq j$, $D_i \cap D_j = \emptyset$. Let $l \in \{2, 3, \ldots, \lambda\}$ be the minimal index such that for any increasing sequence $1 \leq j_1 < j_2 < \cdots < j_l \leq \lambda$, we have $\mathbf{f}_{j_1}(z) \wedge \cdots \wedge \mathbf{f}_{j_l}(z) = 0$ for every point $z \in D$, where \wedge is the usual wedge product, and suppose that $q \geq \frac{\lambda n}{\lambda - l + 1} + n + 1$. Then $f_1, \ldots f_{\lambda}$ are algebraically dependent over \mathbb{C}_p , i.e., $\mathbf{f}_1(z) \wedge \cdots \wedge \mathbf{f}_{\lambda}(z) \equiv 0$ on \mathbb{C}_p .

In the case of $\lambda = 2$, Theorem 2.1 gives the following result:

THEOREM 2.2. Let $f, g: \mathbb{C}_p \to \mathbb{P}^n(\mathbb{C}_p)$ be two p-adic linearly non-degenerate holomorphic curves. Let H_1, \ldots, H_{3n+1} be hyperplanes in $\mathbb{P}^n(\mathbb{C}_p)$ located in general position. Assume that $f^{-1}(H_j) = g^{-1}(H_j)$ for $1 \leq j \leq 3n+1$ and that $f^{-1}(H_i) \cap f^{-1}(H_j) = \emptyset$ for $i \neq j$. If f(z) = g(z) for every point $z \in \bigcup_{j=1}^q f^{-1}(H_j)$, then $f \equiv g$.

We will first give a proof of Theorem 2.2, and then outline the proof of Theorem 2.1.

Proof of Theorem 2.2. Let \mathbf{f} , $\mathbf{g}: \mathbb{C}_p \to \mathbb{C}_p^{n+1} - \{0\}$ be the reduced representations of f and g, and write $\mathbf{f} = (f_0, \dots, f_n)$, $\mathbf{g} = (g_0, \dots, g_n)$. Let

 $H_j = \{w = [w_0 : \ldots : w_n] \in \mathbb{P}^n(\mathbb{C}_p) : a_{j0}w_0 + \cdots + a_{jn}w_n = 0\}, \ 1 \leq j \leq q,$ and set $L_j(X) = a_{j0}x_0 + \cdots + a_{jn}x_n$, where $X = (x_0, \ldots, x_n)$ and L_j is the corresponding linear form of H_j .

Without loss of generality, we can assume that there exists a sequence $z_k \in \mathbb{C}_p$ such that $r_k = |z_k| \to \infty$, $r_k \notin \{r_\nu\}$, where the set $\{r_\nu\}$ is the discrete set appearing in part (2) of Lemma 2.1, $L_j(\mathbf{f})(z_k) \neq 0$ for $1 \leq j \leq 3n+1$, and

$$(2.1) |f_0(z_k)| \ge \max_{0 \le i \le n} \{|f_i(z_k)|, |g_i(z_k)|\}.$$

Define

$$\Psi = \frac{W(f_0, \dots, f_n) \cdot (f_0 g_1 - f_1 g_0)^n}{\prod_{j=1}^{3n+1} L_j(\mathbf{f})},$$

where $W(f_0,\ldots,f_n)$ is the Wronskian of f_0,\ldots,f_n . Since f is linearly nondegenerate, we have $W(f_0,\ldots,f_n)\not\equiv 0$. We first show that Ψ is p-adic entire. In fact, since the sets $f^{-1}(H_i)$ are disjoint, each point $z\in \cup_{j=1}^{3n+1}f^{-1}(H_j)$ satisfies $z\in f^{-1}(H_{i_0})$ for some i_0 with $1\leq i_0\leq 3n+1$, and $z\not\in f^{-1}(H_j)$ for $j\neq i_0$. Hence $L_j(\mathbf{f})(z)\neq 0$ when $j\neq i_0$. Assume that $L_{i_0}(\mathbf{f})$ vanishes at z with vanishing order m. Then, since $W(f_0,\ldots,f_n)=a_{i_0}^{-1}W(L_{i_0}(\mathbf{f}),f_1,\ldots,f_n)$ (where 490 MIN RU

we assume, without of generality, that $a_{i_00} \neq 0$, $W(f_0, \ldots, f_n)$ vanishes at z with order at least m-n. On the other hand, by assumption we have f(z) = g(z), so $(\mathbf{f} \wedge \mathbf{g})(z) = 0$. Thus, $(f_0g_1 - f_1g_0)^n$ vanishes at z with order at least n. Hence, by the definition of Ψ , Ψ is continuous at z, so Ψ is p-adic entire.

Now, for each fixed z_k , by rearranging the indices we may assume that

$$|L_1(\mathbf{f})(z_k)| \le |L_2(\mathbf{f})(z_k)| \le \dots \le |L_{3n+1}(\mathbf{f})(z_k)|.$$

Solving the system of linear equations

$$L_j(\mathbf{f})(z_k) = a_{j0}f_0(z_k) + \dots + a_{jn}f_n(z_k), \quad 1 \le j \le n+1,$$

we obtain

$$|f_0(z_k)| \le B|L_{n+1}(\mathbf{f})(z_k)| \le \dots \le B|L_{3n+1}(\mathbf{f})(z_k)|,$$

where B > 0 is a constant independent of z_k . Hence

(2.2)
$$|\Psi(z_k)| = \frac{|W(f_0, \dots, f_n)(z_k)| |(f_0g_1 - f_1g_0)(z_k)|^n}{|\prod_{j=1}^{3n+1} L_j(\mathbf{f})(z_k)|} \\ \leq \frac{B^{2n}|W(f_0, \dots, f_n)(z_k)| |(f_0g_1 - f_1g_0)(z_k)|^n}{|L_1(\mathbf{f})(z_k)| \cdots |L_{n+1}(\mathbf{f})(z_k)| |f_0(z_k)|^{2n}}.$$

By Lemma 2.1,

$$M_{\frac{(L_j(\mathbf{f}))'}{L_j(\mathbf{f})}}(r) \le \frac{1}{r}.$$

Since for $1 \le i \le n$,

$$\frac{(L_j(\mathbf{f}))^{(i)}}{L_j(\mathbf{f})} = \frac{(L_j(\mathbf{f}))^{(i)}}{(L_j(\mathbf{f}))^{(i-1)}} \cdots \frac{(L_j(\mathbf{f}))'}{L_j(\mathbf{f})},$$

it follows that

$$M_{(L_j(\mathbf{f}))^{(i)}/L_j(\mathbf{f})}(r) \le \frac{1}{r^i},$$

and hence

(2.3)
$$\left| \frac{(L_j(\mathbf{f}))^{(i)}}{L_j(\mathbf{f})} (z_k) \right| \le \frac{1}{|z_k|^i}.$$

By the properties of the Wronskian and the assumption that the hyperplanes are in general position, we have

(2.4)
$$\frac{|W(f_0,\ldots,f_n)(z_k)|}{|L_1(\mathbf{f})(z_k)|\cdots|L_{n+1}(\mathbf{f})(z_k)|} = \frac{C|W(L_1(\mathbf{f},\ldots,L_{n+1}(\mathbf{f}))(z_k)|}{|L_1(\mathbf{f})(z_k)|\cdots|L_{n+1}(\mathbf{f})(z_k)|},$$

where C > 0 is a constant. By the properties of the *p*-adic norm and (2.3), we have

$$(2.5) \qquad \frac{|W(L_{1}(\mathbf{f})(z_{k}), \dots, L_{n+1}(\mathbf{f})(z_{k})|}{|L_{1}(\mathbf{f})(z_{k})| \cdots |L_{n+1}(\mathbf{f})(z_{k})|} \\ \leq \max_{i_{1}+\dots+i_{n+1}=n} \left| \frac{(L_{1}(\mathbf{f}))^{(i_{1})}}{L_{1}(\mathbf{f})}(z_{k}) \right| \cdots \left| \frac{(L_{n+1}(\mathbf{f}))^{(i_{n+1})}}{L_{n+1}(\mathbf{f})}(z_{k}) \right| \\ \leq \frac{1}{|z_{k}|^{n}}.$$

On the other hand, by (2.1) and the properties of the p-adic norm, we also have

$$|(f_0g_1 - f_1g_0)^n(z_k)| \le |f_0(z_k)|^{2n}.$$

Combining (2.2), (2.4), (2.5) and (2.6) yields

$$|\Psi(z_k)| \le \frac{B^{2n}C}{|z_k|^n} \to 0 \text{ as } k \to \infty,$$

where B>0 and C>0 are two constants which depend only on the hyperplanes. This implies that $\Psi\equiv 0$. Hence

$$\frac{g_1}{g_0} \equiv \frac{f_1}{f_0}.$$

Similarly, we can prove that, for $1 \le i \le n$,

$$\frac{g_i}{g_0} \equiv \frac{f_i}{f_0}.$$

So $f \equiv g$. This completes the proof of Theorem 2.2.

Proof of Theorem 2.1. Let $\mathbf{f}_{\lambda} = (f_{\lambda,0}, \dots, f_{\lambda,n})$ be the reduced representation of f_{λ} . Without loss of generality, we can assume that there exists a sequence $z_k \in \mathbb{C}_p$ such that $r_k = |z_k| \to \infty$, $L_j(\mathbf{f}_1)(z_k) \neq 0$ for $1 \leq j \leq 3n+1$ and

$$|f_{1,0}(z_k)| \ge \max_{0 \le i \le n, 1 \le t \le \lambda} \{|f_{t,i}(z_k)|\}.$$

Assume that $f_1, \ldots f_{\lambda}$ are not algebraically dependent over \mathbb{C}_p , i.e., $\mathbf{f}_1 \wedge \cdots \wedge \mathbf{f}_{\lambda} \not\equiv 0$. Take a non-trivial component h(z) of $\mathbf{f}_1 \wedge \cdots \wedge \mathbf{f}_{\lambda}$ and set

$$\Phi = \frac{W(f_{1,0}, \dots, f_{1,n}) \cdot h(z)^{\frac{n}{\lambda - l + 1}}}{\prod_{j=1}^{q} L_j(\mathbf{f}_1)},$$

where $q \geq \frac{n\lambda}{\lambda-l+1} + n + 1$. Let $\Psi = \Phi^{\lambda-l+1}$. We now show that Ψ is p-adic entire. In fact, since $D_i \cap D_j = \emptyset$ for $i \neq j$, each point $z \in D = \bigcup_{j=1}^q D_j$ satisfies $z \in f_1^{-1}(H_{i_0})$ for some i_0 with $1 \leq i_0 \leq q$, and $z \notin f_1^{-1}(H_j)$ for $j \neq i_0$. Thus, $L_j(\mathbf{f}_1)(z) \neq 0$ when $j \neq i_0$. Assume that $L_{i_0}(\mathbf{f})$ vanishes at z with vanishing order m. Then $W(f_{1,0},\ldots,f_{1,n})$ vanishes at z with order at least m-n. On the other hand, it is easy to verify, using the assumptions

492 MIN RU

of Theorem 2.1, that for any $z \in D$, $|h(z)|^{\frac{n}{\lambda - l + 1}}$ vanishes at z with vanishing order at least n. Therefore Ψ is continuous at z, and hence Ψ is p-adic entire. The rest of proof follows that of Theorem 2.2.

3. Uniqueness problems counting multiplicity

The results in Section 2 are concerned with uniqueness problems without counting multiplicity. In this section we consider the uniqueness problem counting multiplicity. In this case, the result is simple and elegant:

THEOREM 3.1. Let $f, g: \mathbb{C}_p \to \mathbb{P}^n(\mathbb{C}_p)$ be two p-adic holomorphic curves, at least one of which is linearly non-degenerate. Let H_1, \ldots, H_{n+2} be hyperplanes in $\mathbb{P}^n(\mathbb{C}_p)$ located in general position such that $f(\mathbb{C}_p) \not\subset H_j$ and $g(\mathbb{C}_p) \not\subset H_j$ for $1 \leq j \leq n+2$. Denote by L_j the linear form associated with H_j , and assume that $L_j(f)/L_j(g)$, $1 \leq j \leq n+2$, is non-vanishing on \mathbb{C}_p (i.e., that $L_j(f)$ and $L_j(g)$ vanish at the same points with the same vanishing order). Then $f \equiv g$.

Proof. Without loss of generality, we can assume that g is linearly non-degenerate. We recall the fact that any non-vanishing p-adic entire function must be constant (see [R1]). Consider the functions

$$h_j = \frac{L_j(f)}{L_j(g)}, \ 1 \le j \le n+2.$$

Each h_j is a non-vanishing p-adic entire function, so $h_j = c_j$, where c_j is constant. Without loss of generality, we may assume that the hyperplanes H_j are represented by

$$H_i = \{ w = [w_0 : \dots : w_n] \in \mathbb{P}^n(\mathbb{C}_p) \mid w_{i-1} = 0 \}, \ 1 \le j \le n+1 \}$$

and

$$H_{n+2} = \{ w = [w_0 : \dots : w_n] \in \mathbb{P}^n(\mathbb{C}_p) \mid w_0 + \dots + w_n = 0 \}.$$

Thus we can write $c_{n+1}(g_0 + \cdots + g_n) = f_0 + \cdots + f_n$, and hence

$$(c_{n+1}-c_0)g_0+\cdots+(c_{n+1}-c_n)g_n=0.$$

By the linear-nondegeneracy condition, this implies $c_0=c_1=\cdots=c_{n+1}.$ Hence $f\equiv g.$

References

[AS] W.W. Adams and E.G. Straus, Non-Archimedean analytic functions taking the same values at the same points, Illinois J. Math. 15 (1971), 418–424.

[Bo] A. Boutabaa, Théorie de Nevanlinna p-adique, Manuscripta Math. 67 (1990), 251–269.

[Ch1] W. Cherry, Hyperbolic p-adic analytic spaces, Ph.D. Thesis, Yale University, 1993.

[Ch2] _____, A survey of Nevanlinna theory over non-Archimedean fields. Bull. Hong Kong Math. Soc. 1 (1994), 235–249.

- [CY] W. Cherry and Z. Ye, Non-Archimedean Nevanlinna theory in several variables and the non-Archimedean Nevanlinna inverse problem, Trans. Amer. Math. Soc. 349 (1997), 5043-5071.
- [Kh] H.H. Khoái, On p-adic meromorphic functions, Duke Math. J. 50 (1983), 695–711.
- [KQ] H.H. Khoái and M.V. Quang, On p-adic Nevanlinna theory, Lecture Notes in Math., vol. 1351, Springer-Verlag, New York, 1988, pp. 16–158.
- [KT] H.H. Khoái and M.V. Tu, p-adic Nevanlinna-Cartan theorem Internat. J. Math. 6 (1995), 719–731.
- [Ne] R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta. Math. 48 (1926), 367–391.
- [Co1] C. Corrales-Rodrigáñez, Nevanlinna theory in the p-adic plane, Annales Polonici Mathematici 57 (1992), 135–147.
- [R1] Min Ru, A note on p-adic Nevanlinna theory, Proc. Amer. Math. Soc. 129 (2001), 1263–1269.
- [R2] _____, An uniqueness theorem with moving targets without counting multiplicity, Proc. Amer. Math. Soc. 129 (2001), 2701–2707.
- [V] W. Stoll, On the propagation of dependences, Pacific J. Math. 139 (1989), 311–337.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HOUSTON, HOUSTON, TX 77204, USA E-mail address: minru@math.uh.edu