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UNIQUENESS THEOREMS FOR p-ADIC HOLOMORPHIC
CURVES

MIN RU

1. Introduction

It is well known that two non-constant polynomials f and g over an alge-
braically closed field of characteristic zero are identical if there exist two dis-
tinct values a and b such that f(z) = a < g(x) = a and f(z) = b < g(x) = 0.
In 1926, R. Nevanlinna [Ne] extended this result to meromorphic functions by
showing that two non-constant meromorphic functions of a complex variable
which attain five distinct values at the same points must be identical.

It has been observed that p-adic entire functions behave in many ways more
like polynomials than like entire functions of a complex variable. Confirming
this observation, W.W. Adams and E.G. Straus [AS] proved the following
result.

THEOREM A. Let f and g be two non-constant p-adic entire functions so
that for two distinct (finite) values a and b we have f(x) = a < g(x) = a and
f(z)=be g(x) =b. Then f=g.

For p-adic meromorphic functions, Adams and Straus obtained the follow-
ing result, which is an analog of Nevanlinna’s result.

THEOREM B. Let f and g be two non-constant p-adic meromorphic func-
tions so that there exist four distinct values a1, as,a3, and ay, such that
flx)=a; < g(x) =a; fori=1,2,3,4. Then f =g.

The aim of this paper is to extend Theorem B to p-adic holomorphic curves
in projective spaces.
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2. Uniqueness problems without counting multiplicity

Before we state our theorems, we recall some definitions and known results.
Let p be a prime number, and let | |, be the standard p-adic valuation on Q
normalized so that |p|, = p~!. Let Q, be the completion of Q with respect to
this valuation, and let C,, be the completion of the algebraic closure of Q,. As
is well known, C,, is algebraically closed. For simplicity, we denote the p-adic
norm | |, on C, by | |. We note that the results of this paper also hold for a
general complete, algebraically closed non-Archimedean field of characteristic
Zero.

It is known that an infinite sum converges in a non-Archimedean norm if
and only if its general term approaches zero. Thus a function of the form

h(z) = Zanz”, an € C,

n=0
is well defined whenever
lanz"| — 0 as n — co.

Functions of this type are called p-adic analytic functions. If h is analytic on
C,, then h is called a p-adic entire function. Let

h(z) = Zanz", an € C,
n=0

be a p-adic analytic function on |z| < R. For 0 < r < R, define My(r) =
max|,|—, |h(z)|. We have the following lemma (see [AS]).

LEMMA 2.1.  The following statements hold:

(1) We have My (r) = max,>o |an|r™.

(2) The mazimum on the right of (1) is attained for a unique value of
n except for a discrete sequence of values {r,} in the open interval
(0, R).

(3) If r ¢{r,} and |z| =r < R, then |h(z)| = Mp(r).

(4) If h is a non-constant p-adic entire function, then My(r) — oo as
r — 00.

(5) We have My (r) < Mp(r)/r (r > 0).

(6) We have Myy(r) = Ms(r)My(r) for any analytic functions f and g,

A p-adic holomorphic curve fis amap f = [fo: - : fu] : C, — P*(C,),
where fy,..., fn are p-adic entire functions without common zeros. The map
f=(fo,--,fn) : Cp — CZ‘H — {0} is called a reduced representation of

f. The p-adic holomorphic curve f : C, — P"(C,) is said to be linearly
non-degenerate if f(C,) is not contained in any proper subspace of P"(C,).
Hyperplanes Hi,...,H, in P*(C,) are said to be in general position if any
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n + 1 of them are linearly independent. The following theorem generalizes
Theorem B.

THEOREM 2.1. Let f1, fa,..., fx : C, — P*(C,) be linearly non-degenerate
p-adic holomorphic curves. Denote by f; a reduced representation of f; for 1 <
it < A Let Hy,...,Hy be hyperplanes in P*(C,) located in general position,

and assume that f{ ' (H;) = --- = fy '(H;). Let D; = f;*(H;), D = ui_, Dy,
and assume that fori# j, D, N D; = 0. Letl € {2,3,..., A} be the minimal
index such that for any increasing sequence 1 < j; < jo < --- < j; < A, we
have £;, (z) \--- N£j,(2) = 0 for every point z € D, where A is the usual wedge
product, and suppose that q > /\_’\7&1 +n+1. Then fi,... fr are algebraically

dependent over C,, i.e., fi(z) A--- ANfx(2) =0 on C,,.
In the case of A = 2, Theorem 2.1 gives the following result:

THEOREM 2.2. Let f,g: C, — P"(C,) be two p-adic linearly non-degene-
rate holomorphic curves. Let Hq, ..., Hspt1 be hyperplanes in P*(C,) located
in general position. Assume that f~'(H;) = g~ (H;) for 1 < j < 3n+1
and that f~Y(H;) N f~Y(H;) = 0 fori # j. If f(z) = g(2) for every point
z € U;?:lf_l(Hj), then f = g.

We will first give a proof of Theorem 2.2, and then outline the proof of
Theorem 2.1.

Proof of Theorem 2.2. Let f, g : C, — (C;”rl — {0} be the reduced repre-
sentations of f and g, and write £ = (fo,..., fn), 8= (90,---,9n). Let
Hi={w=[wy:...:w,] €P*Cp) : ajowo+ -+ ajyw, =0}, 1 <j<gq,
and set L;j(X) = ajoxo + - + ajnxyn, where X = (zo,...,z,) and L; is the
corresponding linear form of H;.
Without loss of generality, we can assume that there exists a sequence

2 € Cp such that ry = |z;| — oo, 1, & {7}, where the set {r, } is the discrete
set appearing in part (2) of Lemma 2.1, L;(f)(2) #0for 1 < j <3n+1, and

1) fo(ei)] = max {17 )}

Define
_ Wlfo,- s fn) - (Jog1 — f190)"
I20" L,(6)

where W(fo,..., fn) is the Wronskian of fo,..., fn. Since f is linearly non-
degenerate, we have W (fo,..., fn) Z 0. We first show that ¥ is p-adic entire.
In fact, since the sets f~!(H;) are disjoint, each point z € U?i?lf_l(Hj) satis-
fies z € f~1(H;,) for some ig with 1 < ig < 3n+1, and z € f~1(H;) for j # io.
Hence L;(f)(z) # 0 when j # ig. Assume that L;,(f) vanishes at z with van-
ishing order m. Then, since W (fo,..., fn) = ai_o%)W(Lio(f), fi,.-., fn) (where

v

)
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we assume, without of generality, that a;,0 # 0), W(fo,..., fn) vanishes at
z with order at least m — n. On the other hand, by assumption we have
f(z) =g(2),s0 (£ Ag)(z) =0. Thus, (fog1 — f1g0)™ vanishes at z with order
at least n. Hence, by the definition of ¥, ¥ is continuous at z, so ¥ is p-adic
entire.

Now, for each fixed z, by rearranging the indices we may assume that

L1 (£) ()| < [La(f)(20)] < -+ < [ Langa (F) (20)]-
Solving the system of linear equations
Li(f)(z1) = ajofolzr) + - +ajnfu(ze), 1<j<n+1,
we obtain
[fo(z)l < BlLny1(F)(21)] < - < BlLanta (£)(21)];

where B > 0 is a constant independent of z;. Hence

_ W (fo, .-, fn)ze)ll(fogr — f190)(2x)["
ITL2 Ly (6) ()]

W ()]

2.2
22 < B>"|W (fo, - - -, fn) (26) || (fogr — frg0) (ze)|"
|L1(£)(zi)| - -+ [ L1 (£) (20) [ fo (2 ) |27
By Lemma 2.1,
1
M(LL_j((ff>))' (r) < .

Since for 1 <i < n,

it follows that
1
Mz, /0,0 < 5
and hence

(£)) (@)

< 1
L;(f)

R

(zk)

By the properties of the Wronskian and the assumption that the hyperplanes
are in general position, we have

(Wfo,- s fa) )l CIW(LA(E, .., Ly (F)) (28)]

Y L e O] L EE] o ) )]
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where C' > 0 is a constant. By the properties of the p-adic norm and (2.3),
we have

WL (£) (2k), - - > Lnga () (20|
|1 (£)(ze)] - - [Lnga () (21

L (f))(il) (L, l(f))(inﬂ)
2.5 < (La(E)™ | L ()
( ) - i1+'}2?jir1:n Ll(f) Ln+1(f) “k
1
< .
|2 |™

On the other hand, by (2.1) and the properties of the p-adic norm, we also
have

(2.6) |(fogr = f190)" (z20)] < [ fo(zr) *".
Combining (2.2), (2.4), (2.5) and (2.6) yields
[T (21)] < - — 0 as k — oo,

|2k |™
where B > 0 and C' > 0 are two constants which depend only on the hyper-
planes. This implies that ¥ = 0. Hence

n_nh
g0 fo
Similarly, we can prove that, for 1 < ¢ < n,
9 _ fi
g0 fo
So f = g. This completes the proof of Theorem 2.2. O

Proof of Theorem 2.1. Let fyx = (fx0,---,fxn) be the reduced represen-
tation of fy. Without loss of generality, we can assume that there exists a
sequence z, € C, such that ry = |z;x| — oo, Lj(f1)(z;) #0for 1 <j <3n-+1
and

> ; .
ol = max _ {Ifii(z0)l)

Assume that fi,... f) are not algebraically dependent over C,, i.e., fi A--- A
f\ # 0. Take a non-trivial component h(z) of f; A --- A and set

_ Wlfr0,--5 fim) - h(z) %=t
IT5-, Lj(f1) 7

where g > )\fl)‘H +n+1. Let ¥ = &1 We now show that ¥ is p-adic
entire. In fact, since D; N D; = @ for ¢ # j, each point z € D = U?Zle
satisfies z € f;'(H,,) for some ig with 1 < ig < ¢, and z & f;*(H;) for
J # io. Thus, L;j(fi)(z) # 0 when j # io. Assume that L; (f) vanishes at z
with vanishing order m. Then W(fi0,..., f1,n) vanishes at z with order at
least m — n. On the other hand, it is easy to verify, using the assumptions

)
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of Theorem 2.1, that for any z € D, |h(z)|*#1 vanishes at z with vanishing
order at least n. Therefore W is continuous at z, and hence W is p-adic entire.
The rest of proof follows that of Theorem 2.2. O

3. Uniqueness problems counting multiplicity

The results in Section 2 are concerned with uniqueness problems without
counting multiplicity. In this section we consider the uniqueness problem
counting multiplicity. In this case, the result is simple and elegant:

THEOREM 3.1. Let f, g: C, — P"(C,) be two p-adic holomorphic curves,
at least one of which is linearly non-degenerate. Let Hy,...,H,to be hy-
perplanes in P"(C,) located in general position such that f(C,) ¢ H; and
9(Cp) ¢ Hj for1 < j<n+2. Denote by L; the linear form associated with
H;, and assume that L;j(f)/L;(g), 1 < j < n+ 2, is non-vanishing on C,
(i.e., that L;(f) and L;(g) vanish at the same points with the same vanishing
order). Then f = g.

Proof. Without loss of generality, we can assume that g is linearly non-
degenerate. We recall the fact that any non-vanishing p-adic entire function
must be constant (see [R1]). Consider the functions

L;(g)
Each h; is a non-vanishing p-adic entire function, so h; = c;, where ¢; is
constant. Without loss of generality, we may assume that the hyperplanes H;
are represented by

Hj:{w:[wo:-~-:wn]G]P’"((Cp)|wj,1:0}, 1<5j<n+1

and
Hypo={w=[wy: - :w,] €eP*(Cp) | wo+---+wy =0}
Thus we can write ¢,+1(go + -+ + gn) = fo + -+ + fn, and hence

(cnt1 —co)go + -+ + (cnt1 — n)gn = 0.
By the linear-nondegeneracy condition, this implies ¢g = ¢ = -+ = cp41-
Hence f = g.
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