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PLURIHARMONIC SYMBOLS OF ESSENTIALLY
COMMUTING TOEPLITZ OPERATORS

Boo RIM CHOE AND YOUNG JOO LEE

1. Introduction and result

Let V denote the normalized volume measure on the unit ball B of the complex
n-space Cn. The Bergman space Ap (1 < p < x) is the closed subspace of the
usual Lebesgue space Lp LP(B, V) consisting of holomorphic functions. We let
P be the Hilbert space orthogonal projection---called the Bergman projection--from
L2 onto A2. As is well known, the Bergman projection P is given by the integral
formula as follows:

O(w)
P(O)(z)

(1 )n+l dV(w) (z B) ()

for functions p 6 L2. Here and elsewhere, the notation z. tb Zl 1)1 -- + Znl)n
denotes the ordinary Hermitian inner product for points z, w 6 Cn. Note that the
Bergman projection P naturally extends via the above integral formula to an integral
operator from L into the space of all functions holomorphic on B.

For a function u 6 L2, the Toeplitz operator Tu with symbol u is defined by

T. f P (uf)

for functions f A2. The operator Tu: A2 -- A2 is densely defined and not bounded
in general. However, Tu is always bounded on A2 for bounded symbols u which we
are concerned about in this paper.
We say that two bounded linear operators S, T on a Hilbert space H are essentially

commuting on H if the commutator ST TS is compact on H. In the present paper,
we consider a characterization problem of essentially commuting Toeplitz operators.
In the one dimensional case, K. Stroethoff [S] has obtained a complete description of
two harmonic symbols for essentially commuting Toeplitz operators: For bounded
harmonic symbols u and v, Tu and To are essentially commuting if and only if,
for each Hoffman’s map Lm, u o Lm and v Lm are both holomorphic, or t7 Lm
and fi Lm are both holomorphic, or a nontrivial linear combination of u Lm and
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v c Lm is constant. Stroethoff [S] also obtained characterizations in terms ofboundary
vanishing properties of certain integral and differential quantities.

In this paper, we naturally consider the same characterizing problem on the ball
with pluriharmonic symbols. Recall that a function u C2(B) is said to be plurihar-
monic if its restriction to an arbitrary complex line that intersects the ball is harmonic
as a function of single complex variable. As is well known, every pluriharmonic
function on B can be expressed, uniquely up to an additive constant, as the sum
of a holomorphic function and an antiholomorphic function. Hence, harmonic and
pluriharmonic functions coincide on the unit disk.

Stroethoff’s paper [S] uses some corona techniques special to the disk. So, in
considering the problem on the ball, we cannot use the straightforward modification
of Stroethoff’s approach. However, we realize that the corona techniques are not
essential in the approach used by Stroethoff and we use some other way of approching
the problem. Because the corona theorem is unsolved in the ball, the only Hoffman
maps used are those lying in (where is described in the next paragraph). To be
more precise, let us introduce some notations and basic facts on the maximal ideal
space of the ball.

Let H be the space of all bounded holomorphic functions on B. The maximal
ideal space .Ad of the ball is the set of all multiplicative linear functionals on H.
If we think of 3//as a subspace of the dual space of H with weak-star topology,
the space .A// becomes a compact Hausdorff space. Identifying a point of B with the
functional of evaluation at that point, we can regard B as a subset of Ad. For z B,
let tpz denote the canonical automorphism (see Section 2) of B. Since B is a subset
of Ad, we can think of qgz as a map from B to 3/l. The compactness of 34 implies
that for any net {qgz of automorphisms, there is a subnet {qgz of {tpz such that tpz
converges (pointwise) to a map (p: B A//. We let

closure{tpz" z 6 B} \ {q)z" z 6 B}.

By using the Gelfand transform, we can think of H as a subset of the space of
all continuous functions on .M. Moreover, it turns out [Z2, Proposition 8] that each
bounded pluriharmonic function on B extends to a continuous function on Ad. We
will use the same notation for a bounded pluriharmonic function and its continuous
extension on AA. In addition, it is also known [Z2, Proposition 9] that if a net {0z
of automorphisms converges to some tp 6 , then for any bounded pluriharmonic
function u, the function u o tpz converges to u o q) uniformly on every compact subset
of B and hence u q) is also a bounded pluriharmonic function on B. For some more
information on Ad, see [Z2].

For u 6 C2(B), the invariant Laplacian u is defined by

(zXu)(z) =/X(u o Oz)(0) (z B)

where A denotes the ordary Laplacian. The operator A commutes with automor-
phisms in the sense that A(u 0) (Au) o q0 for all automorphisms 0 of B. For
details, see [R, Chapter 4].
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Our main result is the following theorem.

THEOREM 1. Let u, v be two boundedpluriharmonicfunctions on B and assume
u f + ,, v h + k for some functions f, g, h, k holomorphic on B. Then the
following statements are equivalent:

(a) Tu and To are essentially commuting on A2.
(b) lim [f/c h](a) 0.

(c) For each p , (i) both u o o and v o q9 are holomorphic on B, or (ii) both
o and o are holomorphic on B, or (iii) there exist constants and fl,

not both O, such that a(u ) + fl(v ) is constant on B.

(d) lim [ [(foa-f(a))(Oa-(a))-(hoa-h(a))(Oa-(a))l dV O.
lall dn

In Section 2, we collect some preliminary results on Toeplitz operators which we need
in the proof of Theorem 1. In Section 3, we prove Theorem and, as an immediate
consequence, give a characterization of essentially normal Toeplitz operators.

2. Toeplitz operators

For z 6 B, z 0, the explicit formula for the canonical automorphism (= biholo-
morphic self map) Oz is given by

Oz (W)
z -Izl-2(w )z V/1 -Izl2[w -Izl-2(w )z]

and qgo(w) -w for w 6 B. It is well known that q9 o Oz is the identity on B and
the real Jacobian JlqOz of qgz is given by

-Izl2

JzW)
I -- o-:1: (w 6 B). (2)

In addition, the identity

-gOz(a).goz(b)
(1 Izl2)(1 a. )
(l --a.)(1 --z’/)

(3)

holds for every a, b 6 B. See [R, Chapter 2] for details.
For a 6 B, we put

n+l

(zB)
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for notational simplicity. By (2) and (3), we have a useful change-of-variable formula:

fB h dV f h o oalkal dV (a B) (4)

for all measurable h on B whenever the integrals make sense.
We start with an observation on how the product of two Toeplitz operators acts on

the kernels ka.

LEMMA 2. Let u, v L and h A2. Then we have

(Tuoob Toobka, h) (TuT[(ka o qgb)kb], (h o b)kb)

for every a, b B. Here and elsewhere, the notation denotes the usual inner
product in L2.

Given u L, it is easy to see that the adjoint operator T* of Tu is T.

Proof. A routine manipulation using (3) yields

(1 Pz(a)" /)n+l kz(a)
(1 a z(W))n+l k-(ll))

for a, z, w B.. Thus, by the explicit formula (1) for the Bergman projection P, and
change-of-variable formula (4), one can see that

TCoo:.g kz P[(g o pz)’t/.rkz] o Pz (g A2)

for every !/r e L and z B. It follows from change-of-variable formula (4) again
that

Tuo Tuoka, h) Tuok T*h)

(Tuooka, Tcooh)

(kbP[(ka o b)Vkb](b), kbP[(h o b)tkb](b)}

P[(ka o b)Vkb](b)P[(h o b)tkb](b)lkbl 2 dV

P[(ka o b)Vkb]P[(h o qgb)kb] dV

(P[(ka c)b)Ukb], P[(h o qgb)lkb]

(Tv[(ka o qgb)kb] Tu*[(h o tpb)kb])

(TuT,[(ka qgb)kb], (h qgb)kb)

for every a, b 6 B. The proof is complete. El
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The notation lip denotes the usual LP-norm with respect to the measure V. The
following lemma shows that the essentially commuting problem for Toeplitz operators
can be reduced to the commuting one in certain cases.

LEMMA 3. Let u, v be bounded pluriharmonic symbols. If Tu and To are essen-
tially commuting on A2, then Tuo and Tvo commute on A2 for every p .

Proof Let p 6 and choose a net {w} in B such that qgw ---> q9. We note,
as mentioned in Section 1, u o qgw --> u o o and v qgo ---> v p uniformly on
every compact subset of B as qgo ---> p. Let h 6 A2 and a 6 B. Since u and v are
bounded by assumption, by an application of the dominated convergence theorem
and Lemma 2 we can see that

I((T.ooTvoo ToT.o ka h

lim [((Too., Too., Too., Tuoou,)ka, h)l

lim I((TT ToT)[(ka qgo)k], (h

_< lim II(ZZo ZoZ)[(ka 0o)ko]]1211(h o)k I1=.

On the other hand, by the change-of-variable formula (4), we see that

II(h o qgo)k I1 fB Ih o goo121k12dV fB Ihl2dV" (5)

Moreover, note that (ka o qo)kw converges to 0 weakly in A2 for every a 6 B.
Hence, the compactness of Tu Tv TT, together with (5), implies that

(Tuoo Tvoo Tvoo Tuoo)ka, h 0 (a 6B).

Since h 6 A2 is arbitrary, we have (T,oTo TooT,o)ka 0 for every a 6 B.
Now, the result follows from the fact (see, for example, [L, Theorem 4.1 ]) that the set
{ka" a B} spans a dense subset of A2. This completes the proof. [2]

Before turning to the proof, we also need a recent result of Zheng [Z1 on com-
muting Toeplitz operators. The original statement in [Z1 is in a slightly different
form.

LEMMA 4. Let u f + , and v h + k be bounded pluriharmonic symbols
satisfying the hypothesis ofTheorem 1. Then thefollowing statements are equivalent:

(a) T and To are commuting on A2.
(b) A[fk hfi,] O.
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(c) u, v are both holomorphic or both antiholomorphic or there exist constants
and 13, not both O, such that otu + fly is constant on B.

Proof See [Z1, Main Theorem] for the equivalence (a) : (c). In [Z1] the
equivalence of condition (b) is implicit in the proof of [Z 1, Main Theorem]. See also
[CL] for a proof of (a)

3. Proof

In this section, we will give a proof of Theorem 1. Before proceeding to the proof,
we recall the well-known Bloch space and Hankel operators. The Bloch space/3 is
the space of all holomorphic functions f on B for which

Ilfll- sup(1 -Iwl2)lVf(w)l < c
wEB

where Vf is the complex gradient of f. Note that/3 CAP for all p < cx. Moreover,
it turns out [HY, Theorem 3.8] that the Bloch norm can be estimated by a certain
integral quantity: For < p < cx, there is a positive constant Cp such that

C-I f < sup f o q9 f (a)ll p cp f
aEB

(6)

for all functions f holomorphic on B.
For a function u L2, the Hankel operator Hu with symbol u is defined by

Hu f uf P (uf)

for functions f A2. As in the case of Toeplitz operators, the operator Hu: A2
__

(A2) -1- is densely defined and not necessary bounded in general. However, it is known
that the antiholomorphic symbols of bounded Hankel operators are precisely the
conjugates of Bloch functions [BZ, Theorem C]: For u A2, H is bounded if and
only if u /3.

There is a connection between Toeplitz operators and Hankel operators, which is
useful for our purpose. More explicitly, the formula

can be verified by a straightforward calculation. Note that Hankel operators with
holomorphic symbols are the zero operator. Thus, for two bounded pluriharmonic
symbols u f + and v h + which we are considering in Theorem 1, the above
formula yields

(7)
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Moreover, since u f + , v h + k are bounded, it is not hard to see (see, for
example, [Z2, Proposition 10]) that functions f, g, h, and k all belong to/3. Thus,
the operator in the right side of (7) is bounded by the result mentioned above.

Recall that if u is a bounded pluriharmonic function and if {qgw is a net such that
qgo q9 for some q9 , then u o qgw u o q9 uniformly on every compact subset
of B and thus u q9 is also a bounded pluriharmonic function. We first prove a lemma
which shows that the invariant Laplacian behaves well with such a limiting process.

LEMMA 5. Suppose u f + , v h + f are boundedpluriharmonicfunctions
as in the hypothesis of Theorem and let {qgw be a net such that qgw q9 . If
u o F + , v p H + ISf where F, G, H, K arefunctions holomorphic on B,
then

[f] o 0u, --+ [FR], [h] o Ow. --+ [H(].

Proof. Put f f o p f(w) and k k o qgw -k(w) for simplicity.
Since f,, k are holomorphic, we have

(ffc)(z) 4(1 -Izl2)[vf (z 6 B) (8)

by [R, Proposition 4.1.3] where R denotes the radial differentiation. Note that

u o Ow u(w,,) --+ u o u o o(0)

uniformly on every compact subset of B. In particular, since u and v are bounded,

u o ,,ooo u(w,,) u o o u o o(0)

in L2. Now, using the L2-boundedness of the Bergman projection P, we have

P[u o ow u(wo)] --+ P[u o q) u o (p(O)]

in L2. Note P(3) 3(0) for every 0 e A2. It follows that

P[u o q), u(wa)] fa

and

P[u q u o(0)] F F(0).

Hence, f F- F(0) in L2. Since f F- F(0) in L2, we have fa -- F- F(0)
uniformly on every compact subset of B and therefore Vf -- VF and 7f F
uniformly on every compact subset of B. Now, applying the same reasoning to fi, we
see that the same is true for k. Thus, taking the limit in (8), we have

X(f:) -- (FR). (9)
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On the other hand, since A annihilates (anti)holomorphic functions and commutes
with automorphisms, we have

A(faka) A[(f o tpw f(wa))(k o qgw -k(wa))]

A[f o q)wk o

[//:] o

Thus, by (9), [f/c] o 0o (F/). Similarly, [h] o q)o (H,). The
proof is complete.

Now, we are ready to prove Theorem 1.

Proofof (a) =, (b). It is sufficient to show that, for a given net {w such that
for some tp ,

X(ff:- h)(wa) 0 (10)

holds. So, fix a net {w such that tpw -- q) for some q) and let F, G, H, K
be as in Lemma 5. By Lemma 3, T,o0 and Tvo0 commute. Thus, by Lemma 4,
(F/ H() 0. Consequently, by Lemma 5 with evaluation at the origin, we
have (10) as desired. The proof is complete, rl

Proofof (b) =, (c). Let o 6 and assume q)o -- qg. Let u o 0 F + ,
v o q) H +/ as before. Fix an arbitrary point a 6 B and put z Ow (a). Since
the automorphism Oa o g)w o q)z fixes the origin, it is a unitary transformation, say
Ua,, by the Schwarz lemma. Thus we have

(t9Z Ow 0 (t9a 0 Ua,ot. (11)

Since the set of all unitary transformations is compact, we may assume Ua. converges
to some unitary transformation Ua. Now, for a given function p H, since
p o 0o -- P o q) uniformly on every compact subset of B and Oa o Ua, --- Oa 0 Ua,
we see that p o q)m o q)a o Ua, P o 0 o qga 0 Ua. This, together with (11), shows

Oz q5 where q) o Oa o Ua. By the same argument, we have u o 0z u o ff and
v o Oz -- v o ff uniformly on every compact subset of B. Note that o implies
Iwl and thus Iz 1. So, q5 .

Now, since u off FOa 0 Ua +G o q9 o Ua and v off H 0(t9a 0 Ua -JI- K o q9 o Ua,
it follows from Lemma 5 that

0 lim A[fk h](z)

[(F/ n() q)a O Ua](0)

k[Fff n](tfla o Ua(O))

[F/ n](a).
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Hence, by Lemma 4, (c) holds. This completes the proof. [21

Proofof (c) = (d). Let w be a given net such that 0w p for some o 6 .
We shall continue using notations introduced in the proof of Lemma 5. To prove (d),
it is sufficient to show

lf[ dV 0 (12)h[

where g, ha are functions defined similarly. In the proof of Lemma 5, we have seen
that f F F(0) in L2. Of course, the same is true for g, h, and k. Thus, we
havef h (F F(0))(R R(0)) (H H(0))( G(0)) in L . In
particular, we have

Ifaka -hldV (13)

I(F F(0))(R R(0)) (n H(0))( (0))1 dV.

If (i) or (ii) in assumption (c) holds, then G, K or F, H are constants, respectively and
hence (F F (0))( R(0)) (H H(0))( (0)) 0. Also, if we assume (iii)
and, in addition, 0, then (F + c H) + G + ?K c2 for some constants c, c2.
It follows that F + c H d and G + ?K d2 for some constants d, d2. Hence,
F d -c H and G d2 -? K. Inseaing these into (F F(0))( (0)) (H
n(0))(-(0)), we alsohave (F-F(O))(R-R(O))-(H-H(O))(-(O)) O.
Now, (12) follows from (13). The proof is complete.

For a 6 B, we let Ka be the Bergman kernel given by

Ka(z)-- (Z B).
(1 Z )"+

Then, by (1), we have the following reproducing property:

F(a) (F, Ka) (14)

for every F 6 A2. We note that the above reproducing property (14) still remains
valid for functions F 6 A 1. See Theorem 7.1.4 of [R] for details.

In the proof below, the same letter C will denote the various positive constants
which may change from one occurrence to the next.

Proofof (d) = (a). Assume (d) and show (a). To show (a), it is sufficient to
show the compactness of HH, HH by (7). For notational simplicity, we put

R(z, a) (f (z) f (a))([c(z) it(a)) (h(z) h(a))((z) (a))
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for z, a 6 B. Then, by the Cauchy-Schwarz inequality and (6), one can see that for
each < p <

I [R(a(Z), a)] p dV(z) < C(llfllPllkll p -t-IlhllPllgll p) < oo (15)sup
aB

for some constant C C (n, p). The last inequality follows from the fact that f, g, h
and k are all in/3. Also, by assumption, we have

lim I In(oa(Z), a)l dV(z) 0. (16)

By the reproducing property (14), it is not hard to see that P(PKa) P(a)Ka for
every F 6 A2. Let 6 A2 and pick a point a 6 B. It follows from (14) that

H.Hap(a) (H*-fH,, Ka)

(n[lr, nfga)
([,: P([c), fKa P(fKa))
(, (f-- f(a))ga).

We also see that

(P, (f f(a))Ka) (/(f f(a)), Ka) --O.

This follows from the reproducing property (14). It follows that

HHTt(a) = (( (a))qj, ( f(a))Ka)

(f(z) f(a))((z) (a))
(i U(z) dV(z).

Similarly, we also have _, (h(z) h(a))(fi,(z) (a))
HH,lp(a) (1 a 7T ap(z) dV(z).

Hence, we can represent H[H, Ha H, as an integral operator as follows:

R(z,a)
(HTH, HH2,)p(a)

(1 -a-)n+ p(z)dV(z).

For each p 6 (0, 1), define So" A2 -+ L2 by

R(z,a)
Spap(a) XpB(a)

(1 a- ,)n+l
lr(Z) dV(z)
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where the notation )E denotes the usual characteristic function for E C B. We first
show that each St, is compact. To see this, it is sufficient to see that its kernel function
is in L2(B x B). That is,

)t,a(a)R(z, a)12(1- a. )n+l
dV(z)dV(a) < xz. (17)

By change-of-variable formula (4), one obtains

]2;t,a(a)R(z, a) IR(z, a)12[ka(z)[ 2

(1 a )n+l
dV(z)dV(a)--

a (1 lal2)n+l
dV(z)dV(a)

fpafa Ie(ga(z)’a)12
dV(z)dV(a)

(1 p2)n+l

XfpfalR(tpa(Z)’a)12dV(z)dV(a)’a
Now, (17) follows from (15). Hence, each St, is compact. Put

for notational simplicity. We note

R(z,a)
Tt,p (a) Xp (a)

(1 a ,)n+
gr(z) dV(z)

where )p ,X.B\pB. By change-of-variable formula (4) and simple manipulations
using (3), one obtains

f IR(z’a)12
11- a 7-;7 Izl 2

dV(z) fB IR(99a(Z), a)12lka(z)l 2

I1 a. g0a(Z)l"+lv/] Ig0a(Z)l 2
dV(z)

fB IR(g’(z)’a)12

V/1 -lal 2 l1 -" -1 -Izl2
dV(z)

<
V/1 lal 2

IR(qga(Z), a)l 2t dV(z)

(f dr(z)
x

l1 -a. l’n(1 -Izl2)s/2
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where we use HOlder’s inequality with the conjugate exponents s (4n + 3)/(4n + 2)
and 4n + 3. On the other hand, by the Cauchy-Schwarz inequality and (15) one
can see that

f. (f.In(oa(z), a)l 2t dV(z) < [e(q)a(Z), a)l dE(z)

(f. ]R(goa(Z), a)l4t-1 dV(z)

(fB )I/2< C IR(q)a(Z), a)l dV(z)

and, by Proposition 1.4.10 of [R],

f dV(z)
< C

I1 -a. l’"(1 -Izl2)s/2
for some constants C independent of a B. It follows that

fe IR(z,a).z

v/1 ’a’ 2
C (fB )l/2tii a ln+lv/l lz]2

dV(z) < IR(oa(z), a)l dV(z)

for some constant C independent a 6 B. Now, the Cauchy-Schwarz inequality yields

ITpgt(a)l < )(p(a)
IR(z, a!gt(z)l dV(z)
11 a [n+l

< (f xp(a)lR(z’a)12 )dV(z)
l1 --a. ln/lv/1 --Izl 2

I1 a. 1’+11P(Z) dV(z)

xp(a) (fn )l/2t< C
v/1 lal 2

IR(q)a(Z), a)l dV(z)

I1 a. [n/l
IP(z)12 dV(z)

for some constant C independent of a B. It follows from Fubini’s theorem that

f. (f. )I/2tIT, lle dV < C sup IR(qga(Z), a)l dV(z)
aEB\pB

v/l iZ,:Zl(Z),2 dV(a)
dV(z)

I1 a. Eln+lv/1 lal’--
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for some constant C independent of p. Moreover, by Proposition 1.4.10 of [R], we
have

dV(a)
<

12
(z B)

I1 a. 1n+v/1 lal 2 v/1 Iz
for some constant C independent of z 6 B. Therefore, we finally have

]TpTzl2dV < C sup IR(oa(z), a)l dV(z)
aEB\pB

2 dV

for some constant C independent of p. In other words,

fB t 1/(8n+6)

IlZpll 2 _< C sup IR(o(Z), a)l dV(z)
aEB\pB

for some constant C independent of p. Now, letting p 1, we have To -- 0 in
the operator norm by (16). Hence, HH, HH can be approximated by compact
operators, so it is compact, as desired. I-1

We say that a bounded linear operator L on a Hilbert space is essentially normal
if L and its adjoint operator L* are essentially commuting. We conclude the paper
with a simple application on essentially normal Toeplitz operators.

COROLLARY 6. Let u be a bounded pluriharmonic symbol on B and assume
u f + forsomefunctions f, g holomorphic on B. Then, thefollowing statements
are equivalent:

(a) Tu is essentially normal on A2.
(b) lim ,(Ifl2 -Igl2)(a) 0.

(c) For each p , u o 0 maps B into a straight line in C.

(d) lalllimf(If0a--f(a)l:--Ig0a--g(a)12) dV=O"
Proof The equivalence of (a), (b) and (d) is a consequence of Theorem 1. Now,

assume (a) and let 0 6 . Then, Theorem implies that both u o tp and t7 tp are
holomorphic on B or a nontrivial linear combination of u 99 and t7 0 is constant
on B. The first case implies u o is constant on B, so we have (c). Also, the
latter case implies that u o qg(B) lies on some straight line in C, so we also have (c).
Finally, assume (c); then we see that a nontrivial linear combination of u 0 and t7 q9

is constant on B. Hence, (a) is a consequence of Theorem 1. This completes the
proof. I-I
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