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RIEMANN SURFACES HAVE HALL RAYS AT EACH CUSP

THOMAS A. SCHMIDT AND MARK SHEINGORN

Overview

The main result of this paper is that every Riemann surface has a Hall ray at each
cusp. By this we mean that the spectrum of maximal penetration heights of geodesics
into a horocycle about the cusp fills out a real half-line. For the modular surface, this
result is well known and derives from Hall’s Theorem for continued fractions.
We also show that a Hall ray can exist without the presence ofcusps in two settings:

First, on a surface derived as a limit of cusped surfaces, whose fundamental region
contains two entire horocycles. And second, with respect to a hyperbolic continued

fraction for which the former role of a cusp is played by a simple closed geodesic.
The limiting process mentioned above also produces an infinite class of closed

geodesics on the theta surface, the quotient of the upper half-plane by the usual theta
group, that are pair-wise equal in length, but whose precursors in the limit process
are never equalmthis equality is then accidental. That is, there is a change in length
spectrum multiplicity at the limit surface.

1. Hyperbolic geometric preliminaries

We will employ elementary hyperbolic geometry of the Poincar6 upper half plane,
:= {z x + y Y > 0}. The geodesics of 7-/are semi-circles perpendicular

to the real axis, and vertical lines; these geodesics are called h-lines. The group of
conformal hyperbolic isometries of 7-( is PSL(2, JR).

Every Riemann surface is the quotient of 7-/by some discontinuous subgroup of
PSL(2, I); such a subgroup is called a Fuchsian group. Each conformal isometry of a
surface is realized by some element of the PSL(2, IR) normalizer of the corresponding
Fuchsian group. The horocycles of 7-/are the various PSL(2, ) images of the sets
of the form {z x + iy Y > ot for some or. The natural boundary of 7-( is U o;
the action of PSL(2, ) extends to this boundary. A Riemann surface is said to have
a cusp at a point p if p is on this boundary and there is a non-trivial element of the
corresponding Fuchsian group which fixes p. Such an element is called parabolic.
A hyperbolic element of PSL(2,/R) fixes two real points and the h-line connecting
them; this h-line is called the axis of the hyperbolic element. The real endpoints of
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an axis are called its feet. All these matters are beautifully presented in the text of
Alan Beardon [B].

2. Statement of results

We begin by defining the concept ofa Riemann surface with a Hall ray at a particular
cusp. Let E be a Riemann surface, with a cusp p. Let E F\7-/, for some Fuchsian
group F. We make no assumptions concerning F apart from the fact that it has at
least one parabolic conjugacy class. There is a maximal horocyclic neighborhood of
the cuspmthe largest horocyclic disc on E which is a punctured disc.
We assume, without loss of generality, that o lies over p. Choose any closed

geodesic r on E. It is the projection to I2 from 7-/of any of the axes of a hyperbolic
conjugacy class in F. The height of r is the maximum euclidean radius of these axes.
The maximum exists since the geodesic is closed. This concept can be extended to
arbitrary geodesics by replacing maximum by the supremum (which may be infinite)
and replacing the axes of the hyperbolic conjugacy class by the F-orbit of an arbitrary
fixed lift of r. In general, the naive height of a lift to the Poincar6 upper half-plane
of a geodesic on a Riemann surface is the euclidean diameter of this lift. The height
of a geodesic is the supremum of the naive heights of the lifts of the geodesic.
We are now ready for the following:

Definition. We say that 12 has a Hall ray at p if there exists an N depending only
on p and 12 such that there is a subset of the set of all heights of geodesics on E which
is dense in [N, o).

In [SS2], we showed that every Hecke triangle surface (the quotient of 7-/by a
Hecke triangle group Gq, see below) admits a Hall ray with respect to the cusp at
infinity. Here we show that possessing a Hall ray is in fact a general phenomenonm
every Riemann surface admits a Hall ray with respect to each of its cusps. We also
show that there is a surface (denoted Finf\7-/)--arising as a particular limit of small
covers of the Hecke triangle surfaces denoted Fq, defined below and studied in [S]--
which has no cusps but with fundamental region containing two entire horocycles.
We show that the surface admits a Hall ray with respect to each of these horocycles.

In [SS and [SS2], we discussed the length spectra of the Hecke triangle surfaces.
In particular, we pointed out that two closed geodesics on a surface of this family can
be of equal length in one of exactly two manners: either the geodesics correspond
to a family of pairs of geodesics which are of equal length on all of the surfaces, or
the length equality is what we called accidental. Here we show, using our limiting
procedure, that there are infinitely many distinct pairs of equi-length closed geodesics
on the theta surface, F(.)\, which are accidentally the same length. The group
contains the group I’inf, and just as Finf is the limit in the appropriate sense of Fq, so
F(.) is the limit of Gq.
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The authors wish to thank the referee for many useful comments which led us to
clarify and simplify the geometric arguments presented herein.

3. The existence of the Hall ray

We announce the main result of this paper.

MAIN THEOREM. Let I" be a Fuchsian group and E I’\7-[ be a surface with a
puncture at p. Then E, has a Hall ray with respect to p.

We note that this means that if the surface has more than one puncture, then there
is a Hall ray with respect to each. We will employ open geodesics to prove this
theorem. Also, we remark that the techniques of [SS2] for the infinite volume Hecke
triangle surfaces go through for surfaces arising as quotients of the upper half-plane
by Fuchsian groups of the second kind. The proof below, however, does not use any
properties of I" beyond the facts that it is Fuchsian and has at least one cusp. Indeed,
the key idea to the proof is simply that one can slide any sufficiently high h-line by
Euclidean translation so that it intersects the horocycles of which correspond to
lifts of the cusp of E far from the cusp at the base of these horocycles.

Proof. To begin, we construct the continued fraction expansion for I" as given
in [LS]. To each lift to 7-( of a geodesic of E, we will associate a doubly infinite
sequence. The sequences of different lifts will differ only by a shift. We will show
that by sliding an h-line on 7-/, we can force the entries of the associated double
sequence to be small without change of depth of penetration into the horocycle of p.

By conjugation in SL(2, ), we assume that p lifts to cx. The fundamental
horocycle H at cx is

H {z 7"t z x + iy, .y > m}

where rn is the smallest value such that H projects to a punctured disc on E. Now
striate H into fundamental (vertical) "strips", i.e. maximal strips containing no
equivalent points. Again by SL(2, ) conjugation, we assume rn 1. By Shimizu’s
Lemma ([Sh]), this forces all non-zero c-entries in the matrices of I" to have Icl >_ 1.
Isometric circle considerations now ensure that the translation length at cx cannot be
smaller than 1.

Consider the orbit of H under 1". This is a set of disjoint horocycles. An h-line
passes through at most a countable number of these horocycles. It may pass through
none, or a finite number--the latter happens if it terminates in both directions in the
cusp under discussion.

In general, we get a doubly infinite sequence of horocycles Hi, -x < < c.
For each Hi we keep track of the strips encountered by the h-line in the excursion
through Hi. The number of such strips encountered is denoted bi. We attach a sign,
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Figure 1. Defining continued fractions.

/ to denote exit to the right of the cusp, denotes exit to the left. Our continued
fraction expansion is then the double sequence (Hi, bi). (See Figure 1.) m

One more piece of notation: the cusp at the base of the horocycle Hi will be

dentedai/ci’where( aici * ) takes o to this cusp. Itiseasily seen that this

well defined. We now choose some h-line, which has euclidean radius greater than
100 and consider the corresponding Hi and bi. The following observations give our
proof.

A. The euclidean radii of Hi go monotonically to zero as -+-o. This follows
from the following two facts. (a) Our h-line enters a horocycle (other than the
horocycle at o), which has euclidean radius at most 1, in its (euclidean) top half,
exiting through the bottom half. This is because the h-line is nearly vertical as far as
all the horocycles are concerned. (b) If two consecutive horocycles have nearly equal
euclidean radii, the succeeding horocycle then has radius at most half as big, for it is
trapped (in its entirety) in the near-triangle under the two consecutive large ones.

B. For a geodesic with a lift of large naive height and small (other) Ibi I, the naive
height is the actual height. Indeed, the naive height can be bounded in terms of Ib01,
where H0 is the horocycle at cx. Having chosen a naive height greater than 100, small
here may be taken to be 10.

For example, if b5 100 while all other Ibil < 10, then no other penetration
exits an Hi as close to the cusp as the exit of His. It is not necessary to refine this;
indeed, difficulty arises if the large Ibil and small Ibl are close in size.

C. A simple computation shows that the euclidean radius of Hi is 1/2c2i
D. A small Ibil indicates that the h-line passes through Hi near the edge of the

horocycle, rather than near its cusp. This is because the striations accumulate at
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r= 1/4

Figure 2. A Euclidean tangency problem (special case).

its cusp. Any near vertical h-line exiting close to a cusp must pass through many
striations.

More precisely (with the normalization we have chosen), the y-coordinate of
the exit point lies between 1/(c2[(bi 1)2 + 1]) and 1/(c[b2i + 1]). Note that
the dependence on ci factors out; for all horocycles, the bi determine comparable
’fractional division points’ independent of the euclidean size of a horocycle. The top
of the horocycle corresponds to bi 0. (See Figure 3.)

E. Consider consecutive pairs (Hi, bi); (Hi+l, bi+l). Say Ibi[ <_ 10 but that

Ibi+ll > 10. First of all, this forces 1/2c/2+1 < 1/6c2i (This restates the simple
observations: (a) that because Ibi+l is large, we enter Hi+ near the top; (b) that at
worst we are tangent to Hi (as Hi appears in the continued fraction; and (c) that, for r
defined by Figure 2, r 1/4. (This is the extremal case of tangency in (b), entering
through the top in (a), and also the geodesic being vertical. The constant 10 above
assures that replacing 1/4 by 1/3 leaves the inequality valid.)

By A, we have 1/2ci2+ < 1/6c, for < j < also. Now slide the h-line along
the real axis, with a euclidean translation, to obtain an h-line of the same height but
with Ibi+ < 10. What is the effect on previous bi?

This is another euclidean tangency problem; it is not difficult to solve. We have
an exit from Hi at height between 0 and 9, measured by bi. The worst we could then
do is to slide an entire radius of Hi+.

Since the fractional division points are invariant, we will consider Hi having
diameter 1, as in Figure 3. We thus consider the case when the center of Hi is (0, 1),
and the cusp is thus (0, 0). The parameter b is the exit-height (y-coordinate) as the
h-line exits Hi. The x-coordinate is then s/2b b2, a quantity we shall refer to as m,.
The maximal decrease in Hi exit-height stemming from sliding across the horocycle
Hi+ occurs when the cusp of Hi+ is at (mb, 0), and the horocycle is tangent to Hi.
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(0,1)

1
(., b)

(Xb’ Yb ) ...........
(0,0) O)

Figure 3. A Euclidean tangency problem (general case). Here Zb /2b b2.

This will occur when the radius of Hi+ is mb/2.
(In the following paragraph, quantities are evaluated as if the h-line with large

naive height were in fact a vertical line. This is justified, since the hyperbolic distance
between this vertical and the given h-line (of naive height > 100) with the same foot
goes to zero as we approach the real axis, but hyperbolic distance between the first
10 fractional division points remains constant amongst all our horocycles.)

The h-line will be slid such that its foot near (mb, 0) is moved to nearly (mb

m/4, 0). Call this new foot Xb. The new exit-height is then Yb "= VII x.
It is easy to see that Yb is minimized when b is as small as possible. With our
parametrization (c 1//, Ibil 9) gives the minimum value of b 1/41
.024390244 In turn, this yields Yb .021757727 In terms of the fractional
division points, this is an exit at bi 9.535269614 (Not a possible value, of
course, as bi is an integer.) We have shown that sliding all the way across Hi+
increments bi by at most 1. This argument applies, mutatis mutandis to previous
bj, l<j<i.

F. We can slide an h-line recursively, with smaller and smaller euclidean moves,
generating a sequence with Ibil < 10 for 0, and identical naive height to the
original h-line. We do this for positive and negative in decreasing order of the
euclidean radii of the corresponding Hi.
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G. We address the effect a slide at Hi for, say, a positive has on a horocycle
incursion at Hi for a negative j. Our previous analysis applies directly if the exit
from Hi is higher than the entrance into Hi.

But this need not be so, the worst case being when the horocycles are of equal
size, and sliding across Hi takes our geodesic exit very near the cusp of Hj. This
potentially fatal situation is salvaged as follows.

First, we can slide across the Hi in the other direction--not both directions, left
and right, can result in exiting near its cusp of a single Hj, because in one direction
we are sliding away from that cusp.

The remaining difficulty is that sliding in the ’other’ direction may enter a new
horocycle, again of equal height to i, and exit near the cusp of the new horocycle.
But this is not possible.

For, we would then have a configuration of three horocycles of nearly the same
euclidean radius: two tangent, (Hj and another), and also Hi. The original geodesic
exits near the cusp of Hi. If sliding in one direction forces an exit near the cusp of
Hj, sliding a nearly euclideanly equal amount in the opposite direction cannot force
an exit near the cusp of the horocycle tangent to Hi.

H. Since 1/[ci 12 0, this sliding process converges to an h-line of naive height
equal to the original and with feet having no [bi[ > 11, O. This means that from
our original geodesic of naive height of 100, the naive height becomes the actual
height of the new geodesic and we have demonstrated that 100, 0) is in the Hall
ray.

It is worth discussing the prospects for terminating this process. In the algorithm
as given, if the geodesic were in fact closed, we would not know it. We would simply
never encounter a further need to slide. This is endemic--our tracking is not exact
enough to detect closure. This is no different from ordinary continued fractions; one
cannot look at a finite sequence of partial quotients and conclude that the continued
fraction expansion is periodic.

There is however, a mechanism for selecting closed geodesics if E is of finite
volume with elliptic fixed points of even order. This consists of terminating the
process as follows: when we are quite near the real axis on each side--at height y,
say, replace the geodesic with one connecting the two elliptic fixed points of even
order nearest the points on the original geodesic at height y,. It can be shown, under
the hypotheses above, first that the continued fraction of the new geodesic (up to this
point on the geodesic) differs little from that of the old, and second that the naive
heights are also very close (both of these require y to be small). Moreover, the new
geodesic is closed, being fixed by the hyperbolic that is the product of the two elliptics
of order two fixing the elliptic fixed points. With the assumption that the elliptic fixed
points are in fact computable, this fact would greatly aid calculation.
We close this section with some remarks on the effectiveness of this continued

fraction. It is not hard to see that our expansion can be computed if and only we
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can effectively produce the set of cusps a/c [0, 1), in order of size of Icl. This is
a notoriously difficult problem, even for the Hecke triangle groups (where there has
been recent progress [RS]). Presumably, it is an easier task than testing membership
in F of matrices in SL(2, ).

4. Intermezzo: Accidental multiplicity on

In this section, we focus upon the surfaces which arise as quotients of the Poincar6
upper half-plane by the Hecke triangle groups of the first kind. Each of these groups
contains the element

0

For each integer q > 3, let ,q 2 cos rr/q and

(1 q)S=
0

The Hecke group Gq is then defined as (S, T). The theta group, traditionally denoted
F<.), is also generated by such a pair, but is the limit as q oo; thus its translation
length at infinity is 2. For each of these groups, we will refer to Sm TS as Tin. We
define Fq to be (To, TI Tq-i ).

As the parameter q increases, the Gq\7-( form a discrete deformation family. That
is, by way of the underlying groups, a closed geodesic has an avatar on each surface of
bigger q, see [SS2]. We say that two equi-length geodesics on a particular surface are
accidentally of the same length if the corresponding geodesics on each other surface
of the family are unequal in length. In general, such accidental pairs will correspond
to a change in the length multiplicity of the surface from that of its nearest neighbors.

THEOREM. There exist infinitely many distinctpairs ofequi-length closedgeodesics
on F<.)\7-[, each ofwhich is the limit ofpairs ofdistinct length Gq\7"[ geodesics.

Following Eichler, we denote by (z, w) the hyperbolic length of the geodesic
connecting z and w in 7-/. We note the following formula, a standard computation:

(i, a + bi) log
(a2 + b2 + 1) v/(a :z + b2)2 + 2(a2 b2) +

2b

Next we note some geometric facts about 1-) \7-/. As indicated above, F’<.) is generated
by S: z > z + 2 and T: z -l/z. This is a level 2 congruence subgroup with
signature (0; 2, oo, oo). Figure 4 gives a useful fundamental region for this group.

Note that the surface admits two reflections: L: z - and M: z ( + 1)!
(- I).
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i l+i
1

Figure 4. ’Standard’ fundamental region for Fo\.

The reflection L fixes (point-wise) two ’lines’ on the surface: one connects x and
l--this passes through + 1, which is an ordinary point on Fo \7-(; and one connecting
cx and i, an elliptic fixed point of order 2 here, then from to along the unit circle.
We think of the first of these lines as running down the back of the surface, and the
second as running down the front, where the elliptic fixed point of order 2 is in view.
See Figure 5.

The reflection M has the single fixed h-line connecting and + 2, both of these
points are lifts of the same elliptic fixed point of order 2. This h-line meets the real
axis at 4- x/. The corresponding line separates Fo \7-( into two isometric punctured
hemispheres, one containing xmwhich we will call northern, the other containing
1, called southern. Note LM is an Atkin-Lehner involution at + x/i. It is also
worth remarking that, for F., the cusp-width of cx is 2, while that of (the other cusp)

is 1. Since we have shown these cusps are isometric, we see that cusp-width is not
an intrinsic geometric property. We illustrate L and M in Figure 5.
We are now ready to define two sets of geodesics. Let m > 2 be an integer. The

collection .Af consists of the geodesics whose lifts connect and + 2m. These are
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Figure 5. Isometries of F(.)\7-/.

closed and a comparison with the reflection line ofM in the fundamental region shows
that they lie entirely in the northern hemisphere. The images of these geodesics under
M constitute 6’. Because M defines an isometry, corresponding geodesics have the
same length. Also, a geodesic in A/" or S begins and ends at the elliptic fixed point of
order 2.

The geodesics in ./V" are fixed by the F() transformations ToTm.
(Aside" Direct computation shows that the lengths of these geodesics are log rn

where m 2, 3 Thus we have a set of geodesics on Gq\7( which can be used
to show that #{A Gq tr A <_ X} > cX, where c may be computed explicitly.
Note that no discussion of quadratic forms nor of sophisticated analytic techniques
is needed, by virtue of the elliptic fixed point of order 2.)

In [S], the surfaces Gq \7- are discussed and the notation To " Tm $ T1 is defined as

ToT Tm- Tm Tm- T2 T. The precise path of the geodesic fixed by To T, $
T is determined in [S, 3, p. 552, paragraph 2]. This geodesic is in S; in particular,
it is simple. The elements To " Tm $ T and ToTm cannot be F(.) conjugate, let alone
identical, as their geodesics are different--they lie in separate hemispheres. Indeed,
for m < q, they cannot be even be Fq conjugate, by the same arguments. We will
show that their traces are not the same, thus ruling out conjugacy in general.

It remains to show that these pairs of geodesics are not the ’limits’ of equi-length
pairs on the Gq\7-g--i.e., that the equality of length in F. is indeed accidental.
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There are at least two ways to do this. Fix m and consider the corresponding pair of
geodesics. Most directly, we show that for each q, the Gq primitive hyperbolics fixing
each of the two Gq \7-[ avatars of these geodesics have differing traces. Alternatively,
we invoke the cone metrics of C. Judge [J] to show that the Gq lengths differ.

Direct Trace Computations. The following calculation takes place in Gq, not

F. Note that now Tm fixes + m,q The tr To Tm is 2 2m ,kq + 2. We next compute
tr O"m where am To " Tm , TI.

Let rm "= TcrmT. We have rm (STo)m(s- TO)m. Now let STo =" U, and so

am- --am-2

where am am(,q) is monic of degree m in ,q. For V "= S-l To, we find

vm (_ )m (am am-l ).--am-I --am-2

From these, simple computation shows

2 2 2tr O"m am q- 2am_ at- am-2"

For the limit case of Z 2, one easily shows that am-1 m. Thus the traces of
To Tm and of O" are the same. We show that this is not the case for any Xq. Now,

2 2am-! (sinmzr/q)/(sinzr/q), see say [LS]. Thus, trtrml am_iXq + 2. But, am
increases with Z Xq. This last can be shown by induction: Since 0 < Un (o) < o
and U-n (o) q Un ((x)), for n in q }; we find that Um (o) increases
if m < lq/2J. But, am is um(o). Hence, am-I increases to m. That is, the
difference in lengths between the geodesics goes to zero as q --> o.
We now give bounds on the lengths of the geodesics on Gq \7"[ corresponding to

O"m. If m q/2, then am_-- l/(sin:r/q). Thus, am_l > q/zr, or am-1 > 2m/:r.
Therefore, for q > 2m trcrml > (4m/rr 2 2.q + 2. Thus, a lower bound for the length
of such a geodesic is 2 log(mXq/2).

Cone Metrics. First, the quadrant Q "= {x + iy 10 < x < o, y > 0} may be
mapped to . A sequence of maps that does this (and takes o to ) is:

irz q-- )2z -> irrz -> eirz \e---z._

as
Next, note that the l-dimensional cone metric with angle c on Q is given by Judge

I dsl
sinh cyl
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where ds is euclidean metric. Expanding the sinh in a Taylor series, we find:

Idsl
Or2 y2 (X4 V4y(l++-gy-., +...)

It is clear from this that the length with respect to these metzics of any curve in Q
increases as c ,1, 0. (The Hecke groups in Judge’s normalization have ot zr2/q.)
This will also be true then, if we push each metric forward to 7-t. This means that
if we measure the geodesic between and + mq for c 0 and then ot rr2/q,
the latter will be shorter. The first of these is just the northern hemisphere length of
the geodesic between these points on I"q \7-(. It is also the length of this geodesic on
Gq \7[, since no elliptic fixed point of order 2 intervenes.
Now the second measurement gives the length of the Gq\7"[ geodesic whose lift

is fixed by am. This is because, again, we know there is no intervening elliptic fixed
point of order 2, and also the fact that this geodesic has an intermediate lift contained
entirely in the southern hemisphere on l"q \7-/is equivalent to it lying entirely in the
zr2/q cone on Gq\’J. We have shown that the geodesics are of unequal length until
we reach F(.\.

This technique may be profitably applied to the I"q \7-/as well. Not only do we find
that the northern and southern routes between and + m),q are longer and shorter,
we may take certain routes ’woven’ between these two points and lying in the disc
bounded by them. Such curves are characterized by a choice for each of the m 2
intervening elliptic fixed points of order 2 lying within said disc of whether we pass
by to the north or the south of the elliptic fixed point of order 2. There are thus 2m-2

distinct such geodesics.
Further their lengths are all longer than the southern route and shorter than the

(piece-wise geodesic) path from to + mLq gotten by connecting successive elliptic
fixed points of order 2 by (the projections of) shortest northern arcs. (This last path
has length m log .q, which is longer than the northern route, which has length

2(log m + log ,q). The piecewise-geodesic path would be in the homotopy class
of the northern route, if we adjusted the path so that it passed through + ) 4- skq,
rather than 4- Skq (the elliptic fixed point of order 2), for 2 < s < m 1.)

The length inequality holds because, for a given geodesic, if we flip all northern
(resp. southern) passages to the south (resp. north), we (a) shorten (resp. lengthen) the
curve, by Judge’s formula, and (b) obtain a curve in the homotopy class ofthe southern
(resp. northern) route. We have thus produced 2’’-2 4- 2 (simple) closed geodesics
on Fq \7-/, each having length less than m log q and greater than 2 log(mXq/2).

Example. (q > 13). Intermediate in absolute trace to the piece-wise connection
and southern route elements (= To "1" T5 $ TI), we have A := To. TI T4. Ts. T4. T.
The geodesic corresponding to A bounces between and 4- 5,kq, passing to the north

2of 4- 2,q and 4- 3,kq and to the south of 4- ,q and 4-4,kq. Now tr A 9,kq4 4- 3)q 4-1
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-3 -1 1 3

Figure 6. ..Fin.f a fundamental region for Finf.

6 6,k4q + 2whereas the trace for the southern route is 10Lq0 6LSq + 11q .q + 2. A
simple calculation shows this trace is smaller than that of A in the indicated range.
As to the upper bound, 4 log q -- log 9 < A < 4 log q -- log 10. The piece-wise
route length is easily seen to be greater than 10 log

5. The geometry of Finf

This subgroup of F(.) is easy to define: Iinf :=< Tm m 6 Z >. We will show
that Fin.t" is infinitely generated, that it is normal in I-’(.), and that it has no parabolic
elements. It is of the first kind, but with infinite volume, and has two very special
limit points on the boundary of the most illuminating fundamental region which we
shall construct.

5.1. Fundamental regions. First of all, Fin.t" is obviously Fuchsian, being a sub-
group of the discrete group F(.). From the indicated generators, it is clear that a
fundamental region is contained in I,-JmEZ .)L’F.) where ’r,., is the standard fundamen-
tal region for 1-’(.). See Figure 6.

That this is a fundamental region follows easily. Indeed, if two points herein were
equivalent, 1-’(.) considerations force their equivalence under a power of $2: z - z+ 2.
But no power of S2 lies in l"i,f, as this would give a new relation in 1"(.. It is now clear
that oe is not a cusp of Fi,:t", as the fundamental region contains an entire horocycle
at oe. Next, note that all real vertices of this fundamental region are equivalent under
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i i+2

0 I

Figure 7. * a better (?) fundamental region for I"inf.Fin.f

sequential products of the various Tm. Thus we will know there is no cusp when we
show that is not a cusp.

Clearly, ToS-2 generates the stabilizer of in Fo. It is not hard to show that no
power of this element is in I"inf. For, if the kth power of this element lies in Iinf, then
so does ToS-2k, by a simple conjugation argument. But this implies S-k Fin.f, and
we have seen that this is false. So the surface I"inf\7" has no cusps.

(We note in passing that S2Iin.fS-2 Iinf, which shows that Iinf <] Io. This is
a start towards identifying the conformal isometries of I"inf\7-[.)
We are going to transform rinf so that the geometry at and x is clear. This

will result in a new fundamental region, which is neither Dirichlet nor Ford, nor even
convex for that matter. Indeed it will have some horocyclic sides.

Basically, we use To to map the fundamental horocycle to 0, and then map all
the triangles (not geodesic, the tops are horocyclic) anchored at 4- 2m to images
anchored at 1. First of all, To maps the fundamental horocycle to the (euclidean) disc
centered at i/2. The images (on smaller horocycles) of the elliptic fixed points of
order 2 on y will be denoted e+2m, in an obvious abuse of notation. The triangle
based at -3 is mapped to one based at 1/3. Applying the elliptic of order 2 fixing
e-2 sends this triangle to one anchored at 1. Its top is on a new horocycle, running
between e_ and e_4 (the latter on the new horocycle). An image of the triangle based
at -5 lies just below the image of the one at -3, which we have just moved to 1. An
application of the elliptic of order 2 fixing e-4 (the one just above), moves this to 1.
Continuing in this way gives this fundamental region, see Figure 7. Note that every
neighborhood of contains infinitely many sides of this fundamental region, further
demonstration that is not a cusp.
We will describe an anti-conformal involution, M, of I"inf which maps cx to 1,

showing that these points are geometrically the same. Consider .T’riny. Connect
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NECKLACE, the Reflection Line

-3 -1 1 3

Figure 8. The necklace.

successive elliptic fixed points of order 2 in this fundamental region with h-lines
(i + 2m, + 2m + 2). (This h-arc divides the 1-’. fundamental region anchored at
2m + in two.) Reflect the points of 5rr whose real part lie in [2m, 2m + 2) in

inf
this h-line. This interchanges the two aforementioned pieces of the 1". fundamental
region anchored at 2m + 1. Do this for all m. It is not hard to check that this gives
a well-defined anti-conformal involution of [’inf. (The action at rn 0 is indeed that
given by M of the previous section.) It is also easy to check that the cxz-horocycle
y > is mapped to the l-horocycle of euclidean center + 1. Thus the geometry
near these two points (of the limit set) is the same. Last, the necklace of h-arcs strung
between successive elliptic fixed points of order 2 is point-wise fixed by M; this
necklace separates the simply connected I"inf\]-[ into two simply connected pieces.
Note that l’i,f\ cannot be isometrically compactified.

5.2. The Hall Ray on I"inf\’]-[. In this section we observe that the method of
shows that there is Hall ray at oe (and therefore 1, by the isometry M) on r’inf\7-[.
The reader may have noted that nothing in that section required the existence of a
group element fixing the cusp of each horocycle.

THEOREM.
to p.

Let p be either of or o, then [’inf\7-[ has a Hall ray with respect

This follows in a straight-forward manner from the fact that I"inf < 1"(R). The only
technicality is that each of and cx on I’inf\7-[ projects to o on 1-’(. \7-(.

Alternatively, we could note that the sizes, geodesic incidence patterns, and stria-
tion arguments for cusped horocycles go over unaffected, word for word. Indeed the
argument of section 2 is simplified, because we cannot have infinitely many tangent
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Figure 9. The action of M at rn 0.

horocycles all (with ’cusp’) having Icl 1. Thus Hall rays and punctures are not
so intimately related as one might have thought.

The difference geometrically is that on F\7-/, in the presence of a parabolic el-
ement, a geodesic with large height wraps around the puncture (many times) when
it achieves that height; this forces a large number of self-intersections (so-called
parabolic intersections--see [BLS, H, LS2]) in that part of the geodesic. But the
analogous portion of a geodesic on I"inf\’]- has no self-intersections, as the entire
horocycle is in the fundamental region.

6. Hyperbolic continued fractions

In this section we introduce a hyperbolic analog of the continued fraction algo-
rithm of 1. Whereas the parabolic continued fractions track the depth of penetration
of geodesics into horocycles and thus proximity to a distinguished cusp, our hy-
perbolic continued fractions track proximity (in an appropriate sense) of geodesics
to a distinguished simple closed geodesic. They admit a Hall ray phenomenon, as
we demonstrate. We intend to study this algorithm in further work on the sym-
bolic dynamics of geodesics. Also of interest is their relationship to Fenchel-Nielsen
coordinates in Teichmtiller space and to hyperbolic Poincar6 series.

Our idea is straightforward. Given a simple closed geodesic ?, on a Riemann
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surface E F\7-/, by SL(2, ) conjugation, 9/ may be considered to lift to the
imaginary axis, denoted 2-. By quasi-conformal deformation, the primitive hyperbolic
fixing the imaginary axis is z - 2z. Next, consider a lens , about 2---a neighborhood
lying between y +Nx, for some (large) N. We observe that N may be chosen so
that the intersection of L; with the annulus centered at the origin with inner and outer
radii and 2 respectively lies in a single fundamental region for the deformed F.

The lens L is the analog of the fundamental horocycle. Its striations are given
by intersecting L; with origin-centered annuli, each of radii 2n and 2n+l for n Z.
The images of this lens under 1-’ are the analogues of the other horocycles. Each is
centered at a lift of 9/ in ; no two intersect. Finding them effectively amounts to

solving the conjugacy problem in the deformed group for ( ,,/ 0 )0 -1/ .These

lifts are the simplest of Thurston’s laminations. We call the euclidean radius of the
h-line in the lens the radius of said lens.

Given a geodesic v of E, we choose an h-line lift and form the continued fraction
with respect to 9/: (/i, f/), where fi is the number of striations of/i which the lift
of v meets.

The appropriate notion of naive and actual height captures the proximity of the
trajectory of v to that of 9/; it is then more than a matter of intersection, or near
intersection.

Definition. Let z on v and w on 9/be the closest points of the respective geodesics
in L;. Let Oz. and 9w be the angle (to the horizontal in 7-/, say) made by the geodesics
at z and w respectively. Then the naive height of v in/2 is (Iz wl + Itgz 9901)-The actual height is the supremum of the naive heights of all lenses encountered by v.

An h-line with large naive height at the lens about 2- has a large diameter and a
foot quite near the originmjust as in as the parabolic case. A geodesic with such a
lift would have a pair of lift feet close to (i.e. well approximated by) those of (any
deformed 1-’ translate of) 2---i.e., the geodesic would seem to run alongside 9/on E
for many ’windings’, and this is the same as having a large f for this lens.
We remark that some geodesics will have no continued fraction expansionmthey

never come close to 9/. However, the fact that the geodesic flow is mixing makes such
geodesics highly non-generic.

Sliding of h-lines is now done by means of transformations Ha Z az, thus
preserving the naive height in the lens about 2-. In one respect, the lenses are easier
to work with: Whereas the intervals consisting of ’shadows’ cast on the real axis by
our horocycles can overlap in annoying ways, this is not so for the intervals between
the feet of our lenses--this by simplicity of the original geodesic.
We gather some useful calculations:
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LEMMA. Let V ( a
c d

and N as above, then

(ax + b)(cx + d) + acN2x2

V(x + iNx) +
(cx + d)2 q- C2NZx2

iNx

(CX -+- d)2 + c2N2x2"

The point as above whose image under V has largest imaginary part has x
4-d/c/N2 + 1; this maximal height is 1/2cd(1 + N-1 + N-2). The imagi-
nary part of V (iy) is Ic/(c2 + d2y2)l, which is maximized at I1/2cdl when y c/d;
the height is 1/2cd. The imaginary part of V(i2nc/d) is 1/2cd(2n-I + 2-n-l). The
feet of the lens V() are at a/c and bid.

This allows us to construct vertical h-lines with small ’partial denominators,’ fi.
Indeed, temporarily ignoring the initial infinite segment of the vertical in the lens at
2, given T > 100, we construct a vertical which enters the first lens for fl > T
striations, but whose subsequent j are all less than 10. (Note that sliding such a line
by Ha produces another vertical h-line.)

This is similar to the parabolic case, thus we simply sketch the argument. Begin
with a vertical line that encounters a (first) lens upon leaving the lens at 2" with

f 100 and crossing through this lens. (That is, the vertical hits, and so crosses,
a lift of 9/.) Next, note that the lemma guarantees that the next lens encountered
will have radius 1/2c2d2 < .6N(1/2cd), for some N < 1. (This amounts to N
being a constant depending only on 1-’ and ,.) We would like to slide toward the peak
(euclidean) of this next lens, if necessary, to make f2 < 10. This poses a problem only
if the second lens is almost as large as the first. Should this be so, simply slide toward
the nearest foot of the first lens (increasing T) and avoid the second lens altogether!
Subsequent lenses encountered will now have small radii and sliding toward their
centers cannot affect f > T. We remark that all sliding takes place within the first
lens encountered, and as we remarked, no new lens above this one may be entered by
such a slide.

In the case of -‘3 C SL(2, Z) (the group generated by cubes of elements of
the modular group, see [$2] for the associated geometry), such a vertical h-line
would terminate in a real number having a single excellent approximant by certain
quadratic irrationalities--the analogue of a continued fraction with a single large
partial denominator. To be specific:

-1Example. The shortest geodesic on I3\’]--/is fixed by (-1 2) and is perforce
simple. A particular lift runs between the Golden Means r/, r/ := (1 4- /)/2.) By
choosing vertical lines terminating near r/, and then sliding these lines, can obtain
real numbers ot with a single excellent approximant, of the form (dO + b)/(co + d),
where (; ) 6 F3. If we wish to expand the set of approximants to all r(1) images
of r/mi.e., to ask which real numbers can be have an excellent approximant from the
modular group, we answer that one of or, c + 1, ct + 2 has an excellent approximant
in l-’3(r/). (There are no simple geodesics on F(1)\, of course.)
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In fact, the lemma computations make it possible to construct a hyperbolic Hall
ray. This is done in exact analogy with the parabolic case. As we remarked above,
lenses are more tractable than horocycles.

THEOREM. Let ?’ be a simple closed geodesic on a Riemann surface E. The set

ofheights with respect to , ofthe geodesics of E contains a real half-line.

Proof(sketch). Without loss of generality, assume , lifts to 2. Begin with an
h-line of naive height greater than 100 for the 2" lens. We will show that this h-line
can be slid so as to have all (other) partial denominators 3 < 10, - 0. As we
noted, this amounts to an upper bound (depending only on ?’ and , but not v) for
the naive heights of v in/i. Thus the actual height of the limit geodesic will be the
original naive height, left unchanged by the slides, and we will have our Hall ray.

All quantitative estimates necessary for the following are in the lemma above.
Steps A through C are exactly as in the parabolic case. In D, the radius is 1/2cidi. In
E, the striations are located at heights 1/2cidi(2bi-! + 2-bi-l). Thus the dependence
on 1/2cidi factors out. So again, the fractional division points on the lens do not
depend on the radius. This is true for the lens width as well. Also then, by increasing
N at the outset, this width can be ignored in continued fraction computations; we can
work with the lift of , itself.

Justified by the factoring out mentioned in the previous paragraph, we normalize
with 1/2cidi and a lens having feet at the points 0 and 2 to simplify and clarify
calculation. A simple estimate shows that IJSI _< 10 forces our geodesic to terminate
within .98 of 1. (In other words, only 2% of termini require any slide.)

As Ei+l has radius smaller than i, we can clearly slide to the peak of Zi+l, unless
that peak is too close to a foot of Zi. In that case the radius of Zi+l is tiny compared to
that of/i and we slide towards 1, avoiding the/i+1 lens altogether, while sustaining
f/ < 10. The worst case is that of two lenses of radii about 1/2 located beneath i;
and here we can indeed slide to the peak of/i+. The issue of the sliding at one foot
of our geodesic harming the continued fraction expansion at the other foot is handled
exactly as in the parabolic case.

One final remark on hyperbolic continued fractions. There is no reason not to
use them in tandem with the parabolic fractions. Judicious choice of the sizes of
horocycles and lenses can ensure that neither intersects the other. On surfaces like
1-"\7-(, it is reasonable to suppose that the horocycle and the lens ’almost’ fill out the
surfacemmeaning that the tracking of geodesics by the combined mechanism would
be quite exact. We intend to return to this in a subsequent paper.

REFERENCES

[B] A. Beardon, The Geometry of discrete groups, Graduate Texts in Mathematics, no. 91,4Springer-
Verlag, New York 1983.

[BLS] A. Beardon, J. Lehner and M. Sheingorn, Closed geodesics on a Riemann surface with application
to the Markoffspectrum, TAMS 295 (1986), 635-647.



RIEMANN SURFACES HAVE HALL RAYS AT EACH CUSP 397

[H] A. Haas, "Geometric Markoff theory and a theorem of Millington" in Number theory with an
emphasis on the Markoff spectrum, A. Pollington and W. Moran, eds. Dekker, New York, 1993,
pp. 107-112.

[J] C. Judge, On the angular moduli of constant curvature surfaces with conic singularities, Indiana
University, 1993, preprint.

[L] J. Lehner, Discontinuous groups and automorphic functions, Amer. Math. Soc., Providence, RI,
1964.

[LS] J. Lehner and M. Sheingorn, A symbolic dynamicsfor geodesics on punctured Riemann surfaces,
Math. Ann. 268 (1984), 425-448.

[LS2] J. Lehner and M. Sheingorn, Simple closed geodesics on 1"(3) arise from the Markoff spectrum,
BAMS 11 (1984), 359-362.

[RS] D. Rosen and T. A. Schmidt, Hecke groups and continuedfractions, Bull. Austral. Math. Soc. 46
(1992) 459-475.

[SS 1] T. Schmidt and M. Sheingorn, Length spectra for Hecke triangle surfaces, Math. Z. 22t) (1995),
369-397.

[SS2] T. Schmidt and M. Sheingorn, On the infinite volume Hecke surfaces, Compositio Math. 95 (1995),
247-262.

[S] M. Sheingorn, "Low height Hecke triangle group geodesics" in A tribute to Emil Grosswald, a
volume of contributed papers edited by Marvin Knopp and Mark Sheingorn, Contemp. Math.,
no. 143, AMS, Providence, RI, 1993, pp. 545-560.

[Sh] H. Shimizu, On discontinuous groups operating on the product ofupper halfplanes, Ann. of Math.
77 (1963), 33-71.

Thomas A. Schmidt, Oregon State University, Corvallis, OR 97331
toms@math.orst.edu

Mark Sheingorn, CUNY Baruch College, New York, NY 10010
marksh@panix.com


