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EXTREMAL FUNCTIONS IN INVARIANT SUBSPACES
OF BERGMAN SPACES

PETER DUREN, DMITRY KHAVINSON AND HAROLD S. SHAPIRO

1. Introduction

For 0 < p < , the Bergman space AP consists of all functions f analytic in the
unit disk D for which

IIflIPP L If(z)ldr < ,
where dcr +/- dA denotes the normalized element of area. A recent development
in the theory of Bergman spaces was the construction of contractive zero-divisors,
weak analogues of Blaschke products produced by an extremal problem analogous
to one that leads to Blaschke products in the Hardy spaces H’. Specifically if {’j
is a given AP zero-set with {j # 0 for all j, and NP is the subspace of all functions

f in At’ which vanish at least on {’j with the prescribed multiplicity or higher, then
the canonical divisor G is the unique normalized solution to the extremal problem of
maximizing If(0)l among all f e Np with Ilfllp 1. It is known [6], [3], [4] that
the canonical divisor has no extraneous zeros, that Gf II >_ f I1 for all f e AP,
and that f/G p < f lip for all f e NP. In the case offinite zero-sets, it was shown
further [3] that G has the structure

(1) G(z) J(O, O)-I/pB(Z)J(z, 0)2/p,

where B is the finite Blaschke product with zeros g’j and J (z, ’) is the reproducing
kernel in the Bergman space A2w with weight w IBI p. In particular, J (z, 0) 0 in
D. Regularity properties of the kernel function J then implied that G has an analytic
continuation to a larger disk.

Some of these results have been extended [4] to arbitrary invariant subspaces of
AP, not necessarily defined by zero-sets. Here an invariant subspace means a proper
closed subspace of Ap that is invariant under multiplication by polynomials. Thus
I is an invariant subspace if Pf I for each f I and every polynomial P. The
invariant subspaces of Ap are much more complicated than those of Hp and have
never been described completely. They need not be singly generated and they may
have weird properties (see the recent paper by Hedenmalm [7]). The present paper
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will focus on singly generated subspaces [f], defined as the closure of the set of
polynomial multiples of a given function f Ap.

For an arbitrary invariant subspace I C AP, the extremal problem that defined the
canonical divisors is generalized to

max If(0)l.(2)
fl, llfllp=1

Here it is assumed that 0 ’ Z(1), the common zero-set of functions in I. For
< p < o it follows from the strict convexity of AP that an extremal function exists

and is unique under the normalization f (0) > 0. (See [4] for further details.) For
general invariant subspaces I, neither the existence nor the uniqueness ofthe extremal
function is clear for 0 < p < 1; we consider this an open problem. For subspaces
generated by inner functions, however, we are able to establish the existence and
uniqueness of extremal functions in the case 0 < p < 1.

Here is a summary of results in the paper. For any invariant subspace of Ap

(0 < p < oo) generated by an inner function it is shown that the extremal function
has a regularity property, a generalization of the result in [3] for subspaces defined
by finite zero-sets. Along the way the structural formula in terms of kernel functions
is generalized to this setting. The nonvanishing of the kernel function is found to
be a phenomenon far more general than needed for this application. The regularity
of the extremal function shows in particular that the canonical divisor of a.Blaschke
sequence extends analytically over each boundary arc containing no cluster points of
the zeros. In this case it is shown further that Np [B] [G]; thus the invariant
subspace is generated both by the Blaschke product B and by the canonical divisor G.

The first version of this paper was written in January 1993 and was narrowly
circulated. Since that time, three preprints [5], [8], [9] have appeared, treating similar
questions from a rather different point of view. However, the overlap is small and the
papers actually complement each other.

2. Regularity of extremal functions

Let h BS be an arbitrary inner function with h(0) > 0, where B is a Blaschke
product and S is a singular inner function. (See [2] for instance, for terminology.) The
singular set ofh is the closed subset ofthe unit circle defined as the union ofthe cluster
points of the zeros of B and the support of the singular measure of S. Let I [h] be
the invariant subspace of AP generated by h. Assume first that < p < oo, deferring
the case 0 < p < to Section 3. Let F be the extremal function of problem (2) with
F(0) > 0. We are going to show that F has an analytic continuation over each arc of
the unit circle complementary to the singular set of h. Our main result (Theorem 2
below) is closely related to Theorem D in [8], but there is no inclusion.

As usual, the case p 2 is simplest. Here we can give a direct argument that
leads to a stronger form of the result. Thus we will first suppose that p 2. The
underlying idea is to show that f f F is not a cyclic element for the backward
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shift operator T* in H2. From this it is known to follow that f has a meromorphic
pseudocontinuation to the exterior ofthe unit circle, denoted by De. But to say that f is
noncyclic for T* is equivalent to saying that f is orthogonal to some invariant subspace
of T. In fact, we will show that f 2. z2ho for every 0 H2. Having established
that, we will be able to conclude directly, without reference to the backward shift,
that f, and therefore F, has an analytic continuation to ]]])e except possibly for poles
at the reflections of the zeros of h.

By a simple variational argument (cf. [3]), it can be shown in general that the
extremal function F for the problem (2) has the orthogonality property

(3) fD IFIp-2-ffk do O, k I, k(O) O.

For p 2 and I [h], this reduces to

(4) fD hap do" 0, A2, ap(0) 0.

Invoking the Cauchy-Green formula, we conclude that

for arbitrary q9 H2. In other words, flz2htp for t# H2. But in view of the
theorem ofE and M. Riesz (see [2], p. 41), this implies that zh(z)f(z) g(z) almost
everywhere on qI’ for some g HE. Since Ih(z)l a.e., it is equivalent to write

(5) f (z) zh(z)g(z) a.e. on

Now observe that zh(z)g(z) z[t(z)(z) a.e. on ql", where/Tt(z) 1/h(1/) is
meromorphic and (z) g(1/) is analytic in De. Thus f(z) f(z) a.e. on ,
where f(z) z(z)(z) is analytic in De except at the reflections of the zeros of h,
and f is locally in H2 near each arc of the circle outside the singular set of h. By a
general version of the analytic continuation principle, it follows that f has a single-
valued extension across each such arc to a function analytic in De except perhaps for
poles at the reflections of the zeros of h.

The general case _< p < x is more difficult, and our final conclusion is weaker.
However, our proof is based on a result of independent interest, a generalization of the
structural formula (1) derived in [3] for canonical divisors of finite zero-sets. Given
a continuous function w(z) >_ 0 in D, let AEw denote the Hilbert space of analytic
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functions f such that

IIf1122,0 f Ifl2w dtr < x.

2 If w is bounded, itLet 2 be the closure of the polynomials in the norm of A
is the same to take the closure of the functions analytic in II). At present we are
interested only in the weight function w Ih p, where h is the given inner function.
Then, because the zeros of w are isolated, standard techniques show that each point-
evaluation is a bounded linear functional, and that norm convergence implies uniform
convergence on compact subsets ofthe disk. Thus2w C a2 and/2w has a reproducing
kernel J (z) J (z, (), characterized by the properties J /12 and

f f(z)J(z, ()w(z)dcr, f I2.f(()

The kernel function has the symmetry property J ((, z) J (z, () and a scalar multiple
of it uniquely maximizes If(’)l up to rotation among all functions f 2 of unit
norm.

THEOREM 1. Let h be an arbitrary innerfunction with h(O) > O. Let F be the
normalized extremal function for problem (2) over the invariant subspace I [h]
generated in AP by the polynomial multiples ofh, where < p < c. Let J (z, be
the reproducing kernelfor the Hilbert space I2w with weight w Ih p. Then

(6) F(z) J(O, O)-l/Ph(z)J(z, 0)2/p.

Moreover, J (z, O) 0 in and F has no extraneous zeros.

This result was established in [3] for the special case where h is a finite Blaschke
product. The proof in [3] can be extended to the more general case, but we prefer to
give a shorter, more direct proof that makes the relation (6) transparent.

Proofoftheorem. The first step is to show that F has no extraneous zeros; its
zero-set is precisely the same as that of h, multiplicities counted. Suppose on the
contrary that F(or) 0 at some point ot D where h (or) - 0, or that F has a zero at c
of higher multiplicity than that of h. The canonical divisor G of the zero-set {ct} was
given explicitly in [3]. It is analytic in D, has a simple zero at ct and no other zeros in
D, and satisfies G(0) < 1. Thus F/G is analytic inD, and IIF/GIIp < IIFllp
by the contractive property of canonical divisors. Furthermore, F/Ga I. To see
this, observe first that for each e > 0 there is a polynomial Q with Q(ot) 0 such
that IIhQ- Flip < . But hQ/G I and the contractive property gives

Ilha/G F/Gllp <_ Ilha- Flip < e.

Thus F/G I, and the inequality F(O)/G(O) > F(0) contradicts the extremal
property of F.
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Having shown that F has no extraneous zeros, we can write F hk2/p, where
k A2 and k(z) 0 in D, with k(0) > 0. Recall now that by definition F maximizes
f(0) among all functions f [h] with Ilfllp <_ and f(0) > 0. The definition of[h]
therefore shows that k(O)2/p is the supremum ofg(0) among all functions g analytic in
D with g(0) > 0 and Ilhgllp _< 1. In view of the contractive property of the canonical
divisor and the fact that the canonical divisor of a finite zero-set is analytic in D and
does not vanish on the boundary (see [3]), it is easily seen that the supremum need be
taken only over such functions g with g(z) 0 in/I). Thus k(0) is the supremum of
f(0) over all nonvanishing functions f 2w with [[fllE,w < and f(0) > 0. The
argument shows in particular that k 6 2W

On the other hand, the function K (z) J(0, 0)-/2J (z, 0) uniquely maximizes

f(0) among all functions f 6 I?2w of norm f 112,0 _< with f(0) > 0. We claim that
the same maximum value persists under the additional constraint that f (z) # 0 in I,
allowing us to conclude that k K. Indeed, we will show in Section 4 (in greater
generality) that J (z, 0) 0 in I. Since the extremal function is nonvanishing, it is
clear that nothing changes if this additional constraint is imposed. Thus k K, and
the derivation of formula (6) is complete except for the proof that J (z, 0) 0. This
will be given in Theorem 3.

Having established the structural formula (6), we are now ready to show that F
has an analytic continuation.

THEOREM 2. For < p < xz, let F be the normalized extremalfunction in the
invariant subspace I [h] generated by an innerfunction h with h(O) > O. Then
F has an analytic continuation across each arc of the unit circle complementary to
the singular set of h. For p 2 the extremalfunction extends meromorphically to
thefull exterior ofthe unit disk and is single-valued and analytic except perhapsfor
poles at the points 1/(j symmetric to the zeros (j ofh.

Proof The special case p 2 was treated above. For < p < o the proof
exploits the representation (6) of F in terms of the kernel function J. Since h has an
analytic continuation across each arc complementary to its singular Set, and Ih (z)
on the boundary, it is known that J (z, 0) also extends analytically across each such
"regular" arc (see [3], Lemma 9). From formula (6) it follows that F has a continuous
extension to each regular arc. But it was shown in [4] that F is an expansive multiplier:
FQ lip Q lip for every polynomial Q. Thus Hedenmalm’s "peaking function"

argument (see [3], Lemma 5) can be applied to show that IF(z)[ > on each regular
arc. In particular, the extended function J (z, 0) has no zeros near the arc, so J (z, 0)2/p

remains analytic. This shows that F also has an analytic continuation across each
regular arc of the circle.

For the special case where h is a singular inner function whose singular measure
# is supported on finitely many points of the circle, it is shown by Hedenmalm,
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Korenblum, and Zhu [8] that J (z, 0) is a rational function with simple poles on the
support of/z and no other poles in the extended complex plane.

3. Further applications of the structural formula

The representation (6) of the extremal function in terms of the kernel function
can be extended to the range 0 < p < 1. Here the existence and uniqueness of the
extremal function can not be asserted a priori, but it is shown that the kernel function
J (z, 0) is uniquely determined by the associated extremal problem in the space I72.
Thus the proof of Theorem can be adapted to establish the existence and uniqueness
of the extremal function F even for 0 < p < 1, and to extend the structural formula
(6) to that case. The analytic continuation property (Theorem 2) then generalizes at
once to0<p< 1.

It may also be noted that formula (6) gives an effective way to calculate the kernel
function whenever the extremal function is known. Here are two examples.

First let

l+z}h (z) S(z) exp
z

an atomic singular inner function. For 0 < p < oo, the normalized extremal function
for [S] in Ap was found in [4] to be

F(z) (1 + p)-l/ps(z) (1 + P )2/p1--Z

Combining this with (6), we conclude that

PJ(z,O)= q-
1-z

Hansbo [5] has given a more general formula for two mass-points.
As a second example, let h be a singular inner function S whose associated singular

measure/z puts no mass on any Carleson thin set. It is known (see 11 ]) that these
are precisely the cyclic inner functions in Ap; their polynomial multiples generate
the whole space. Thus [S] Ap and the extremal function is trivial: F(z) 1. It
now follows from (6) that

J (z, O) ep/2 S(z) -p/2 if II/z 1.

Finally,.formula (6) displays a simple relation between certain extremal functions.
If F is the extremal function for [h] in Ap and G is the extremal function for [hm]
in Aq, where p mq and rn is a positive integer, then G Fm. This result also
follows directly from the definition of an extremal function (cf. [3], Lemma 8).
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4. Nonvanishing of kernel functions

In proving Theorems 2 and 3 we needed to know that the kernel function J (z, 0)
of the space 72 does not vanish anywhere in the unit disk. This is actually true for a
wide class of weight functions, as the following theorem asserts.

THEOREM 3. Let w(z) > 0 be a bounded continuous function on D. Suppose
that the zeros (if any) of to are isolated, and that log w is subharmonic in . Let
J (z, ) be the kernelfunction of the Hilbert space 2 defined as the closure of the
polynomials in the norm II" ll2,o. Then J (z, O) =/: Ofor all z in I.

Proof First note that J(0, 0) J(" 0) 1122,o > 0. Define K(z)
J(O, o)-l/2j(z, 0), so that IIKll2,w 1. Suppose on the contrary that K(ot) 0
for some a 6 D. Then/ K/Ga 72, where G is the canonical divisor of
in A2. According to an integral formula established in [4] (see remark at the end of
Section 3 in [4]), the inequality

(7)

holds for all bounded subharmonic functions qg. Since G, is analytic in D, a simple
limiting argument allows us to extend (7) to all integrable subharmonic functions.
Take q9 w l/ z and observe that log q9 is subharmonic because of the hypothesis that
log w is subharmonic. Thus 0 is subharmonic, and (7) gives IIKIIz,o _< IIKIIz,o 1.
On the other hand, G,(0) < and so/ (0) > K(0), which violates the extremal
property of the kernel function. This contradiction shows that J (z, 0) cannot vanish
anywhere in I.

The nonvanishing of the kernel function was first found in a special case by Hikan
Hedenmalm (private communication), and the main idea of the above proof is his.
Our integral formula allows a stronger result to be obtained by his method.

5. Subspaces generated by Blaschke products

For 0 < p < cx, let {j} be an Ap zero-set with ’j - 0 for j 1, 2
Again let NP C AP be the subspace of functions vanishing on ’j }, as defined in the
introduction. Let G be the normalized extremal function of the invariant subspace
Np, also known as the canonical divisor of {’j }. Is it true that [G] Np? In other
words, are the polynomial multiples of G dense in Np 9. For Blaschke sequences {j },
defined by the requirement that Y](1 -I’j I) < o, we can give an affirmative answer.

THEOREM 4. Let {’j} be a Blaschke sequence with j : 0, and let B(z) be the
corresponding Blaschke product. For 0 < p < cx, let Np be the invariant subspace
offunctions in AP which vanish on j }, and let G be the canonical divisor of j in
Ap. Then [B] [G] NP; in otherwords, both B and G are generators ofNp.
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Proof. The fact that [B] Nt’ was proved in 10], but because that publication
was not widely circulated the proof will be repeated here. We have to show that each

f Nt’ can be approximated by polynomial multiples of B. Write B Bn Rn, where
Bn is the partial product consisting of the first n factors of B. Then Rn (Z) --+ for
each z in D, while IIRlloo 1. This shows that IIRnf fll "--> 0 for each f At’,
by the Lebesgue dominated convergence theorem. Given e > 0, choose n so large
that Rnf f lip < , Because f/Bn At’, there is a polynomial Q such that
IIQ- f/Bnllt" < . But obviously Ilngllt’ < Ilgllt’ foreachg At’, since In(z)l <
in D. Thus IIBQ Rfllt" < , and the triangle inequality gives IIBQ flit’ < e if
< p < o. For 0 < p < the triangle inequality is not strictly valid and must be

replaced by the inequality IIf / gllp _< Ilfll / Ilgll.
To prove [G] Nt’ it is enough to show Nt’ C [G], because the reverse inclusion

follows trivially from the fact that G Np. But we know that Nt’ [B], so it is
enough to show B [G]. Again let Bn denote a partial product of B and let Gn be
the extremal function of [nn], or the canonical divisor of {(1 }. It was shown
in [3] (as a special case of Theorems and 2 above) that G Bnnn, where Hn is
analytic and nonvanishing in ]3. Furthermore, In(z)l >_ on ql’, since IGn(Z)l >
and Inn(z)l there. Thus by the maximum modulus principle, I1/nn(z)l < in
13. But it was also shown in [3] that G,, G in At’ norm as n c. It follows that
G BH for some nonvanishing function H with I1/H (z)l < in ]3. This implies
that B [G], and the proof is complete.

COROLLARY. For 0 < p < cx the canonical divisor in Ap of a Blaschke se-
quence has an analytic continuation across each arc of the unit circle that contains
no cluster points ofthe zeros.

Proof. Theorem 4 says that [B] Nt’, so the canonical divisor is the extremal
function of [B]. But by Theorem 2, the extremal function of [B] has an analytic
continuation across each regular arc of the boundary, free of cluster points of the
zeros.

The corollary gives a partial answer to a question raised in [3]. For p #- 2 we still
do not know whether the canonical divisor of a general At’ zero-set has an analytic
continuation over each regular arc.

In the course of the proof of Theorem 4, it was observed that the canonical divisor
of a Blaschke sequence is the quotient of a Blaschke product and a bounded analytic
function. In particular, G belongs to the Nevanlinna class N (see [2]). What can
be said more geneally about the extremal function F of an invariant subspace [h]
generated by an inner function? Is it always true that F N? (In their recent
preprint [8], Hedenmalm, Korenblum, and Zhu have given an affirmative answer. In
fact, their Theorem 3.3 implies our Theorem 4. Our proof is more direct, but their
result is more general.) For which inner functions h does F belong to the Smirnov
class N+? For which h does the kernel function J(z, 0) lie in N+? Is it true that
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J N+ or at least that F 6 N+ when h is a Blaschke product? What can be said for
interpolating Blaschke products?

Acknowledgment. Most of this work was done in the fall of 1992, while the
second-named author held a visiting position in the Mathematics Department at the
University of Michigan. He is grateful for their hospitality.

Addendum. After this paper was accepted for publication, a preprint by A. Aleman,
S. Richter, and C. Sundberg appeared with the title "Beurling’s theorem for the
Bergman space." Among other results, these authors generalize Theorem 4 above by
showing that the canonical divisor of any Ap zero-set generates the corresponding
invariant subspace Np.
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