SOME PROPERTIES OF TOTALLY COREGULAR MATRICES

BY
B. E. RHOADES

1. This paper is an extension of some of the results obtained by Hurwitz
[4] to totally coregular matrices, according to Definition 1 listed below. In
order to make this paper somewhat self-contained, the following definitions
have been included.

Let A = (a.) denote an infinite matrix. The norm of 4, written || 4 |,
is defined as sup, Y % | @ | . If A has finite norm, a; = lim, .. . exists for
each k, and ¢ = lim,.e? & au exists, then A is called conservative. Asso-
ciated with each conservative matrix A is a number x(A4) defined by

x(A) =t =D ra.

When only one matrix is being considered, I shall simply write x. A con-
servative matrix A4 is said to be coregular if x # 0. For a matrix 4 and a
sequence z, I shall write A,(z) = D i am @i , and Az = {A,(x)}, considered
as a column matrix. A matrix 4 is said to be triangular if a,, = 0for k > n,
and a triangle if A is triangular and a., # 0 for each n. 4 is said to be row-
finite if each row of A contains only a finite number of nonzero elements, and
A is called multiplicative if A is conservative and a, = 0 for each k.

DEerFINITION 1. Let A be a coregular matriz. Then A is said to be totally
coregular if, for any sequence x with x, — + o, A, (x) — + .

Throughout this paper the matrices and sequences discussed are real.
2. The theorems in this section are concerned with row-finite coregular
matrices.

TueoreEM 1. Let A be a coregular matriz. Then a sufficient condition for A
to be totally coregular vs that

(%) there exists an integer q such that a.. s nonnegative for all k = q.

Condition (*) states that, except possibly for those elements in the first
¢ — 1 columns, all of the elements of the matrix are nonnegative.
Before proving the theorem, I give a proof of the following lemma.

LemMa 1. If A is a coregular matriz satisfying (%), then x > 0.
Proof. TFrom the definition of ¥,
X = hmn Z;c';q Anie — Z;co=q Ay g. Zl?:q hmn Ank — Zl?=q ar = Oy
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where ¢ is any integer satisfying (*). But 4 is coregular. Therefore x is
positive.

To prove the theorem, let z be a sequence with x; -— 4. Then there
exists a positive integer N such that z; = 0 for all ¥ > N. By hypothesis,

there exists an integer ¢ such that a,; = Oforallk > ¢q. Let p = max (N, ¢).
For any M > 0 there exists an integer » > p such that & > r implies
T > M.

The remainder of the proof follows from the inequality
An(x) g Zl:=l Qnie Tk + MZ?:=T+1 Qi
= Z;=l i T + M (Z;:=T+l Anke — Zl?=r+1 ak) + M Zl?sr“ Ok«

The remainder of the proof is basically the same as that of the sufficiency
of [4, Theorem I].

To show that (i) 4 row-finite, (ii) A coregular, and (iii) x > 0 are not
sufficient to imply (%), consider the Hausdorff matrix method H ~ u with
e = 2(n + 1)/(n 4+ 2). H ~ uis regular and hence satisfies (i) to (iii)
with x = 1. But u, can be written as 2 — 2/(n + 2). Therefore

Apn, = —AN,,
where A, = 2/(n + 2) and

Auk=——H)\k+,, n=123 -; k=012 ---.

Hence all of the terms of the matrix H, are negative except those on the
main diagonal. Therefore (*) is not satisfied.

TarorREM 2. If A s row-finite and has infinitely many columns with negative
entries, then there is a sequence x such that x, — ® and lim inf, ., A,(z) < .

Proof. Because of the hypotheses, there are integers n, and k, (r = 1, 2,

- ) such that n; < ny < -+, @, < 0, and k, £ N, < k,41, where

No = 0 and otherwise N, is the largest k for which a,.» # 0. If zx = r when
N,i<k=ZN,and k # k., and

1 N,
Tk, = IMAX {7" - Z anﬂ i

ko, I=17

whenk = k,, thenz, = rfor N,y < k = N,. Therefore, zy — « ask — .
On the other hand, 4,,(z) = 0, and hence lim inf 4,(z) = 0.

TurorEM 3. If A 7s a row-finite and coregular matriz, then a mecessary
and sufficient condition for A to be totally coregular is that A satisfy condition ().

Proof. The sufficiency is Theorem 1, and the necessity is included in
Theorem 2.

For the remainder of this paper, let I = lim inf z, , L = lim sup @, .

We now consider restrictions on A4, other than coregularity, which will
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give us inequalities for lim inf A,(z) and lim sup 4.(z) analogous to the
familiar one [ = liminf A,(z) = limsup A.(2z) = L for a totally regular
matrix A.

If x is a convergent sequence, it turns out that no additional restrictions
on A are required; in fact,

lim A, (z) = D10 + x lim 2, .

In the next few theorems, we shall consider the more general case when [ is
not necessarily equal to L.

THEOREM 4. Let A be a matriz for which x s defined. Then (*) is a suffi-
ctent condition for

(A) liminf 4,(z) = D e 2 + X1
and
(B) lim sup 4,(z) £ Yoy a2 + xL
whenever the series Z ax xx, 1S convergent.
(Ifl = — o, then (A) s true without (%), provided that x > 0, and similarly

for (B) when L = .)

Proof of (A). Assume [ > — . To prove (x) sufficient, fix ¢ > 0.
Then there exists an integer N such that 2, = | — €and a. = Oforallk = N.
If r = N, then
An(z) = (I — &) Z;co=1 Qni + Z;=1 a2, — U+ €)

+ Zl?=r+1 ank(xk - l + 8).

The third series is nonnegative, and
HMyses Dot G = 1,
M X et Gui(@i — L+ €) = Drman(ze — 1 + €).
Therefore,
liminf A,(2) = (I — &)(t — Dopa @) + D pes Gk Tk -
Since » = N is otherwise arbitrary,
liminf A, (2) = (I — &)x + Doies g Tk ,

and (A) follows.

(B) is obtained from (A) by considering —z instead of z.

We shall say that a matrix A has property ¢ if there exists an integer ¢ such
that @, = Ofor k = gq.

TuvoreM 5. If A is a coregular triangular matrixz with property q, then
(%) s a necessary and sufficient condition for (A) and (B).

Proof. The sufficiency is included in Theorem 4. To prove the necessity
of (%), use the necessity proof of [4, Theorem II’], selecting k1 > q.
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There is a class of matrices for which (A) and (B) are true for bounded
sequences, but which do not necessarily satisfy (*). The following two
theorems consider this class.

TaeoreM 6. Let A be a matriz for which x is defined. Then
(**) limn—wo ZI?=1 l ank I = t

18 a sufficient condition for (A) and (B) to hold for all bounded sequences x for
which Y, ai & is convergent (in particular, for all bounded sequences  if A is
conservative).

Proof. If by, = (| am | + @ur)/2 and cur = (| @Gux | — @ur)/2, then

Qnp = bnk — Cnk

By hypothesis,
limpse Dokt b = ¢ and  limn.e 2 e 6o = 0.

Since z is bounded, there exists a number X > 0 such that |z, | < X for
all k. Fix € > 0. There exist integers M, N > ¢ such that

l—ex =L+ ¢
forallk > N and, forn > M,
Siaem < /(X +m+e),

where m = max (|!|,|L|). Letr > max (M, N).
To prove (A), foralln > r,

A,(2) = (I — &) i am + 2icr (@ — 1+ £)
+ Litnbule — U+ &) — Zirnen(s — L+ &)
The third quantity on the right is nonnegative, and
Yiacmw(m — L4 &) < (X + 1] + &) Xitriom < &
imyse Dis Gt — L4 &) = Dhama — (I — &) 2t .
Therefore,
liminf A, (z) = (I — &)(t — D ierax) + D icrae s — €

for each » > max (M, N). Letting r — « and then ¢ — 0, we obtain (A).
The proof of (B) is similar to that of (A) and has thus been omitted.

TueEOREM 7. Let A be a coregular triangular multiplicative matriz. Then
(»x) 7s a necessary and sufficient condition for

lim sup 4,.(z) = xL and liminf A,.(z) = xI

for each bounded sequence x.
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Proof. To show that () is necessary, suppose that there exists a number
A > 0 such that, repeatedly, D ey |@n| > |t](1 4+ 3\). (For any con-
servative matrix 4,

lim infpe D pet | Gk | 2 | iy Do @ | = | £].)

Choose n; so that D p; | @ue | > |t](1 4+ 8\). Since A is multiplicative,
choose an integer n, so that

Dot gk | < TEIN,  DoiZi|@ag | > |1 4 3N,
and, generally, n, so that
22 @ | < ME[, 2282 | @a | > | E](1 + 3N).
Define 2 = (—1)” sgn @n, (np—1 < k = n,), where no = 0. Then
An(T) = D w2 ngp 2 = D_a2rt Qe Tx + (—1)" D020y 11 | Cugis |-
(=1)%A,,(2) = (—=1)" 252" Gt T — DonZi | Gugs | + Db | g |
> =2M 4[] (143N =[] (L+N).
For p even, A, () > [t|(1 4+ X) = t(1 4+ N), and for p odd
Ap(z) = —[t[(L4+N) £ —t(1 4+ ).

Therefore lim sup A,(z) > t and lim inf 4,(z) < —i.

Since the sequence z is defined in terms of the sign of a, there are two pos-
sibilities: (i) x is a sequence containing an infinite number of 1’s and —1’s,
or (ii) all but a finite number of the z; are of the same sign. If (i) is true,
then! = —1, L = 1, and (A) and (B) do not hold. If (ii) is true, then z
is a convergent sequence, and the above discussion shows that A is not con-
servative and hence not coregular, since Az is not convergent.

The sufficiency follows from Theorem 6.

That the condition ‘“multiplicative’” in the necessary part of Theorem 7
cannot be replaced by “A has property ¢’’ is shown by the following example.

Let A = (au) be defined as follows: @,y = —1, @, = 1 for n > 1, and
a.; = 0 otherwise. Then t =0, |A|| =2, a1 = —1, ax =0 for k > 1,
and x = 1. Therefore A is coregular. For any bounded sequence z,

An(z) = —21 + 20 .

Therefore lim sup A,(z) = —a; + L and lim inf 4,(z) = —x; + [, (see
Theorem 4 for the form of the A-limits), but D iy | @ | = 2 for alln > 1.

If S ={A]|A satisfies (x)} and T = {4 | A satisfies ()}, then Sn T
contains all matrices A for which a.; = 0 for all n and k. However, S and
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T are incompatible; in other words, S ¢ T'and T ¢ 8. The example follow-
ing Theorem 7 shows that T & S, and we now exhibit a matrix B ¢ T — 8.

Let B = (ba) be defined as follows: by, = 1, byuy = —1/n, and by, = 0
otherwise. Then

Diabu = —1/n+1—1 and Y py|buw|=1/n+1—1.
Therefore B ¢ T, but B ¢ S, since by = —1/n.

3. Most of the results in Section 2 have obvious analogues for sequence-
to-function transformations.

4. We now apply the theorems of Section 2 to Hausdorff matrices. A
Hausdorff matrix H, = (h.:) is generated by a sequence p = {u,} in the
following manner: ., = A" *u,, k < n, ha = 0 for k > n, where

A = pp — mear, A" = A" ) = D20 (—1)Cn;j tiss -

1t is well known that H, having finite norm is a necessary and sufficient con-
dition for H, to be conservative. (For a discussion of these and other proper-
ties of Hausdorff matrices see [2, Chapter XI] or [3].) Let H denote the set
of Hausdorff matrices with finite norm, i.e., the set of conservative Hausdorff
matrices. Then ¢ = yo, and if hy = limpaw hax, e = 0 for all k£ > 0.

LemMa 2. Let H ¢ H. If there exists an integer r > 0 such that hy,, = 0
for all n, then hu, = 0 for all nand k for 0 < k = 7, and hnyo | .

Proof. Assume r > 1. By hypothesis A" "y, = 0 for all =.
A"_T-H#r——l — An-rﬂr—l . An-rur é An_r#r—l .

Therefore A" u,; | in n. But A"y 1 — 0 for each » > 1. There-
fore hy—,— = 0 for all » > 0. Similarly, we can show that k.. = 0 for
0<k<r—1 and all n.

To show h,,o |, observe that A"u, = 0 for n = 0, £ > 0. Therefore
Ao = A"y — A"y £ A" o

CoroLLARY 1. Let H, be a coregular Hausdorff matriz. Then H, is totally
coregular of and only ¢f hoy = 0 for k = 1,2,3, -+ .

Proof. Since H, e H, hy = 0 for k¥ > 0. From Theorem 3, H, is totally
coregular if and only if h., = 0 for all & > ¢ for some integer ¢. However,
from Lemma 2, A, = O for all ¥ > ¢ implies by, = Ofork = 1,2,3 --- .

TueoreEM 8. Let H ~ u be a multiplicative Hausdorff method. Then H,
satisfies (x) or (») if and only if u is totally monotone.

Proof of sufficiency. |hn| = hau. Therefore D po| hus | = po = t.



524 B. E. RHOADES

Proof of mecessity. For the proof using (*), note that Ay = 0, and then
refer to Corollary 1 and Lemma 2.

The proof using (#x) is basically the same as that of [4, Theorem VI] and
will be omitted.

Theorem 8 is an extension of [4, Theorem VI] to multiplicative Hausdorff
matrices.

We now generalize a result of [1, p. 452].

TaEorREM 9. Two coregular Hausdorff methods with nonvanishing moment
sequences cannot be totally equivalent unless they are identical.

Two triangles A and B are said to be totally equivalent if and only if AB™"
and BA™" are totally regular.

Let u, 4’ be two totally equivalent nonvanishing coregular moment se-
quences. Then p/u’ and u'/u are totally regular. Therefore A™(un/un) = 0
and A"(un/pn) = O form, r =0,1,2,---. In particular

A(#n/#;) = l-tn/M:z - un+1/u;+1 = 0,
and

A(un/un) = pn/tn — Mns1/pntr = 0,
which isa contradiction unless un/p, = pni1/pns1 ; 1€, n/tin = ati/Mn1
forn =0,1,2,---. Because un/;u:L is regular, un/u; = uo/uf, = 1. There-
fore p, = py forn =0,1,2, -+ .
Since H is the set of Hausdorff matrices with finite norm, one might con-
jecture that the only totally coregular Hausdorff matrices are those which are

multiples of totally regular Hausdorff matrices. The following theorem
demonstrates that such is not the case.

TueoREM 10. There exists a totally coregular Hausdorff method that vs not
multiplicative.

Proof. Let mo=1, pn=(m+27" n>0 Let N\ = (n+ 1)\
Then pr, = Augy1, n > 0. Therefore A"wy >0 for k=1,2,3,---, n =
0,1,2, .

Ao = 230 (Cuy) (—=1)0; = mo + 2251 (Cny) (—1)A
=po+ AN — M=+ AN
Since A™\; > 0, A"uo > 0. Therefore u is totally monotone.
x=1—-3#0,
since hp = 3. Therefore H, is totally coregular and is not multiplicative.

I wish to express my thanks to the referee for his careful critique and helpful
suggestions in the preparation of this paper.
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