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ON BERNSTEIN’S INEQUALITY

BY

ELIZABETH KOCHNEFF, YORAM SAGHER, AND RUBY TAN

1. Introduction

Let E denote the class of entire functions of exponential type < r. We
consider generalizations of the classical inequality:

BERNSTEIN’S INEQUALITY [9]. For f E N L(R), we have

IIf’ rllfll (1)

Akhiezer in [1], and Boas in [2], gave a generalization of (1) involving the
Hilbert transform. Akhiezer proposed the following definition of the Hilbert
transform for f E N L=(R):

Dr(x) xHi
f(t) -f(O) (x) (2)

where H is the classical Hilbert transform. This is justified in [1] by proving
that for f L2(R), if also (f(x) a)/x L2(R), then

xH( f(t ) (x) =Hf(x) -C(a,f) (3)

where C(a, f) is a constant depending only on a and f. In particular, this
implies that (f)’ (Hf)’(x) for f E q LZ(R).
The following inequality is proved in [1]. For the periodic case, see [8].

THEOREM. For f E 6 L=(R) and a R,

sin 7raf’ + cos rra(/f)’ II= < rllfl[ (4)

Akhiezer’s proof depends on the use of a method of Boas involving the
Fourier transform, see [2].
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We extend (4) to entire functions f E C BMO(R). To this end we note
that (3) is valid also if f (L + BMO)(R) and (f(x) a)/x L]oc(R), and
therefore if f E n BMO(R) we have (/f)’ (Hf)’. For a proof, see [4].
We also derive the periodic case from the inequality on R. Our proof does
not make use of Boas’ method.

Bernstein’s inequality, (1), was extended to L6(R), see [9]. We extend (4)
to L6(R).
The topic considered in this note is classical, and most theorems have

several proofs. We chose to present a unified exposition, repeating some
known results. Some of the proofs of those results may, however, be new.

Since if f(z) E then g(z) f(rrz/r) E, it is enough to consider

2. Bernstein’s inequalities

Let f L]oc(R). For any interval I, define

1 ff(y) dyTI= T
Then f BMO(R) if and only if

sup [ If(y) fiI dy IlfllMO < .
I

Define k(t)= 1/t for Itl > 1 and k(t)= 0 for Itl < 1.
If f L]oc(R) and if

lim lim --1 f f( x ) dx
N eO 7]" Je <lx_tl<N X

exists, then this limit is called the Hilbert transform of f and is denoted Hr.
In particular, this limit exists a.e. for f (LI+ LP)(R), 1 <p < o and
f LI(T), see [9].

If the above limit does not exist, but

1 ,_
N 0 "17" < x <N

+ k(x)) dx

exists, then this limit is defined to be the Hilbert transform of f up to an
additive constant and is denoted Hr. The definition up to an additive
constant is necessary to ensure that the Hilbert transform commutes with
translations and dilations. This definition is valid for f BMO(R).
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We will need several lemmas.

LEMMA 1. For x R,

H( sin t) 1-cosx
(x) x

Proof In [4] it is shown that for f LI(T) if f(x)/x L]oc(R) then

H(f(tt) )(x)= Hf(X)-x Hf(O)

Applying the theorem to f(x) sin x gives

H( sin )(x) H(sin t)(x) H(sin t)(0) cos x + 1
X X

LEMMA 2. For f E N L2(R) and x R, we have

Hf(x) Ef(n) 1 cos rr(x n)
(x )

Proof For f E (3 L2(R),

f(x) _,f(n) sin (x n)
7r( x n) (6)

where {f(n))nS_ /2, see [9].
The L2(R) convergence of (6) implies the L2(R) convergence of (5).

Furthermore, since (f(n)) 12, the series (5) converges absolutely and al-
most uniformly in x and is a continuous function as is Hf(x). Therefore, (5)
converges pointwise for all x R.

LEMMA 3. For x R,

sin rrx 7rx
2

sin 7r(x n)
n0

Proof Since

sin rrz rrz
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from (6) we have

sin zrx zrx
2

"/7"X

sin ,rn rrn=E ’/7"/’/2

2 sin’rr(x n)
n4:0 ’WR(X n)

LEMMA 4. For x R,

a-cosx=_ E a-cost(x-n)
"rrx2 n0 "n’n(x n)

Proof
then

In [4] it is shown that for f LI(T) if (f(x) ao alX)/X 2 L]oc

H(f(t)- a0 al t ) ()
Hf(x) Hf(O) xH( f(t) a ) (o)

X 2

Applying this to f(x) sin zrx gives

sin zrt zrt I H(sin zrt)(x) H(sin zrt)(0) xH(sin 7rt/t)(O)
t (x) 7rx 2

cos zrx + 1

Therefore by Lemma 2,

)1-coszrx sinzrn-zrn 1-coszr(x-n)

1 cos "rr( x n)-E
n4=0

The interpolation formula below was proved by Akhiezer in the case

f E A L(R) using Boas’ technique.

THEOREM 5. For f E C BMO(R) and a R,

+00

sin zcaf’(x) + cos 7ra(Hf)’(x) Ef(n + a + x) (-1) cos zra

( + )
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Proof

we have

Since

f(z) -f(O) F_, L2(R),

f(x) -f(O) sinrr(x-n)
..o (x )

f(n)-f(O) sin-x
n f’(o).

Therefore,

f(x) x E sinTr(x n)
n4:0 7"/’( X /’/)

f(n) -f(O)
H

sin rx+ f’(o) + f(o)

sinrr(x n) f(n)=x.E0 (x-) xf(O) E sin w(x n)

sin rx+ f’(o) + f(o)

=xE
n4=O

sin (x n) f(n) +.(x
sin rx sin rx
x f(o) + f’(o) (see[9]).

We also have

H( f(t) f(O) )(x)
=E

n4O

1 cos rr(x n) f(n) -f(O) +rr(x n) n
1 cos rrx

,n-x f’(o).

Therefore

/f(x) xH(f(t)-f(O)) (x)

=x E 1 cos zr(x n)
.#o (x-,,)

f(n) -f(O) 1 cos rx+ f’(o)

--x E 1-cos’(x-n) f(n)
n#O "IT( X n) xf(O) E 1-cost(x-n)

..o ,,(x ,)
1 cos rrx+ f’(O)

=xE
n4=O

1 cos "n’( x n)
"n’n( x n) f(n) +

1 cos rrx 1 cos rrx
rrx f(O) + rr f’(O).
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Therefore

sin rraf(x) + cos rra/-f(x)

=x El(n)
n#O

sin ra sin (x n) cos ra cos ’(x n) + cos

+f(O)
sin rra sin rrx cos rra cos rrx + cos rra

7rx

+ f’(O)
sin rra sin rrx cos rra cos rrx + cos rra

x E f(n)
n#O

cos a cos r(x + a n)

+ f(o)
cos ra cos r( x + a)

+ f’(0)
cos rra cos "rr ( x + a)

Taking derivatives and letting x -a we obtain

sin rr0/f’(-0/) + cos rr0/(Hf)’(-0/)

E f(n) ( 1)" cos rr0/

o n( + n)
a E f(n) (- 1)" cos zra

n*O ’rrn(0/ + n) 2

+ f(o)
1 cos rr0/

Ef(n) (-1) -cosrr0/

,/7"(0/ -+- F/) 2

Given f E N BMO(R) and x R, let g(z) f(x + 0/+ z). Then

and

g(z) E BMO(R), g(n) f(x + 0/ + n)

sin rr0/g’(-0/) + cos rr0/(Hg)’(-0/) sin rr0/f’(x) + cos rr0/(Hf)’(x).

Therefore

sin rr0/f’(x) + cos rr0/(Hf)’(x) _.,f(n + 0/ + x) (-1) cos rr0/

T/’(0/ q- /,/)2

and the theorem is proved.
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Note that for a we obtain

+4 (-1)nf(n + - + x)f’(x) -oE (2n + 1) 2

For a 0 we obtain

2 f(2n + 1 + x)(Hf)’(x) f(x) - _-" (2n -[- 1) 2

THEOREM 6. For f E q L(R) and a R,

]lsin 7rcf’ + cos ra(Hf)’ll rllfll.

Proof From the proof of Theorem 5, we have

q-OO

sin"a’af’(-a) + cos rra(Hf)’(-a) Ef(n) (-1) cos 7ra

g/’( O -[- n) 2

Let f(z) cos rrz. Since f’(-a) rr sin a and (Hf)’(-a) rr cos 7ra,

we have

1- (-1) cosrra

"/7"(0l q’- //)2

By Theorem 5 again, we have

Isin rraf’(x) + cos rra(Hf)’(x)l < _, [f(n + a + x)[ 1 ( 1)
n
COS

"/7"(Og -’[- F/) 2

and the theorem is proved.

THEOREM 7. For f E fq BMO(R) and a R,

Ilsin raf’ + cos rroz(Hf)’llMo < 7rllfllMO.

Proof. Fix a and define

F(x) sin rcaf’(x) + cos rca(Hf)’(x).
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Then, with

Cn,
( 1)" cos rra

+

and f(x) f(n + a + x), we have

1E Cn, -fif,,( x ) dx

E

provided that the interchange of summation and integration is justified. Since
BMO is translation and dilation invariant, we may assume I [0, 1]. We have

Elcn..ILlf,.(x)ldx
C(o/) E /n+a+l_ dx

_’n+ 1 + x

l+x

(See [3].) Thus, for any interval I,

The proof is complete.
Zygmund, [9], proved that if b is non-negative, non-decreasing and convex,

and

then

f E c L(R) C L(R),

f’(x)
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This is the case a 7 in

[sin raf’ ( x) + cos
dx < f/4(I f(x) [) dx, (7)

which we prove below. The requirement that f L(R) was made to justify
the application of the interpolation formula in Theorem 5. Using Lemma 8
below we show that E C L4"(R) c E c L(R).
The periodic case of (7) was proved in [9].

LEMMA 8. Let oh(x) > 0 be defined on R + and assume

lim inf 6(x)
x--+ x =p>0.

Ther/

E V L(R) c E L(R).

Proof. Let f E C L4(R). For If(x)l large, we have 4(If(x)l)>
plf(x)l/2. Hence, there exist g L(R) and h L(R) such that f- g + h.
For 6 > 0, define

sin 6x
f(x) f(x) 6x

Then

Let

fa(x) ga(X) + ha(x) E+a O (L + L2)(R).

1 2/2e-X

Since ga * ’ L2(R) and ha L2(R), we have

fa * ’= g * ’+ ha * "’ L2(R)

Furthermore, fa * ’ E+a:

f/a [ e(+a +n)lzl(z t)(t) dt < Cne{+a+n)lzl e(+a+n)ltl’(t) dt C,
"R

Thus, by the Paley-Wiener Theorem, fa()#() 0 for all Il > o- + 6.
Since 4= 0, we have fa(s) 0 for all Isl > r + 6. Since

& + (/5 +

with compact support, we have f L(R) and so f E+ c L(R).
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Applying a lemma of Stein, [7], for e > 6 we get

fa( x) f fa( x y)+,( y) dy

where

1 cos ry cos 2ry
,(y)

try 2

Since If,(x)l < If(x)l and f,(x) f(x) as 6 0, we have

f(x) f f(x Y)$o-+(Y) dy.

Since f (L -+- L)(R) and 0+
completes the proof.

L N L(R), we have f L(R). This

Using deep results of Duffin and Schaeffer, a related result is proved in [5].
If b(t) O(log t), where q(u) > 0 and q is non-decreasing and convex, then
E L4"(R) c E q L(R).

THEOREM 9. Iff E L6(R), b(t) is non-negative, non-decreasing and
convex, and a R, then we have

f,/,( Isin rraf’(

Proof Let f E L4’(R). By Lemma 8 and Theorem 5, we have

t-oo

sin rraf’(x) + cos rra(Hf)’(x) _,f(n + a + x) (-1) cos rra

7"/’(0l "J- n) 2

Since b is non-decreasing and convex,

sin rraf’(x) + cos rra(Hf)’(x)

1 1- (-1) cosrra
<- ,l’ -E f(n / o / x)l

zr(a + n) 2

1 1-(1) cos ’77" o
--< --Tr

_
7r( ce + n) 2 6([ f(,, +. + x)l).
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Integrating we obtain:

sin rraf’(x) + cos rra(Hf)’(x) dx

lfR[l (1) COS 7rO

7/" ’n’( ce + n) 2 4,(If(n + a + x)l)] dx

f6(I f(,, + + )I) a

f6(I f(x)l) dx.

Bernstein’s inequalities for EN L(R) and for EN BMO(R) apply
naturally to periodic functions. The periodic versions of the theorems above
follow easily from an interpolation formula for trigonometric polynomials:

THEOREM 10. Let T be a trigonometric polynomial of order n and let T
be its conjugate. Then for a, 0 R,

sin rraT/,(O) + cos rraT(0)
2n-1

I2 {(- 1)
j=O

-cos -}a;,n(0 + .,o)

where

1 1 j+a
Aj, 7"r.n 4sin2(Oj,,/2)

and 0 n

This formula for the case a 1/2 was proved by M. Riesz and the full
formula is proved in [9] as a special case of trigonometric interpolation. It is
perhaps worthwhile to observe that the interpolation formula can also be
deduced from the interpolation formula for f E L(R).

In the proof we use the well-known identity

rr 2 1
sin2rrx -E (x_n)2.

We can easily derive this identity from the interpolation formula for f E
n L(R):

f(x) x E sin rr(x n) sin rrx sin rrx
f,

..o "(x ,,) f(’) + f(O)x + (0).
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Take f(x) cos rrx to get

1 1 ) 1
rrcotrrx= -ff + x n + -’x

n4=0

Differentiating we obtain the result.

Proof of Theorem 10. Let f(x)= Tn(rrx/n). Since T E o L=(R) we
have f E L=(R). Thus from Theorem 5, with 0 rrx/n,

sin rraTA(O) + cos rraT,(O)

’ .(H)’{sinrra (x) + cos (x)}

COSn _f(k + a + x)
(-1)

rr rr(a + k) 2

n Tn(’k +
ra +O)(--1)k--cosarr2 n n (a + k) 2

2n-1
/’/ ("n"2

,, _
Tn

,n- ( 2nq + j
-t- +

j=0 q=--

( 1) 2nq +j COS "tree

(a + 2nq + j)2
2n-1

2 E {(- 1)j- cos 7"t’o}Tn(O q- Oj, a)
rr j---o q=-- (Og -I- 2nq + j)2

2n-1n )J 7re}Tn(O-+- ,ag -cos
rr (2n q= (q + ( +j)/2n) 2

2n-in
,./7.2 E {(- 1)

j=O

-cos  .}Tn(O +
2

(2n) 2 sin2(Oj,/2)
2n-1

{(-1)
/’=0

cos + 0;,o).

This proves the theorem.
The interpolation formulas above were proved for x R. They extend

however to z C. We give an example of this extension.

THEOREM 11. Assume f(z) is analytic in the upper half plane (UHP)
and that f(’+ iy) LP(R) for all y > O. Then the Hilbert transform
H(f(. + iy))(x) Hf(z) is analytic in the UHP.
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Proof. Let C be any closed curve in the UHP. We have

since f is analytic. This proves the theorem.

COROLLARY 12. Iff(z) Err 0 L2(R) then for all z C,

Hf(z) f(n) 1 cos rr(z n)
( )

Proof. For z x R, this is Lemma 2. Since Hf(z) and

Ef(n) 1 cos rr(z n)
( )

are entire functions which coincide on the real axis, we get the result for
all z C.
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