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ON BERNSTEIN’S INEQUALITY

BY

Er1zaBETH KOCHNEFF, YORAM SAGHER, AND RuBYy TAN

1. Introduction

Let E? denote the class of entire functions of exponential type < o. We
consider generalizations of the classical inequality:

BERNSTEIN’S INEQUALITY [9].  For f € E° N L™(R), we have

1Nl < oliflle (1)

Akhiezer in [1], and Boas in [2], gave a generalization of (1) involving the
Hilbert transform. Akhiezer proposed the following definition of the Hilbert
transform for f € E° N L*(R):

Af(x) =t L2 ) 2)

where H is the classical Hilbert transform. This is justified in [1] by proving
that for f € L*(R), if also (f(x) — a)/x € L*(R), then

et L=2) Gy = (o) = € ) 3

where C(a, f ) is a constant depending only on « and f. In particular, this
implies that (Hf Y = (Hf)(x) for f € E” N LA(R).
The following inequality is proved in [1]. For the periodic case, see [8].

THEOREM. For f € E° N L*(R) and a € R,

“sin maf' + cos *n'a(ﬁf)’”w < ollflle. (4)

Akhiezer’s proof depends on the use of a method of Boas involving the
Fourier transform, see [2].
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We extend (4) to entire functions f € E° N BMO(R). To this end we note
that (3) is valid also if f € (L' + BMOXR) and (f(x) — a)/x € Lj,(R), and
therefore if f € E° N BMO(R) we have (HfY = (Hf). For a proof, see [4].
We also derive the periodic case from the inequality on R. Our proof does
not make use of Boas’ method.

Bernstein’s inequality, (1), was extended to L?(R), see [9]. We extend (4)
to L*(R).

The topic considered in this note is classical, and most theorems have
several proofs. We chose to present a unified exposition, repeating some
known results. Some of the proofs of those results may, however, be new.

Since if f(z) € E? then g(z) = f(wrz/0) € ET™, it is enough to consider
g = 1T.

2. Bernstein’s inequalities

Let f € L} .(R). For any interval I, define
fr= 1 [£(3) db.
17l J;
Then f € BMO(R) if and only if
1
sup—flf(y) = fildy = lIfllsmo < .
I III I

Define k(¢) = 1/¢ for |¢t| > 1 and k(¢) = 0 for |¢] < 1.
If fe L}, (R) and if

lim lim —1— f(x) dx

Nowe—0 T Jocpyopent =X

exists, then this limit is called the Hilbert transform of f and is denoted Hf.
In particular, this limit exists a.e. for f& (L' + L?XR), 1 <p < ® and
f € LXT), see [9].

If the above limit does not exist, but

lim liml f(x)( ! +k(x))dx

Nowen0 T Jeclp—x|<N r—x

exists, then this limit is defined to be the Hilbert transform of f up to an
additive constant and is denoted Hf. The definition up to an additive
constant is necessary to ensure that the Hilbert transform commutes with
translations and dilations. This definition is valid for f € BMO(R).



ON BERNSTEIN’S INEQUALITY 299
We will need several lemmas.
Lemma 1. Forx € R,

H(Sint)(x) _1—cosx

t X

Proof. 1In [4] it is shown that for f € LN(T) if f(x)/x € L} (R) then

H — Hf(0
£ 2y — HC) ZHICO).

Applying the theorem to f(x) = sin x gives

H(-S—gi)(x) _ H(sint)(x) ;H(sin (0 _ —cosxx + 1.

Lemma 2. Forf € E™ N L(R) and x € R, we have

—cosw(x —n)

Hi(x) = L f(my e ra o), s)

Proof. For f € E™ N L*(R),

sin(x — n)

f(x) = _if(n)—mt“h)— (6)

where {f(n)}"=>_. € I?, see [9].

The L?(R) convergence of (6) implies the L?*(R) convergence of (5).
Furthermore, since {f(n)} € %, the series (5) converges absolutely and al-
most uniformly in x and is a continuous function as is Hf(x). Therefore, (5)
converges pointwise for all x € R.

LemmA 3. Forx € R,

sinwx —mx ¥ sinm(x — n)
7Tx2 n+0 Wn(x _n) '
Proof.  Since
sinwz —

z
€ E"NL*R),
mz? (R)
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from (6) we have

. o] . .
sinwx — 7wx _ Z(smwn—ﬂ-n)smw(x—n)

Tx? = mn? m(x —n)
--y sinw(x — n)
nzo T™(x—n) ’
LeEmmMmA 4. Forx € R,
1—cosmx ¥ 1 —cosm(x —n)
'7Tx2 n+0 Wn(x_n)

Proof. In[4] it is shown that for f € LNT)if (f(x) — a, — a;x)/x* € L},
then

H(f(t) — a, ~a1t)(x) _ Hf(x) — Hf(0) —J;H(i(—t)—t——a—q)(O) |

¢? X

Applying this to f(x) = sin 7x gives

H( sin 7t — m)( ) = H(sin 7t)(x) — H(sin mt)(0) — xH(sin t/t)(0)
mt? Y= Tx?

—cosmx + 1

wx?

Therefore by Lemma 2,
1 — cos mx i(sinwn—wn)l—cosw(x—n)

mx? mn? m(x —n)

1 —cosm(x —n)
nw(x —n)

n+0

The interpolation formula below was proved by Akhiezer in the case
f € E™ N L*(R) using Boas’ technique.

THEOREM 5. For f € E™ N BMO(R) and o € R,

1)" — cos ma

m(a +n)’

sinraf'(x) + cos ma( Hf ) (x) = Eof(n +a+x) -
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Proof. Since

f(Z) _f(O) eE‘trmLZ(R)
z ’

we have
f(x);f(0)=n§osu:(f)§x_—n)n) S —f(O)  sinmx o)
Therefore,

f(x) =x X sinm(x — n) f(n) f£(0) s1n1rxf (0) + £(0)

n+#0 w(x - n)

=XZ smw(x n) f(n) xf(O) Z smﬂ-(x_n)

m(x — n) mn(x — n)

n#0 n#+0

Sll’l mX

—f'(0) +f(0)

—xY smrr(x )f( )+ 51n1rxf(0) + s1n77xf (0) (see [9]).

w70 mn(x —n)

We also have

-y 1 —cosa(x —n) f(n) — f(0) + Ccos wxf (0).

m(x —n) n

n+0

Therefore

Af(x) = x| LSO )
_— 1 —cosa(x — n) .f(n)—-f(O) + cosrxf(o)

n+0 7T(X - I’l)
_ 1—cosm(x —n) f(n) —cosm(x — n)
B xngo m(x —n) — 4 (0) nE:O mn(x —n)
1 — cos wxf (0)
_ — cos w(x — n) — COS X — COS X
”"Eo oS () o S TER0) 4 T

£(0).
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Therefore

sin maf(x) + cos waHf(x)

sin ra sin w(x — n) — cos wa cos w(x —n) + cos Ta

=x ) f(n)
W0 mn(x —n)
sin o Sin X — COS 7 COS X + COS Ta
+ £(0) oz
sin o Sin wx — COS Ta COS X + COS T
+£(0) =
coSmTa —cosT(x +a —n
=fo(n) wn(x—fn) :
n+0

cosma — cosw(x + @)

+£(0)

TX
+ £(0) cos ma — cos w(x + a) .
o
Taking derivatives and letting x = —a we obtain

sin maf'(—a) + cos ma( Hf ) (—a)

- Y f(n )( 1)" —cosma Zf(")( 1)" — cos ra

n+0 wn(a+n) n+0 wn( + )
+f(0) COS T

_ (- 1) COSﬂTOl.
Zf( ) (ot 1)

Given f€ E™ N BMO(R) and x € R, let g(z) = f(x + @ + z). Then
g(z) € E"NBMO(R), g(n) =f(x +a +n)
and

sinrag'(—a) + cos ma( Hg) (—a) = sinmaf'(x) + cos ma( Hf ) (x).

Therefore
sin waf'(x) + cos ma( Hf) (x) = :ij(n P ) e T
T m(a + n)

and the theorem is proved.
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Note that for @ = 3 we obtain

oy AT (D f(n At 5 +x)
fiix) == (2n +1)° '

g

For a = 0 we obtain

It

Zf(2n+1+x)‘

> f(x) - ARSI

(Hf) (x)

THEOREM 6. For f € E™ N L"(R) and a € R,
|sin maf’ + cos wa( Hf ) ||, < 7lfllw.

Proof. From the proof of Theorem 5, we have

sinmaf'(—a) + cos ma( Hf ) (— a)_Zf( )( 1)( +Co;77a

Let f(z) = cos 7z. Since f'(—a)=mwsinma and (Hf)(—a) = 7 cos wa,
we have

E 1-(-1)"cosma
- m(a +n)’

By Theorem 5 again, we have

- (—1)" cos ma
m(a +n)’

|sinmaf'(x) + cos ma( Hf ) (x)] < E|f(n +a+x)| !
< 7lfll,
and the theorem is proved.
TueoreM 7. For f € E™ N BMO(R) and a € R,
isin raf’ + cos wa( Hf Yllamo < wllfllsmo-
Proof. Fix a and define

F(x) =sinmaf'(x) + cos ma( Hf ) (x).
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Then, with

_ (=" -~ cosma
(o + n)’

and f,(x) = f(n + a + x), we have

Fl = %/;_Xgocn,afn(x) dx

It

s 1
_Zoocn,a m-'/;fn(x) dx

_ch,a(fn)l’

provided that the interchange of summation and integration is justified. Since
BMO is translation and dilation invariant, we may assume I = [0, 1]. We have

T lepul [ £ = Tley ol "7 £(0)

< C(a) Z fn+a+1 |f(X)| dx

—w'n+a

_ C(a )f |f(x)| dr < oo

(See [3].) Thus, for any interval I,

[P =l = Tlewp [140) = (il

< Zlcn,a| : “f“BMO = 7THf||BMo-

— 00

The proof is complete.

Zygmund, [9], proved that if ¢ is non-negative, non-decreasing and convex,
and

f€E™NL*(R) N L*(R),

then

of L2
R m

v < [ 81 £ a.
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This is the case @ = 1 in

fR"’( |sin waf'(x) + cos wa(HfY(x)')dx < [o(f())dx, ()

which we prove below. The requirement that f € L*(R) was made to justify
the application of the interpolation formula in Theorem 5. Using Lemma 8
below we show that E“ N L*(R) € E° N L*(R).

The periodic case of (7) was proved in [9].

LemMA 8.  Let ¢(x) > 0 be defined on R* and assume

lim inf ¢(x)

X0 X

=p>0.
Then
E N Ld’(R) CE’NL*(R).

Proof. Let fe E° N L*R). For |f(x)| large, we have ¢(|f(x)]) >
plf(x)| /2. Hence, there exist g € L'(R) and & € L*(R) such that f =g + h.
For 6 > 0, define

in 6
Fo(x) = f(x) T
Then
fs(x) =gs(x) +hs(x) € E”> N (L' + L*)(R).
Let

1 —X
L(x) = Hoe e,

Since g5 * £ € L*(R) and hy* &€ L*(R), we have
foxZ=gs*x Z+ hyx F< L*(R).
Furthermore, f;* &€ E“*°:

‘ [ £z = (1) dt‘ < C e O [ (G (1) dp = el oI,
R R

Thus, by the Paley-Wiener Theorem, fa(f)f(f) =0 for all |£] > o + 4.
Since £+ 0, we have f5(&) = 0 for all |£] > o + 6. Since

fa =§3 + i’a € (L2 + Lw)(R)

with compact support, we have f; € L*(R) and so f, € E°*? N LX(R).
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Applying a lemma of Stein, [7], for £ > § we get

16 = [ H (e = ) (9)

where

CoS oy — cos20y

1
wo(y) = ; O_yZ

Since |f5(x)| < |f(x)| and fs(x) — f(x) as 8 — 0, we have

700y = [ R = ) (9) dy.

Since f € (L' + L*)R) and ¢
completes the proof.

€ L' N L*(R), we have f € L*(R). This

o+te

Using deep results of Duffin and Schaeffer, a related result is proved in [5].
If ¢(¢) = ¢(log t), where (1) > 0 and ¢ is non-decreasing and convex, then
E° N L*(R) Cc E° N L*(R).

TueorREM 9. If f € E™ N L*(R), ¢(t) is non-negative, non-decreasing and
convex, and a € R, then we have

|sinmaf’(x) + cos ma( Hf ) (x)]
f4 ¢ Jax < [ o1 £ .

Proof. Let f€ E™ N L*(R). By Lemma 8 and Theorem 5, we have

+ oo

sinraf'(x) + cosma( Hf)(x) = Y f(n+a +x

)(-—l)n — cos Ta
m(a +n)2 .

Since ¢ is non-decreasing and convex,

o

sin maf'(x) + cos ma( Hf ) (x)

|

1-(-1)"cosma
m(a +n)°

_<_¢[%_—_Z|f(n+a+x)|

1 &

<Ly LoD cosme iy 4 g 4 x))).

Tw 7(a +n)’
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Integrating we obtain:

el

T

sinmaf'(x) + cos ma( Hf ) (x) l) dx

< 1-(-1)"cos ra

1
S;]};[_Zw 7'1'(a+n)2
1 & 1= (=1)"cosma
Tr-z;'o m(a +n)’

[R o(|f(x)])dx.

d(|f(n+a+x)|)|dr

Jioren +a+ ) ax

Bernstein’s inequalities for E“ N L”(R) and for E? N BMO(R) apply
naturally to periodic functions. The periodic versions of the theorems above
follow easily from an interpolation formula for trigonometric polynomials:

THeOREM 10. Let T, be a trigonometric polynomial of order n and let fn
be its conjugate. Then for a,6 € R,

2n—1

sinmaT}(0) + cos maT)(8) = ¥ {(-1)' — cos walA; ,T,(6 + 6;.,)
j=0
where
1 1 jJ+ta
Aig=—+—5——— and 6, = :
hen 4sin’(6, ,/2) ane Y. n "

This formula for the case a = 1/2 was proved by M. Riesz and the full
formula is proved in [9] as a special case of trigonometric interpolation. It is
perhaps worthwhile to observe that the interpolation formula can also be
deduced from the interpolation formula for f € E™ N L*(R).

In the proof we use the well-known identity

2

MS

sin? 7 x (x—n)

We can easily derive this identity from the interpolation formula for f € E™
N L*(R):

sin 7 x sin 7 x

f(n) + ——f(0) + ——f(0).

sinw(x — n)
mn(x — n)

fx)=x Y

n#0
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Take f(x) = cos x to get

wcoth=2(—1-+ ! )+%
n+0

Differentiating we obtain the result.

Proof of Theorem 10. Let f(x) = T,(wx/n). Since T, € E" N L*(R) we
have f € E™ N L”(R). Thus from Theorem 5, with § = 7x /n,

sin maT)(6) + cos waT.(0)

= %{Sin maf'(x) + cos ma( Hf ) (x)}

n o (—1)" - cos ra
= — k+a+x
] o
- ZTn("—k LT 0)(—1) —cosma
e W (a + k)
2n—1 © . _ 2ng+j _
S p(reme) | re ) G0 e
T j=0 g=—w n n (a +2nq +j)
= %Zn—l{( 1)’ = cos wa}T,(6 + 6, ,) Z ———1
7 20 gemw (a + 2ng +j)°
= lzn_l{( 1)’ — cos maT,(6 + 6 )~—}—~— i L
™ %o (2n)" =" (a + (a +))/2n)°
2n—1 2
n 1 T
= — 1) — cos walT 0+0, .
77_2 2o {( ) } ( )(271)2 Slnl(aj’a/z)
2n—1
= X {(-1) = cosma)a; ,T,(6 + 6 ).
j=0

This proves the theorem.
The interpolation formulas above were proved for x € R. They extend
however to z € C. We give an example of this extension.

THEOREM 11. Assume f(z) is analytic in the upper half plane (UHP)
and that f(-+iy) € L°(R) for all y > 0. Then the Hilbert transform
H(f(- + iy)Xx) = Hf(z) is analytic in the UHP.
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Proof. Let C be any closed curve in the UHP. We have

fCHf(z) dz = fcp.v./R&;fﬂ)— dtdz

-[ fx—t+y) —fx+w) 0
[el<1 4

+ff [ L) g

[tI=1

=f ff(x—t+ly)t—f(x+ty)dzdt
ltl<1
+ f w dzdt=0,
ltl=17C
since f is analytic. This proves the theorem.
CoroLLARY 12. If f(z) € E™ N L*(R) then for all z € C,

1—cosw(z —n)
m(z —n)

Hi(2) = T 5(n)

Proof. For z = x € R, this is Lemma 2. Since Hf(z) and

1—cosw(z—n)

m(z — n)

are entire functions which coincide on the real axis, we get the result for
all z € C.

¥ f(n)
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