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EXTREME POSITIVE OPERATORS ON /?

BY

RyszarRD GRZASLEWICZ

1. Introduction

The problem of the characterization of the extreme operators was first
investigated by A. Ionescu Tulcea and C. Ionescu Tulcea [13]. They consid-
ered extreme positive contractions on the space of continuous functions. Next
many authors extended this result, and now we have a quite good knowledge
about extreme operators on C(K) (see for example [4], [5]). Thus it is natural
to consider the possible extension of this problem to other classical Banach
spaces. Using the results for C(K) we can get characterizations of extreme
I”-operators and [!-operators (see [18], [14]). Note that for a Hilbert space
case the set of extreme contractions coincides with the set of all isometries
and coisometries (see [15], [8]). The other cases of [P-spaces are more
complicated. Some partial results on extreme [P-contractions for 1 < p <
o, p # 2, are given in [6], [7], [16], [17], [12].

The purpose of this paper is to characterize the extreme points of the
positive part of the unit ball of the space of operators acting on infinite
dimensional /”-spaces 1 < p < o, This result extends an earlier one for the
finite dimensional case [9]. Generally speaking the structure of extreme
positive contractions is similar to the structure of extreme infinite doubly
stochastic matrices with respect to arbitrary positive sequences (not necessar-
ily elements of [!). This description turns out to be more complicated
compared with the finite dimensional case.

Let 1 <p <xand g =p/(p — 1). As usual we denote by /? the Banach
lattice of all p-summable real sequences with the norm

© 1/p
lxll, = ( P |x,-|p) , x=(x,) €l”
i=1
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and standard order (x <y if and only if x; <y, for all i € N). We put
e, =(3;) (3,; denotes the Kronecker’s delta). Obviously {e;} forms the
canonical basis of I?. The adjoint space (I?) is identified with the space /9.
For 0 <x=(x,) €l? we let x?"!=(x?"1) €[4 Note that x?~! as a
functional attains its norm at x and is the unique functional with this
property. Moreover we have [|x? 1|7 = |Ix]|?.

We denote by _£(1”) the Banach space of all linear bounded operators
from [” into [”. An operator T is said to be positive T >0 if Tx > 0
whenever x > 0. The positive part of the unit ball of . Z(I/?) (the set of
positive contraction on [?) is denoted by .

To every operator T € .Z(I?) corresponds a unique matrix (tji) with real
entries, such that (T'x); = £7_,t;x,. We have T > 0 if and only if ¢; > 0 for
all i, j € N. The operators on [” will be identified with their corresponding
matrices. Thus for instance (§;; ;) denotes the one dimensional operator in
-Z(I?) which maps e; onto e; . Clearly the adjoint operator T* € Z(17) is
determined in the same manner by the transposed matrix.

Let 0 < T € &. We say that entries of T = (¢;;) are maximal if

(25 + v83,84,) | > 1

for every y > 0 and all i, j, € N such that Lioio > 0. Obviously, if some entry
of the operator T is maximal then ||T|| = 1 and if T is an extreme positive
contraction then all entries of T are maximal. Note that there exists T € &
such that || 7| = 1 and the entries of T are not maximal (a suitable example
is given in the paper).

We define the support of an operator T = (t;;) € Z(I?) by

supp T = [i: there exists j, such that i # 0}.

For a positive operator T = (¢;;) € -Z(I?) we denote by .#(T) the set of all
non-negative sequences (x;) such that

k=1
(2) Yoyt =xpt
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for all i, j € N, and

(3) x; > 0 if and only if i € supp 7. That is

H#(T) = {(x;) = 0:supp(x;) =supp T and for every i € N,

oo p—1
_ p—1
tji( P tjkxk) =xf"").
k=1

Let a = (a,), b = (b;) be non-negative sequences. A matrix P = (p;),
i,j € N, is said to be doubly stochastic with respect to ((ai),(bj)) if p; =0,
Y7_1p; =a; X;_,p; = b, The set of all doubly stochastic matrices with
respect to a, b will be denoted by Z(a, b).

To complete a characterization of extreme positive [?-contractions we
need a description of extreme points of Z(a,b) for arbitrary non-negative
sequences a, b. This problem was investigated under various assumption on
a, b by many authors (see [20], [21], [3]). Note that the first result of this kind
was given by G.D. Birkhoff [1] (see also [22], I, §5). The characterization of
ext 9(a,b) for arbitrary non-negative sequences a, b is given in [10].

The main aim of this paper is to prove the following characterization of
extreme positive /?-contraction.

0

j=1

THEOREM. Let 1 <p <, and let 0+ T =(t;) € F. Then T is an
extreme positive contraction if and only if the following conditions hold:

(1) the entries of T are maximal,

(i) the matrix P = (t;x;y7~") is extreme in D(x}),(y})), where (x,) €

A(T) and y; = L7_1t;;x,.

2. Proof of the theorem

We will use the following fact, which is a generalized version of the Schur’s
test [23] (see [11], §5,Th. 5.2.).

ProrosiTION 1. For a positive operator T = (t;;) € £(I?) let there exist
positive sequences (x,),(y;) such that
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and
oo
p—1 p—1
> Lyg =X
j=1

foralli,j € N. Then ||TI < 1.

Proof. Using the convexity of f(¢) = ¢? for an arbitrary non-negative
vector u = (u;) € I” we have

oo oo p
ITulf = 3 ( )y tjiui)
i=1

IA
s

<

"'B
DM

IA

Y uf = [ulb.

i=1

CoroLLARY 1. If for a positive operator T € £(17) the set #(T) is
non-empty then |T| < 1.

For every matrix (¢;;) define a graph G((¢;)) by the following formula. To
the j-th row there corresponds a (row) node j, j € N, and to i-th column
there corresponds a (column) node i, i € N. There is an edge joining a node
i and a node j if and only if ¢; # 0. There are no other edges.

We say that an operator T € .Z(I”) is elementary provided there are no
non-zero operators 7 = T, + T, and

supp T; N supp T, = supp T} N supp T = O.

Note that T is elementary if and only if the graph G(T) is connected. Each
operator T € .Z(I?) can be represented as a countable sum of elementary
operators T,, T = LT, with supp T, disjoint and supp 7T;* disjoint. Then
IT|l = sup,|IT,ll and T > 0 if and only if T, > O for all k. Therefore T is an
extreme positive contraction if and only if the T,’s are extreme positive
contractions. The above decomposition shows us that for our purpose it is
enough to consider elementary operators. Therefore without any loss of
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generality all operators in .Z(I?) considered in the remainder of the paper
will be assumed to be elementary operators.

ProrosITION 2. Let T € ext . Then the graph G(T) has no cycle.

Proof. Suppose, to get a contradiction, that the graph G(T) has a simple
cycle C. Let F, € .Z(I?) denote the projection defined by

Fe — € ifi<n
' 0 otherwise

For n sufficiently large the graph of 7,, = TF, contains the cycle C. Note that
the T,’s are finite dimensional operators and they are not extreme. Recall
here that the finite dimensional case if the graph of a positive contraction has
the cycle then it is not extreme (see [9, Th.3]), so for each 7, there exists
R, = (r{®) # Osuch that |7, + R, |l < lIT,|l <1and T, + R, > 0, the graph
G(R,) = C and t;; = |r{| for some (iy, j,) € C (not necessarily the same
for all n). Choose a subsequence n, of N such that lim, ., r{® = r/; exists
for all (i, j). Note that r;; # 0 for some (i, j), i.e., R" = (r};) # 0. Obviously
T+ R >0and ||T + R|l < 1. This contradiction ends the proof.

LemMma 1. Let the graph G(T) of T € & be a tree. If all entries of T are
maximal then #(T) is non-empty.

LemMA 2. Let all the entries of T € & be maximal. Let (x;) € .#(T) and
J1 € supp T*. Then for every € > O there exists N, such that for all N > N,
there exists ") € 17 such that

™l ~ ITu™|P <,
and
uM=x, forielk<N:t, +0},
uM =0 forie{k>N:t, +0}
The proofs of Lemmas 1 and 2 will be presented in Section 4.
Let the graph G(T) of T € .Z(I?) be a tree (i.e., G(T) has no cycles). Let
i; € supp T. Note that G(T) is a connected tree since T is elementary. We

define inductively two families {I,} and {J,} of disjoint subsets of N and a
family {E,} of disjoint subsets of N X N. Put

L={i)}, Ji= {j: i * O}
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and

L,,={i&l:t;+0 forsomejel)

= {i
Jos1 = {]GEJ t;#0 forsomeiel,, }
E2n v ={(,)):iel,,jel)
{(l }) le n+1,]EJn}, neN.

LeMMA 3. Let all the entries of T € & be maximal. Let (x;) € .#(T) and
y; = Xiatyx;. If T+ R € & for some R = (r};) then

rix; =0 and Z riyP L.
j=1

e

J

Proof. The graph G(R) is included in the graph G(T) and |r;| <t,
since T + R > 0. Fix j, € supp T*. Because in the construction of the sets
I, J,, 1,,... the index i, is arbitrary we may and do assume that j, € J,.

Fix ¢ > 0. We need to show that there exists N, such that

<e forall N> N,.

N
erlixi
i=1

By Lemma 2 we can find Ny € N such that for every N > N,, there exists
u™ € [? such that

la™|| — [Tu™M|| <&
and

N
(Ru(N))fl = Z T X
i=1

First consider the case when p > 2. Using the Clarkson inequality [2] (see
also [19], Corollary 2.1) we have

20Ru™ I + 2 Tu™ |} < I(T + Ryu™I5 + (T = R)a™|I} < 2[[u™|;

Hence we have

N
Z}lll

1
=[(Ru™) ;| < IRuMIl, = (™5 — ITu™|5)” < g1/7,

Therefore X7_r;x; = 0 for all j € Nand p > 2.
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Now assume that 1 < p < 2. As an immediate consequence of differential
calculus we obtain

(t+7)’+ (- =22t +p(p—1)72P" 1 2 247 + p(p — 1)72

where |7| <t < 1. By this, putting Tu™ = (f;) and Ru™’ = (g;) we obtain

2YUf1” +p(p—1)g} < Zlf +gl” + Zlf - gl

j=1
= I(T + R)u<N)||§’, + (T = R)u™|5
< 2[[a™5.

Hence
p(p - 1)g? < 2(lu™I5 = [Tu™5) < 2e.

Thus we prove that Y7_,r;x; =0 for all p € (1,o). To prove that
Xioariyf ~1 = 0 we apply the same arguments for the adjoint operators T*
and R*.

Proof of the theorem. Suppose that T € ext &. Then obviously the condi-
tion (i) holds. From Lemma 1 there exists (x;) € .#(T). Put y; = X7_,¢;

Suppose that P = (z;x,y7 ") & ext 2((x? ) (yP)). Then there exist P’
(pﬂ) and P" = (p};)in .@((x") (y#)) such that P’ # P" and P = (P’ + P")/2.
In view of Proposition 1, T’ = (t ) and T” = (¢},) are positive contractions,
where t; = p;/x;yF~ ! and = Di/x;yP~ ! (we admit 0/0 = 0). We have
(1" + T”) /2=T,s0Tis not extreme. Thus the condition (ii) also holds.

Now suppose that the conditions (i) and (ii) hold. Let R = (r;) be such
that T + R € &. Obviously the graph G(R) is a subgraph of G(T). By
Lemma 3, 7_,r;x; = 0 and 7_,r;y7~" = 0. Thus

(}l ly]p 1) * ( Ji tpr 1) € ‘@( xp) (ylp))

Because (t;;x, 9P~ 1) € ext D((xP),(y})) we get r;x,y?~' = 0. Hence r; = 0,
ie., T € ext Z.

3. Operators with a graph of finite height

Let the graph of T € _Z(I?) be a tree. The family I, is a partition of
supp T and the family J, is a partition of supp 7*. Moreover

G E,={(i,j): t; # 0}.
n=1
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If in the sequence E;, E,, E;, ... some E, is empty then the subsequent sets

E,, n > n,, are also empty. The number A(T) of the non-empty sets in the

sequence {E,} will be called the height of the graph G(T). We say that the
matrix 7 has the FHG (Finite Height Graph) property if A(T) is finite.

Lemma 4. Let 0 < T € £(I?) have the FHG property, and let (x;) €

A(T), y; = X;t;;x,. Then for each & > 0 there exists a finite subset I of N such
that

IT*(Tw) g > llull§ — e,
. _ p—1 -1
(i} =L 1, (T*((Tw)™™), >x271/2,
and for fixed j, € J, we have (Tu); >'y; /2 where

_fx dHfield
im0 ifiel

Proof. Let (x;) € .#(T). Let y; = ¥;t;;x;. Fix ¢ > 0 and i, € supp T. Fix
J1 € J1. Let g; > 0 be such that

(xr~' = 2¢,)" > xF — /2
and
g, < x}i—l/4.
Let I] = I, = {i;}. We choose a finite subset J; of J; such that j, € J; and

p—1 p—1 _
Z tﬁlyf > X iy
jeli

We find 8; > 0 (j € J}) such that §; <y; /2 and

-1 —
Z, iy = 8)° > xbTh = 26,
A

We choose a finite subset I, of I, such that

Y tix; >y — 9

ienur
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for j € J{. We choose a finite subset J; of J, such that

p—1 p—1 _
Y yp Tl >« g
JEJIUT,

for i € I,. We find 8; > 0 (j € J;) such that

Y (v =8)" 7 > xpt - 26,

JEJIUJS

i € I, We continue the above process to get (after A(T) steps) a finite
sequence I3, J{, I3, ..., J, . Let I = Uy 1, and J = U2, J,. We define

u = % ifiel
lo ifiel

Put v = (v;) = Tu. For j € J we have

o
U= Y b= Y x>y — ;.
i=1 iel
Hence
i 1
-1 p— -1 .
YtoP > Yoty —8) >xPT = 2¢ foriel
i=1

jelJ

Therefore we obtain

)
ielljer

q
IT*(Tw)? g = IT*v2~ Mg = ¥ zt..v.p—l]

> Z ()cf’_1 - 2€i)q

iel
E
> L (- 51)
iel

> |lullf —e.

Moreover we have

(T*((Tu)p_l))i1 > ) vty - Sj)p_l >xP Tt —exxp7/2

jeli
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and

(T, = Yy 1% >y, — 6, > y; /2.

ierur,

Lemma 5. Let 0 < T € _Z(I?) have the FHG property and let .#(T) be
non-empty. Then | T|| = 1 and all the entries of T are maximal.

Proof. By Corollary 1 we have ||T|| < 1. Let T = (tji) have the FHG
property and let (x;) € #(T). Suppose, to get a contradiction, that there
exists an entry of 7 which is not maximal. Since the construction of the
sequences I;,J;,J, ... can start from every positive entry, we may and do
assume that t; (i; € I, = I, j, €J,) is not maximal. Let y > 0 be such that

ISl < 1, where S = (s;) = (¢; + v5;, 8,;). Let
yflf-l Xy 7=l
= 1+y—2] —1|>
P 2p! yyil 0

and
e=t;; Bax; /29> 0.
In view of Lemma 1 there exists u = (u,) € [? such that if v = (v;) = T,

z=(z)=T*G&*"") then llzll > llul} — &, and u, =x,, z, >xP7",
v;, > y;,/2. We have

iy’

x, \?71
[(v), + vx,)? 7 =07 = u;;-l[(l + 'yy—) ~ 1] > 1.
J1
Using the mean value theorem we get

q -1
[Zil + tflllB] - Zlql > tjlllﬁqzlql > 28.

Therefore we obtain

Is*(sw)” 0 = | :
=7 (rwy + {((0, + yx) T = v Y)e, ”Z

> |z + tj,iIBeilug

T*[(T + v8,,8;,)u] |

q
= |lzllZ + (zi1 + tjliIB) - Ziq,

> [lullf — & + 2¢ = |lull}.
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This contradicts the fact that for arbitrary R € & we have
IR*(Ru)”~IZ < I(Rw)”~ 14 = [IRull} < llull5.

This shows us that all the entries of T are maximal. Moreover, since ||S| > 1
for each y > 0 we have ||T|| = 1.

Let m € N. We define the following maps from the set of all positive
contractions which the graph is a tree into the set of matrices having the
FHG property by

2m—1
” it(ij) < U E,
ne
_ -1
(1) = tﬁ[l— y t,z;,.] ")) € By
kel 1
0 otherwise,
2m—2
. if (i,]) € U1 E,
e
, _ -1
v'/in((tﬁ))_ tﬁ[l—- y t}g{] /q if (i,j) € E,,,_4
kel,
0 otherwise,

In(T) = Ausp(T),

2m—1
t, if(i,j) € E,
#((1,)) = TEDE U

0 otherwise.

Note that A(#,(T) < 2m, (AT <2m — 1, (T,(T)) <2m — 1 and
W, (T) <2m — 1. And Z,(T) < T,(T).

LemMMA 6. Let T € & have the FHG property, and let all the entries of T
be maximal. Then there exists unique (up to a multiplicative constant) sequence
(x;) € 4(T).

Moreover, if (T) < 2m + 1 then all the entries of #,(T) are maximal, and
if (T) < 2m then all the entries of ., T are maximal.
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Proof. Let T satisfy the assumption of the lemma. Our proof is inductive
with respect to h(T). First let /(T) = 1 ie., Te; +# 0 and Te; = 0 for i # i,.
Since ||Tl| = 1 we have ||Te,~1|| = 1. It is easy to see that (8,.,-1) is a unique (up
to a multiplicative constant) element of .#(T).

Assume that the thesis of the lemma is true for all T with h(T) < N.
Assume that A(T) = N + 1. We need to prove that the lemma holds for 7.
First consider the case when N =2m is even. Put (u;) = (T). For
(i,j) € E,,,. We define

-1
nﬁ y 1- Z tlIch
k+j

Note that 1 — X, ;tf;=1— Tell” +t5 > 0 since T € #. We have
h((u;;)) = 2N.
We claim that all the entries of (u;;) are maximal. Indeed, suppose first, to

get a contradiction, that the entries of (u;;) are not maximal. We find a;; > 1
such that all the entries of the matrix (aj;u;) are maximal. Put a; = 1 for
(i,j) € E,,, ;. By the inductive assumption there exists (x') € #((a;u;)).
For every i € I,,,, we denote by j; the unique element of J,, such that

t; # 0. Now let

, o
L, X i€,
x" =1

X} otherwise.

It is easy to check that
(x}) e /((aﬁtji))

By Lemma 5, ||(a;t;)ll = 1. Since t; < ajt; and all entries of (z;) are
maximal we obtain «; = 1. Now suppose that ||(u;)l| > 1. We find a; < 1,
(,))e U f,’;lEn, such that all the entries of (aﬁuﬂ-) are maximal. By induc-
tive assumption there exists (x') € .#((a;u;)). Put a; = 1for (i, j) € E,,,, ;.
It is easy to check that (x}) € .#((«;;t;)), where x] is defined as above. By
Lemma 5 the entries of (« jitﬁ) are maximal, hence all a;; = 1. This ends the
proof of our claim. Therefore if A(T) < 2m + 1 then all the entries of
#(T) are maximal.

Using inductive assumption we find (unique) (x}) € .#((u;,)). Put

!

, o
o = ximy; i€l
! X} otherwise.

One can easily verify that (x,) € .2((¢;)).
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Now suppose that N =2m — 1 is odd. Let (u;;) = #,(T). For (i,)) €
E,, _, welet

1

7 .

-‘ll - Ztﬁc
k+#i

By the same argument as in the even case, all the entries of the matrix (u;,)
are maximal. Using the inductive assumption we find (x}) € #((u;)). It is
not difficult to check that (x;) € .#((¢;)), where

Nji =

(tili)q/pnfqliltflilx;] ifie Ly i € {I € L # 0}
x; = elkel,t,+0}

otherwme

Analogously, if #(T) < 2m then all the entries of T are maximal.

Remark 1. (a) From the construction presented in the proof of Lemma 6
it follows that if .#Z(#(T)) + & (A(#(T)) + D) then .#(T) # 0. There-
fore, if .#(F,(T)) + & then A(T) + O.

(b) We get also that if ||T]| <1 then ||~(D)| <1 and [|A(DI <1,
hence || Z,(T)|l < 1, too.

(c) Let /(T) < 2m + 1 and let the entries of T are maximal.

If (x)) € LT), x} € #/(F,(T) and x; =x] =1 then x;=x] for i €
U nm= 1In‘

Although 7, is not a linear map, it has other useful properties.

LemMmA 7. Let T € &, m € N.

@ I,T)=0,

® 17,DI <1,

© (Z,(T); =t for (i,)) € E,,, ;.

Moreover if h(T) <2m + 1 then:

(d) All the entries of T are maximal if and only if all the entries of I,(T)

are maximal.

Proof. (a) and (c) are obvious. (b) follows from Remark 1. For (d), let
W(T) < 2m + 1. Suppose that all the entries of 7, (T) are maximal. Then in
view of Lemma 6, .#(7,(T)) #+ &. By Remark 1, .#(T) # J. From Lemma
5 all the entries of T are maximal. The reserve implication follows directly
from Lemma 6.
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4. Proofs of the main lemmas
Let T € &. We define a family of matrices U™* (m, k € .#") by letting
= TnImi1Ime2r " Imrr—(T).

By Lemma 7 (b), (c) we obtain [|[U™*|| <1 and 1> u” %™ > ul* >0,
respectively. Let

u§m = 11m u,’:’k.

We define a map ¢, by
Gu(T) = (uf}

We have [|Z(T)Il <1, since |U™| < 1. By definition, U™* =
I (Um*tLk=1) Since the function

~1p)7] 7
DR TR——

aGIm+1 beJm+1

is continuous and increasing in u}.*"*~1 and
Yo oumth <1, Y - <1 (DI <)
k&l ac€l, .,

by passing to the limit as k — o we obtain

GT) = T3 T).
Proof of Lemma 1. Let all the entries of T € & be maximal. We claim

that all the entries of #,(¢) are maximal. Indeed we only need to show all
the entries of Z(T) are maximal, because of Lemma 7 (d) and the fact that

S(T) = 72T, T 5(T).
Suppose, to get a contradiction, that the entries of (u}}’) = &,(T) are not

maximal. Let a;; > 1 ((i, j) € E,) be such that all the entries of (a;u$’) are
maximal. Put a;; = 1 for (i, j) & E,. Since

(anu}z) = ‘7—1‘7_2 Tt 9’ ( Jji jl))
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by Lemma 7 (d), all the entries of £, ((a;;¢;;)) are maximal, so

| (i) = 1.

Since 0 < £, (a;;t;) < I,(a;t;) < 4,(a;t;)) we have ||£, (a;t)Il <

1 for all m. Hence |[(a;¢;)ll < 1. But this shows us that the entries of the
matrix (¢;;) are not maximal. This contradiction proves our claim.

By Lemma 6 and Remark 1 there exist (x{") € .#((u{)) for all m. We

assume that x(" =1 for all m. We have x{"™ =0 for i & U}_,1,. From

Remark 1(c), if m < m; < m, then
x{m) = x(m) £« (0 foriel,.
We put x; = x{"*D for i € I,. Now it is easy to see that (x;) € .#(T).

Remark 2. Let all the entries of T be maximal. Then if (x,) € .#(T),
(x(™) € #(Z,(T) and x{™ =x;, =1 then x,=x{" for i€ U, I,
Moreover,

1/
(fm(T))ioio = tjlg{:(yjo/xio) !

for (iy, jo) € E,,,—1,((y;) is a sequence corresponding to (x;) € .#(T)). In-
deed, fix (iy, j,) € E,,,_;- Let H = {(i, j: the path joining the node i, and
the edge i,j include the edge iy, j,}. Note that (i,j) € H. Put A4 = {i:
(i, j) € H}. We define a matrix 7" by

|t if (i,j) € H

t.. =
" (Z.(T));; otherwise.

We have £Z(T) = £Z,(T"). Let (x,) € #(T) and (x{™) € .#(£,(T)). Put

’ xi

m
ifiedu I,
xi=

n=1

0 otherwise.

and y; = X,;¢j;x;. It is easy to see that (x}) € .#(T"). Let j, €J,_, be such
that ¢;; + 0. For j € J,, we denote a unique i; € I,, such that ti, # 0. We
have y[™ = (£,(T)); x; for j € J,(x; = x{™). We have

xp =t 007 L (1))

i€,

- p —
= tf1ioyj117 t+ Z (‘gn(T))jioin; L
i€y,
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But when we consider the matrix 7’ we have

-1 _ -1 P p—1 -1
X;:) - tflioyl!]’ + Z (‘%"(T))J’Oxll:) + tfoioyjl; ‘
jel,,
T#Jo
Hence
p -1 _ -1
(':fm(T))ioiox(l)7 - tjoioyg 5
which ends the proof.

Proof of Lemma 2. We define matrices U** = 9,7, -+ F,,(T),
WP) = Z,(T) and §P by

@
u]l . .
tj,.——-%,k if (i,j) € E,
Ji

sE) — 2k+3
l . . .
! L if (i,j) € U E,
n=1
n+3
0 otherwise, k € N.

We have

I(T) = T, Ty i(S®)
By Lemma 7(d) and the claim in the proof of Lemma 1, all the entries of S
are maximal. Let (x,) € #(T), (x?) € #(Z,(T)), (x) € #(S®) be such
that x;, =x) =x® = 1. By (y),(y)),(y*) we denote the corresponding

sequences.
Fix € > 0. Let &, > 0 be such that

(xP~' = 26,)" >xP — 62771, iel UL,
Put I] = I, = {i;}. Choose J; a finite subset of J; such that

p-1 p—1 _
Z tfi1yf > X, &y
jeJ]

Find 8, > 0 (j € J}) such that

-1 _
)y tjil(yj - 3j)p >xp 1 —2¢,.

) 1
jeli
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Choose I a finite subset of [, such that

Y tx; >y, — 8 forjel.

ierurn

Let Ny =max{i € I{ U I]: t;; > 0}. Fix N > N,,. Note that

i=1 ienun

where I, = I; U{i € I,: t;; > 0, i < N}.
Choose J; a finite subset of J, such that

Y iy i >xl T —e, i€,
jeJIUJ;

and find 8; > 0 (j € J3) such that

p—1 e r—1
ji p—1 : ’
Z Lilyi — t—3] > X; —2¢;, 1€
JEJUT, s

Let I' be a finite subset of I; U {i € I,: t; # 0 for some j € J3}. Since for
all &,

p—1

Lo T ospo] <at em,
jel) nel,Ul;

there exists M > 0 such that

(S4(m)), <M (jely),

where

L= % foriel
0  otherwise.

Note that ¥, p1;x <M for j € J;. Since (§*X(2)), and (Tz); differ only
for j € J; we have

IS®z|? — IT2lI” = ¥ |(S®z),|" —|(T2);|”

jed;

£ |(Zsous) = (£ o]

jelyl tier ier
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For j € J, we denote a unique i; € I; such that t;;, # 0. Hence

IS*zll” — I Tz|”
k ol 0\
<X [(Sj(zl) jil)xij + )t )] - ( 2 tx ))
JEJ, iel el
—1f Gk
= Z pMP (S( ) - tﬂj) ’J
jer

Since s = t;;, there exists k such that

ji»
IS®z|IP — || TzlI” < g/2.

By Remarks 1(c) and 2 we have x; = x? = x® for i € I,. Now consider U®
and T® = 739, -+ T (8®). Let (x®) € T®). Since UP =
I(TP), by Remark 2,

p q
2) k k
u® = /5@ L fy®

for (i, j) € E,. Since y) = u{Px; we get u(z)(y")" ' =s{O(y)P=1 And,
since Z,(T) = %Y(T) we get u(z)(yo)" =t yp7!

Now we consider the matrix (sj(,")). We have

) > () -
1

jEEJ (k)(y(k) -5 ) -1 > (x:('lk))p_l - 2¢;,
1

k .
T sz y® — 8, e,

ierulr,
o L0y 1 k .
S 000 = bapts () e e
JEJIUIT; jeJiuJ;
-1 P, !
(k) (k) = (k) Jt -
> S (y 5) X Sji RG) yj = 9;
jeJIUI, jeJUI; Ji
p—1 -
s
= X Lil ¥i — t. 5
jeJjuls Jt

v

(x©)""' ~2¢, ieD,
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Now choose I3 a finite subset of I; such that

Y, PP >yl —5, jel;.
iejuI;

Let g; > 0, i € I; U I,, be such that
((x0)"" = 22)" > (x9)" = o7

Note that the above inequality holds also for i € I] U I;. Choose J; a finite
subset of J; such that

-1 — .
T sP(y) T > (x0) ey i
jeJyul;

Find 8, > 0 (j € J3) such that

-1 - .
T 0P -a) > () 2, il
jelyuls

Choose I, a finite subset of I, such that

k) (k k ;
Y, x> y® -5, jed;.
ielyuly

We continue the above process for the matrix S® to get a finite sequence
LD, Ty Let

2k+2 2k+2
I= I, and J= | J,.
n=1 n=1

And let u™Y) € [? be defined by

(k) . .
x$ ifiel
ugN) _ i )

0 otherwise.

Let v = (v;) = S®u™. For j € J we have

[

- k), (N ). (k k
vy = 2 sPuM > Y sPx® > y® — 5,
i=1 il
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Thus

Z sPop~t = 3 sO(v® - ‘o‘j)P_l > (xf~k))p_1 — 2¢;
j=1 jelJ

for i € I. Therefore we obtain
lesoy sty o =lesy e,

q
> Z[Zs}!"vf"‘]

iell|jes

> ¥ [(x) " - 2]
iel

k p & _ NP E
> Y| (x)" - 2i+1] = @115 - 7
iel
Therefore
€
IS©UMIE > [u™l - 5.
‘We have
E
ISEUNE — | TuM| = IS©all; — I T2l < 5.
Thus

I TIN5 > ™5 — &

5. Additional remarks on extreme positive /”-contractions

LemMmA 8. Let T € & and let the graph G(T') be a tree. If all the entries of
T are maximal then (x;) € .#(T) is unique up to a multiplicative constant.

Proof. Suppose, to get a contraction, that there exist two different se-
quences (x7),(x}) € #(T) such that x; =x; = 1. Then the corresponding
sequences ( ¥;) and (yJ") differ for some Ji- 'We may and do assume that
Jj1 € J;. Suppose y}l < y,1 Let £ > 0 be such that

¢ p
J1k = np—1 /p 1
([.. + g) 1111y11 + Z tJll
Jit j€J,

J#i
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We define a new matrix () by

L, Y& . ..
t,——— if(i,j) € E,

t, = tjlil

t. otherwise.

We have tj; > t;; and t]; > ¢;,;.Put A = {k: the path joining nodes k and i,

Jji = Jiia

includes edge i;j,}. It is easy to see that (x,) € #((¢};)) where

t..
J1t . .
fori =i
ti; te 1
X, = 11
! x! fori € A
x; otherwise.

Hence, by Corollary 1, [[(¢})Il < 1. This contradicts the fact that all the
entries of T are maximal. Therefore there are not two linearly independent
elements of .Z(T).

Example 1. It should be pointed out that for some T € & there are more
that one linearly independent elements in .#(T) (even if the graph G(T') has
no cycle). We define a sequence (a,,) by

a, = (221 =2)"/"Y 4, =24, -1,

_ p—-1_ ,p—-1\/(p-D _ _
Arp+1 = (2a2n A3n-1 s @ypyy =20y, 1 — ay, (nE€N).

The sequence (a,) is increasing. Let T = (¢;;) be defined as follows:

by =ty =13 =1/4,
Liiv1 = tivsiv1 = 1/2, i €N,
t; =0 otherwise.
Let
2 ifi=1
!

1 otherwise
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and
2 ifi=1
X! = {ay ifi=3k,keN
1 otherwise.

Now it is easy to see that x', x” € .#(T).

ProrosITION 3. Let T € & and let the graph G(T') be a tree. Suppose that

all entries of T are maximal. If t;; >0, ¢, >0 and a € (0,t;;) then there
exists B > 0 such that ||(t},.)|| =1 and all entries of the matrix (t,’-i) are
maximal, where t;; = t;; — ad;; 8; + Bd;;0;; .
Proof. Because the graph G(T') is connected we may restrict our atten-
tion to the case when ¢;; and ¢;, belong to the same row or column. For
instance assume that j, =j,. By Lemma 5 there exists (x;) € #(T). Fix
@ € (0,¢; ;). Choose B > 0 such that

x; bt tx;t; =nix

iy jiiy 2"yl

+ &9x; ¢,

iltilix i2%j1iz

where

,np—l = (tflil - a)/tjlil’ §P—1 = (tiliz + B)/tiliz'

A = {k: the path joining nodes k and j, include the edge i,j,},
and
B = {k: the path joining nodes k and j, include the edge i,/,}.

Note that i; € 4, i, € B. It is easy to see that (x}) € .#((¢;,)), where

nx, ified
x, = { &x; ifieB
x;  otherwise.

Thus [|(¢j)Il < 1 (by Corollary 1). This construction shows us that if some
entry of a matrix is not maximal then no entry is maximal. If some entry of
(t},-) is not maximal then doing the reserve operation to that presented above
we get that no entry of (¢;,) is maximal. Hence the entries of (¢};) are maximal
and [1(e})]l = 1.

As an immediate consequence we get the following interesting fact.
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CoroLLARY 2. For a positive contraction whose graph is a connected tree
either all entries are maximal or no entry is maximal.

Example 2. For ¢ > 0 we define an operator 7, by
T.(u;) = (cuy, (uy +uy) /2, (uy + u3) /2, (us +uy)/2,...), (u;) €1”.

Consider sequences (x,), (y,) such that

4

o
tix; =y, L tyyP ' =xP"! with x; = 1.
1 j=1

We have y, = c, y, = 2(1 — c?),

xn+1=2yn+1_xn (nZ].),

yerl =250 =y (n22).
Let a,,_, =y, and a,, = x, (n > 1). We have

Qppiz = app1 = Gouiq — Gy, (N 21)
and

p=1 _ ap=1_ ap=-1_ ,p-1
A3n+1 — A2, = 43 af, -y (n22).

Ifc= p\/1/2 then a, = 1forn > 2. And if ¢ < p\/1/2 then a; — a, > 0 and
a, — a; > 0, so (a,) is increasing. Therefore for ¢ € (0, p\/l /2 1the set A(T,)
is non-empty and .#(7T,) has exactly one sequence (up to a multiplicative
constant). Obviously entries of 7, for ¢ € (0, p\/l /2) are not maximal, so

T, & ext . Thus we get an example of non-extreme operator such that an
element of .#(T) is unique. Note that the condition (ii) for the operator T,

(c € (0,/1/2)) holds.
Suppose that || 7,|| < 1. Then

2k +1)\* ~ (k)
(% )=|I7‘cullsllull=k§1(;)

where

_1n—1.n—2 1
u= s n s n o

,0,0,0,...).
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Using the mean-value theorem we obtain

p—1
(k+;) —k? =% (k+2§k) where 0 < ¢ < 1.
Hence
n p

n? n

k=1

1 i (k+§k/2) ]

when » tends to infinity we obtain

Therefore we have ||7.]| > 1 for ¢ > p\/l /2. Hence the entries of T for

p .
¢ = y1/2 are maximal.
p . .
For ¢ > y/1/2 we have a; —a, <0, a, — a; <0, so (a,) is decreasing.
Because of results presented before there exists n, such that a, < 0 for all
n = n,.
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