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EXTREME POSITIVE OPERATORS ON p

BY

RYSZARD GRZ4gLEWICZ

1. Introduction

The problem of the characterization of the extreme operators was first
investigated by A. Ionescu Tulcea and C. Ionescu Tulcea [13]. They consid-
ered extreme positive contractions on the space of continuous functions. Next
many authors extended this result, and now we have a quite good knowledge
about extreme operators on C(K) (see for example [4], [5]). Thus it is natural
to consider the possible extension of this problem to other classical Banach
spaces. Using the results for C(K)we can get characterizations of extreme
/=-operators and /1-operators (see [18], [14]). Note that for a Hilbert space
case the set of extreme contractions coincides with the set of all isometries
and coisometries (see [15], [8]). The other cases of /P-spaces are more
complicated. Some partial results on extreme /P-contractions for 1 < p <, p 4= 2, are given in [6], [7], [16], [17], [12].
The purpose of this paper is to characterize the extreme points of the

positive part of the unit ball of the space of operators acting on infinite
dimensional /P-spaces 1 < p < . This result extends an earlier one for the
finite dimensional case [9]. Generally speaking the structure of extreme
positive contractions is similar to the structure of extreme infinite doubly
stochastic matrices with respect to arbitrary positive sequences (not necessar-
ily elements of 11). This description turns out to be more complicated
compared with the finite dimensional case.

Let 1 < p < and q p/(p 1). As usual we denote by ’ the Banach
lattice of all p-summable real sequences with the norm

Ilxll, Ixilp X (Xl) p

i=1
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EXTREME POSITIVE OPERATORS ON p 209

and standard order (x < y if and only if x < Yi for all N). We put

eio (6Uo) (6ij denotes the Kronecker’s delta). Obviously {ei} forms the
canonical basis of p. The adjoint space (lP) is identified with the space q.
For 0 < x (xi) p we let x p-1 (x-1) q. Note that Xp-1 as a
functional attains its norm at x and is the unique functional with this
property. Moreover we have IIxP-lllq Ilxll%.
We denote by .’(lp) the Banach space of all linear bounded operators

from p into p. AI1 operator T is said to be positive T > 0 if Tx > 0
whenever x > 0. The positive part of the unit ball of _W(lp) (the set of
positive contraction on p) is denoted by 9.
To every operator T _z(lp) corresponds a unique matrix (tji) with real

entries, such that (Tx) Zff=ltiixi We have T > 0 if and only if ti > 0 for
all i, j N. The operators on p will be identified with their corresponding
matrices. Thus for instance (8ijo6iio) denotes the one dimensional operator in
’(1p) which maps ei0 onto ei0. Clearly the adjoint operator T* .W(l) is
determined in the same manner by the transposed matrix.

Let 0 < T . We say that entries of T (ti) are maximal if

for every y > 0 and all 0, J0 N such that tjoio > O. Obviously, if some entry
of the operator T is maximal then T[[ 1 and if T is an extreme positive
contraction then all entries of T are maximal. Note that there exists T 9
such that Tll 1 and the entries of T are not maximal (a suitable example
is given in the paper).
We define the support of an operator T (ti) _W(lp) by

supp T {i" there exists J0 such that tjo 4 0}.

For a positive operator T (tji) -W(l) we denote by g(T) the set of all
non-negative sequences (xi) such that

(1) 0<_ tyx yy < o,
k=l

(2) E tliYff -1 X-1

k=l
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for all i, j N, and

(3) x > 0 if and only if supp T. That is

(Xi) O: supp (Xi) supp T and for every e N,

E tji E tjkXk =X-1
j=l k=l

Let a (ai), b (b.) be non-negative sequences. A matrix P (pji),
i, j N, is said to be doubly stochastic with respect to ((ai), (bj)) if Pji -" O,
=lPji ai, E=lPji bj. The set of all doubly stochastic matrices with
respect to a, b will be denoted by _(a, b).
To complete a characterization of extreme positive /V-contractions we

need a description of extreme points of (a, b) for arbitrary non-negative
sequences a, b. This problem was investigated under various assumption on
a, b by many authors (see [20], [21], [3]). Note that the first result of this kind
was given by G.D. Birkhoff [1] (see also [22], I, 5). The characterization of
ext .(a, b) for arbitrary non-negative sequences a, b is given in [10].
The main aim of this paper is to prove the following characterization of

extreme positive/V-contraction.

THEOREM. Let 1 < p < , and let 0 4: T (tji) . Then T is an
extreme positive contraction if and only if the following conditions hold:

(i) the entries of T are maximal;
(ii) the matrix P- (tjixiyf -1) is extreme in _((x/), (yyP)), where (xi)

/(T) and yj o_ ltixi"

2. Proof of the theorem

We will use the following fact, which is a generalized version of the Schur’s
test [23] (see [11], 5,Th. 5.2.).

PROPOSITION 1. For a positive operator T (tji) ’(lp) let there exist
positive sequences (xi), (yy) such that

E tjixi
i=1
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and

E tyiYf -1 <-- X[-1
j=l

for all i, j N. Then TII 1.

Proof Using the convexity of f(t)= p for an arbitrary non-negative
vector u (ui) p we have

IITull% tjiu
j=l i=

jiX U

j= i= YJ Xi

Y tjixi

j= i=l Yi X

tjiY -1X-1

u Ilull%,
i=1

CooA 1. If for a positive operator T (lp) the set (T) is
non-emp then [ITll 1,

For every matrix (tji) define a graph G((tji)) by the following formula. To
the j-th row there corresponds a (row) node j, j N, and to i-th column
there corresponds a (column) node i, N. There is an edge joining a node
and a node j if and only if tyi :/: O. There are no other edges.
We say that an operator T _z(lp) is elementary provided there are no

non-zero operators T T + T2 and

supp T A supp T2 supp T A supp T .
Note that T is elementary if and only if the graph G(T) is connected. Each
operator T _(lp) can be represented as a countable sum of elementary
operators Tk, T ETk with supp Tk disjoint and supp T disjoint. Then
[[TI[ SUPkl[Tkl[ and T >_ 0 if and only if Tk >_ 0 for all k. Therefore T is an
extreme positive contraction if and only if the Tk’S are extreme positive
contractions. The above decomposition shows us that for our purpose it is
enough to consider elementary operators. Therefore without any loss of
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generality all operators in .(lp) considered in the remainder of the paper
will be assumed to be elementary operators.

PROPOSITION 2. Let T 65 ext . Then the graph G(T) has no cycle.

Proof Suppose, to get a contradiction, that the graph G(T) has a simple
cycle C. Let F 65 .(l) denote the projection defined by

ei if/ <n
Fnei 0 otherwise

For n sufficiently large the graph of T TF contains the cycle C. Note that
the Tn’s are finite dimensional operators and they are not extreme. Recall
here that the finite dimensional case if the graph of a positive contraction has
the cycle then it is not extreme (see [9, Th.3]), so for each T there exists
R (r/n)) =/= 0 such that Tn -t- Rnl[ < Tn _< 1 and T -t- Rn > O, the graph
G(Rn) C and tjoio Ir}0’)01 for some (i0, J0) 65 C (not necessarily the same
for all n). Choose a subsequence nk of N such that limk r/n)= ri exists
for all (i, j). Note that rji =/= 0 for some (i, j), i.e., R’= (ri) O. Obviously
T __+ R > 0 and T __+ R _< 1. This contradiction ends the proof.

LEMMA 1. Let the graph G(T) of T 65 be a tree. If all entries of T are
maximal then ’(T) is non-empty.

LEMMA 2. Let all the entries of T 65 , be maximal. Let (xi) 65 /(T) and
Jl 65 supp T*. Then for every e > 0 there exists NO such that for all N > NO
there exists u(N) 65 p such that

and

Ilu<g)llp- IlTu<g)llp < e,

U!N) Xi

u!N 0

for 65 {k < N" tjlk 4 0},

fori 65 {k > N: thk 0}.

The proofs of Lemmas 1 and 2 will be presented in Section 4.
Let the graph G(T) of T 65 .za(lp) be a tree (i.e., G(T) has no cycles). Let
65 supp T. Note that G(T) is a connected tree since T is elementary. We

define inductively two families {In} and {Jn} of disjoint subsets of N and a
family {En} of disjoint subsets of N N. Put

I1-- {il}, J1-- {J: tjli 4= O}
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and

In+ {i In" tji Vs 0 for some j Jn}
Jn+l= {JJn’tji4:0 for someiIn+l}

E2n_ {(i, j)" In, j L}
E2,,= {(i,j)" In+a, J eJn}, n N.

LEMMA 3. Let all the entries of T be maximal. Let (xi) - ,,(T) and
,= tji xi. If T +_ R for some R (rii) then

E rjixi-- 0 and E rjiYf-1
j=l j=l

Proof. The graph G(R) is included in the graph G(T) and [ri[ < tji
since T + R > 0. Fix Jl supp T*. Because in the construction of the sets
Ia, Ja, I2,... the index il is arbitrary we may and do assume that Jl J1.

Fix e > 0. We need to show that there exists NO such that

N

E rjliXi
i=1

<e forallN>NO

By Lemma 2 we can find NO N such that for every N > NO there exists
u(N) p such that

and

Ilu<N)ll- IITu<N)II < e

N

( Ru(N))jl E rjlXi.
i=l

First consider the case when p > 2. Using the Clarkson inequality [2] (see
also [19], Corollary 2.1)we have

211Ru<N)II% + 211TuN)II% < II(T -4- R)uN)II% + II(Z- R)uN)IIPp < 211uN)II%

Hence we have

N

E rjliXi
i=1

I(Ru(N))h < IIRu(N)IIp 4: (llu’N)[l,- IITu(N)IIPp) 1/p < e 1/p

Therefore Ei= rjixi 0 for all j N and p > 2.
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Now assume that 1 < p < 2. As an immediate consequence of differential
calculus we obtain

(t + r)P + (t )P >_ 2tp + p(p 1)r2tp-l>_2tp + p(p 1)r2

where I1 < < 1. By this, putting Tu(N) (fj) and Ru(N) (gj) we obtain

2 Ifslp + p(p 1)g < Ifj + gjlp -b E ID" gjlp
j--1 j=l j=l

[I(T+R)u(N)I]. + I[(T-R)u(N)I[
_< 211uN)ll%,

Hence

p(p 1)gj12 _< 2(IlB<N)II% IITB<N)IlPp) < 2e.

Thus we prove that Y’i=lrjixi----0 for all p (1, ). To prove that
)=lrjiyf 0 we apply the same arguments for the adjoint operators T*

and R*.

Proof of the theorem. Suppose that T ext . Then obviously the condi-
tion (i) holds. From Lemma 1 there exists (xi) ’(T). Put Ys Ei=ltjixi

Suppose that P (tjixiYf -1) f[ ext .((x/’), (yf)). Then there exist P’=
(pji) and P" (P"i)in .((x’), (yff))such that P’ :/: P" and P (P’ + P")/2.
In view of Proposition 1, T’= (ti) and T"= (t:i) are positive contractions,
where t. --p.i/xiy -1 and tj’ pj.ti/xiYf-1 (we admit 0/0 0). We have
(T’ + T")/2 T, so T is not extreme. Thus the condition (ii) also holds.
Now suppose that the conditions (i) and (ii) hold. Let R (rig) be such

that T + R <. Obviously the graph G(R) is a subgraph of G(T). By
Lemma 3, E= rji Xi 0 and E.j=arjiyf 0. Thus

(tjixiYf -1) "P" (rjixiYf -1) ..’((X),
Because (tjixiYf -1) ext _((x’), (yf)) we get rjixiYf -1
i.e., T ext . 0. Hence rji 0,

3. Operators with a graph of finite height

Let the graph of T .(lp) be a tree. The family I is a partition of
supp T and the family Jn is a partition of supp T*. Moreover

t.J En {(i, J)" tji :/: 0}.
n=l
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If in the sequence El, E2, E3,... some Eno is empty then the subsequent sets
En, n > n0, are also empty. The number h(T) of the non-empty sets in the
sequence {En} will be called the height of the graph G(T). We say that the
matrix T has the FHG (Finite Height Graph) property if h(T) is finite.

LEMMA 4. Let 0 < T .( p) have the FHG property, and let (x )
’(T), yy Eityixi Then for each e > 0 there exists a finite subset I of N such
that

IIZ*(Zu)-ll > Ilullq ,
{ii} I C I, (T*((Tu)p-a))il > X(-1/2,

and for fixed Jl J1 we have (TU)jl > yjl/2 where

x ifi I
ui 0 ifi f I.

Proof. Let (x ) (T)" Let yi

Jl J1. Let e > 0 be such that
,itjixi Fix e > 0 and supp T. Fix

(Xf -1 2Ei)
q
> Xf E/2

and

Eil < XI--1/4.

Let I[ I {il}- We choose a finite subset J of J1 such that Jl J and

E tjilYf-1 > Xl1-1
jJ

We find a. > 0 (j J) such that Jl < Yh/2 and

E tji(Yj j)p-1 > X_
jJ

We choose a finite subset I of I2 such that

E tjixi > Yj
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for j J. We choose a finite subset J of J2 such that

tjiYf -1 > X-1
8

for I. We find a. > 0 (j e J) such that

tji(y aj)
p-1 > X-1 2e

I. We continue the above process to get (after h(T) steps) a finite
no 1J We definesequence I, J, I,..., Jn’ Let I U no 1I, and J tO

X if/ I
0 ifiI

Put v (v.) Tu. For j e J we have

Uj E tjiui E tjixi > Yj $j"
i=1 iI

Hence

E tjiC -1 > E tji(Yj aj)
p-1 > X[-1 2ei

j=l jJ

for/G/.

Therefore we obtain

IIZ*(Zu)-’llq IIT*vP-IIqq E
iI

> _.(x’-l-2ei)
q

iI

> Ilull E.

Moreover we have

(r*((ru)-))i >_

_
ytjil(yj j)p-1 > Xl_ E XI1-1/2

jeJi
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and

tjxiXi > Y11 6il > YJl/2"

LEMMA 5. Let 0 < T (1p) have the FHG property and let (T) be
non-empty. Then T[[ 1 and all the entries of T are maximal.

Proof By Corollary 1 we have [[T[[ _< 1. Let T (tji) have the FHG
property and let (xi) t’(T). Suppose, to get a contradiction, that there
exists an entry of T which is not maximal. Since the construction of the
sequences I1, J1, J2... can start from every positive entry, we may and do
assume that tji (il Ix I, Jx J1) is not maximal. Let y > 0 be such that
[[S[[ < 1, where S (sji) (tji q- /iiljjl), Let

Xi )l+7j
p-1

>0

and

E tjlillqXil/2q > O.

In view of Lemma 1 there exists u (Ui) p such that if v (v) Tu,
p--1z (zi) T*(vp 1) then Ilzll Ilull% , and uil Xil zil > xil

vii > yil/2. We have

[(Ujl-- "}lXil)p-l- U’P-I]j1 > /3"/9-1j1 1 + 7 1 >_ 1.

Using the mean value theorem we get

[Zil q- tjlil[]
q

Z tjlil[qz > 2e.

Therefore we obtain

[IS* (Su)p-ll[qq _. T*[(T .-}- ,Yiiljjl)U] p-111:
---i[T*(Tu) -.[- Tg[((Ujl + ")IXil)p-1
> [[Z + tjlileil[[ qq

)q--Ilzllaq / (Zil "-[- tjlil[3 --z.qtl

Ilull + 2e > Ilull.
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This contradicts the fact that for arbitrary R we have

IIR*(Ru)p-IlIqq II(Ru)p-IlI IIRullp Ilullo.

This shows us that all the entries of T are maximal. Moreover, since IISll > 1
for each , > 0 we have T[I 1.

Let rn N. We define the following maps from the set of all positive
contractions which the graph is a tree into the set of matrices having the
FHG property by

m((tji))

2m--1

tji if(i,j) [.J E
n:l

0

if (i, j) eE2m

otherwise,

tr((tji))

tji

tji[1 kI+
0

2m --2

if(i,j) [,.J E
n=l

if (i, j) e E2m_

otherwise,

m((tji) ) Ityi if (i, j)

0 otherwise.

2m--1

Note that h(’m(T) < 2m, h((T)) < 2m 1, h(-m(T)) < 2m 1 and
h(m(T)) < 2m 1. And m(T) < -m(T).

LEMMA 6. Let T have the FHG property, and let all the entries of T
be maximal. Then there exists unique (up to a multiplicative constant) sequence
(Xi) ’(T).
Moreover, if h(T) < 2m + 1 then all the entries of m(T) are maximal, and

if h(T) < 2m then all the entries ofT are maximal.
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Proof Let T satisfy the assumption of the lemma. Our proof is inductive
with respect to h(T). First let h(T) 1 i.e., Zeil =i& 0 and Te 0 for :/: i.

Since II TII 1 we have II Teil 1. It is easy to see that (iil) is a unique (up
to a multiplicative constant) element of /(T).
Assume that the thesis of the lemma is true for all T with h(T)< N.

Assume that h(T) N + 1. We need to prove that the lemma holds for T.
First consider the case when N 2m is even. Put (uji)= m(T). For
(i, j) E2m. We define

9ji
1

Note that 1-Ek,jti= 1- [[Teil[p+tff>O since T. We have
h((uji)) 2N.
We claim that all the entries of (ui) are maximal. Indeed, suppose first, to

get a contradiction, that the entries of (ui) are not maximal. We find Olji > 1
such that all the entries of the matrix (OljiUji) are maximal. Put OI.ji-- 1 for
(i, j) E2m+l. By the inductive assumption there exists (x’) ’((OljiUji)).
For every i Im+ we denote by Ji the unique element of Jm such that

ti 4= O. Now let

X
XiTji if I +

x’i otherwise.

It is easy to check that

(X;) ((Oljitji))

By Lemma 5, I[(ayityi)[I--1. Since tji <_ Otjitji and all entries of (tji) are
maximal we obtain ayi 1. Now suppose that [[(u.i)[I > 1. We find Olji < 1,
(i, j) Id n=12nEn, such that all the entries of (Oljiblji) are maximal. By induc-
tive assumption there exists (x’) g((aiuji)). Put ayi 1 for (i, j) E2m + 1"

It is easy to check that (x’[) ((otjitji)) where x7 is defined as above. By
Lemma 5 the entries of (Ojitji) are maximal, hence all Oji 1. This ends the
proof of our claim. Therefore if h(T)< 2m + 1 then all the entries of
m(T) are maximal.

Using inductive assumption we find (unique) (x’i) /((uji)). Put

X
Xti gjii if Im +

X otherwise.

One can easily verify that (Xi) ,,’((tji)).
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Now suppose that N 2m 1 is odd. Let (uji) ’,(T). For (i, j)
E2m- we let

1

By the same argument as in the even case, all the entries of the matrix (blji)
are maximal. Using the inductive assumption we find (x’i) g((uji)). It is
not difficult to check that (xi) g((tji)), where

X

tjli ) q/P qjliltjlilXil if Im+ 1, Jl {J Jrn" tjl =/= 0},
{k Irn" tjlk 4: O}

otherwise

Analogously, if h(T) < 2m then all the entries of T are maximal.

Remark 1. (a) From the construction presented in the proof of Lemma 6
it follows that if ’(’m(T)) 4: f (’(’(T)) 4: ) then /(T) 4: 0. There-
fore, if ’(-m(T)) 4: then ’(T) 4: .

(b) We get also that if IITII _< 1 then II’m(T)ll-< 1 and II,(T)II _< 1,
hence -m(T)ll-< 1, too.

(c) Let h(T) < 2m + 1 and let the entries of T are maximal.
If (x’i) g(T), x7 ’(-m(T)) and x’.,1 x’.’,l 1 then x xi" for

t.J In.n=l

Although Y-m is not a linear map, it has other useful properties.

LEMMA 7. Let T 6, m N.
(a) ,-m(T) >_ 0,
(b) -m(T)ll -< 1,
(C) (-m(T))ji >_ tji for (i, j) E2m_ 1.

Moreover if h(T) < 2m + 1 then:
(d) All the entries of T are maximal if and only if all the entries of -m(T)

are maximal.

Proof. (a) and (c) are obvious. (b) follows from Remark 1. For (d), let
h(T) < 2m + 1. Suppose that all the entries of -m(T) are maximal. Then in
view of Lemma 6, g(-m(r)) 4 . By Remark 1, /(r) 4: . From Lemma
5 all the entries of T are maximal. The reserve implication follows directly
from Lemma 6.
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4. Proofs of the main lemmas

Let T 9. We define a family of matrices Umk (m, k K) by letting

Uink-- -m-m+l-m+2 ...._-,+k_l(T).

By Lemma 7 (b), (c) we obtain Ilumkll _< 1 and 1 >_ umji k+l >_. Ujimk __> O,
respectively. Let

mkun)-- lim blji
k

We define a map m by

(.;7).

We have II’m(T)ll 1, since
-m(Ur+l’k-1). Since the function

IIumll 1. By definition, Umk=

1- _, 1- .Uji
aIm+l bJm+l

1/q

is continuous and increasing in una+ 1, k-1 and

E u( +1) < 1, E < 1 (II(T)II _< 1)
kJm+, aIm+,

by passing to the limit as k we obtain

,_m( T) -mm+ l( T).

Proof of Lemma 1. Let all the entries of T 9 be maximal. We claim
that all the entries of 4m(t) are maximal. Indeed we only need to show all
the entries of I(T) are maximal, because of Lemma 7 (d) and the fact that

Suppose, to get a contradiction, that the entries of (o)uii ) m(T) are not
maximal. Let aji > 1 ((i, j) El) be such that all the entries of (ajiuji. are
maximal. Put aji 1 for (i, j) E1. Since

(Oljibtjli)-- -12 -m_lC#?m((Oljitji)),
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by Lemma 7 (d), all the entries of m((ajitji)) are maximal, so

IIm((ajitji))ll 1.

Since 0 _< m((Ojitji)) <_ -m((OZjitji) <_ m((OZjitji)) we have IIm((ajitji))ll
1 for all m. Hence II(ayityi)ll < 1. But this shows us that the entries of the
matrix (tyi) are not maximal. This contradiction proves our claim.
By Lemma 6 and Remark 1 there exist (xm)) ’((u))) for all m. We

assume that x(.m) 1 for all m We have x!m) 0 for [.J In. Fromn=l

Remark l(c), if m < m < m2 then

X!ml) =-X!m2) t= 0 for Im.

We put x X}m+ 1) for Im. Now it is easy to see that (Xi) ’(T).

Remark 2. Let all the entries of T be maximal. Then if (Xi) (T),
(x}m)) (m(T))and x(’m)’l Xil 1 then xi =x!m) for i [..Jmn=lin.
Moreover,

(m(r) )joio l/p ( yjo/Xio) 1/q

for (i0, J0) E2m-1, ((Yj) is a sequence corresponding to (Xi) (T)). In-
deed, fix (io, Jo) E2m-l" Let H {(i, j: the path joining the node 0 and
the edge i,j include the edge io, Jo}. Note that (i, j) H. Put A {i:
(i, j) H}. We define a matrix T’ by

tji if (i, j) H
tji (m(T))ji otherwise.

We have m(T) m(T’). Let (Xi) /(T) and (x}m)) (m(T)). Put

m

X ifiAU [.JI
Xi n=l

0 otherwise.

and y Eitjix’i. It is easy to see that (x’i) (T’). Let Jl Jm-1 be such
that tjlio 4 O. For j Jm we denote a unique iy I such that tji 4= O. We
have ym) (m(Z))jijxi for j Jm(xij x (.m)), We have

X p-1tjioYj + E (m(Z))jioYf
JJm

P p-1tjlioyjp ..]_ E (m(r))jioXio
JJm
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But when we consider the matrix T’ we have

X p-1tjlioYJl + P p-1E (m(T))jioXo + tjoioyjo
JJm
j 4=j

Hence

(Cm( T) )jPoioXg -1 tjoioY-which ends the proof.

Proof of Lemma 2. We define matrices U 2, k

(blji(2)]. 2(T) and S(k) by
,.k+l(T),

ji

U(.2.)
tji ui, k if (i, j’) E3

2k+3

tji if(i,j) U E
n=l
n=/=3

0 otherwise, k N.

We have

’2(T) 2 ’k+l(S(k))

By Lemma 7(d) and the claim in the proof of Lemma 1, all the entries of S
are maximal. Let (xi) ’(T), (x) ’(2(T)), (x}k)) ’(S(k)) be such
that Xil x/l x(k)il 1. By (yj),(y),(y}k))we denote the corresponding
sequences.

Fix e > 0. Let e > 0 be such that

(X]-1 26i)
q
> X 82-i-l, I tO 12.

Put I I {ia}. Choose J a finite subset of J1 such that

E tjilYP -1 > X1-1
jJ

Find a > 0 (j J[) such that

E tjil(Yj
je

2Eil.
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Choose I;’ a finite subset of I2 such that

E tjixi > Yj 6 for j J.
I tI’

Let NO max{/ I t I" tjl > 0}. Fix N > N0. Note that

N

E tjliXi E tjliXi
/=1 iItI

where I I’ t {i 12" tjl > O, < N}.
Choose J a finite subset of J2 such that

E tjiY -1 > X-1
Ei, I,

and find 3j > 0 (j J) such that

E tji Yj-- ji j >X-1

jeJioJ

Let I’ be a finite subset of I t {i 13" tji 4 0 for some j J}. Since for
all k,

E S)? E (k)(k) < Xf -1 (i I)
jJ n 12 k313

there exists M > 0 such that

where

(S’(z)) < M (j J),

X for I’
Z

0 otherwise.

Note that 2i,,tjix!k)< M for j J. Since (s(k)(z))j and (Tz) differ only
for j J we have

[IS(k)z]l"- ]lTz[[p= E -I(Tz)["
jJ

E E S("k)x(’k) E tji)6}k)jt

J I’ I’
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For j J we denote a unique ij I such that tji =/: O. Hence

Ilakzllp IITzllp

[S)i --tjil)Xij
jJ

E tjix!k)]
p

iI’
E tji x(k)
iI’

_(k) tji, there exists k such thatSince 5ji

IIS<)zll- IlZzll < e/2.

By Remarks l(c) and 2 we have x X X!k) for I2. Now consider U(2)

and Ta) 344 +l(Sk)). Let (x!a)) .,(Tak)). Since U2)

2(Tak)), by Remark 2,

Jt [ J’i

for (i, j) E3. Since yy0 -jill(2)-i we get b/5)(y?)p-1 s}i’(y}k))p-1. And,
(2)(y?)p-1 tjiy-Isince ’2(T)= 23(T)we get uji.

Now we consider the matrix (sS/)). We have

E ")ji (Yk))
p-1 (k))

p-1

jJ

jJ

(a:)[ )P-
jJJ jJJ

p
tjs}/) - yj.- 6j.

p-1p - ()
sjiE tji Yj j

(k))P -1> (X 2ei,
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Now choose I; a finite subset of 13 such that

E Sji(k)xi(k)> yk)_ j, y j;.

Let e > O, 11 t..j 12, be such that

(k
q

}k))
p -i-1((X ))P- 2Ei) > (X 62

Note that the above inequality holds also for I u I. Choose J a finite
subset of J3 such that

..(k) > (. (k)E ji (Yk))
p )p-1X 8i, 13.

Find 6j > 0 (j J;) such that

E sSik)(#k) j)p-1 ( ] -1
26i, 13.’> ,x,),p i

Choose I; a finite subset of I4 such that

We continue the above process for the matrix S) to get a finite sequence

I Let,J1, I2,..., J2k + 2"

2k+2 2k+2

I= [,] I, and J= [,.J J,.
n=l n=l

And let U(N) p be defined by

ifiI

otherwise.

Let v (vj) s(k)u(N). For j J we have

E -jt’("k)"(’N)--, >--" E Sji(k)v’(k)"i > k)__ j.
i=1 iI



EXTREME POSITIVE OPERATORS ON p 227

Thus

E S(’ik)U’p-1 > E (k)[ )p-1 -1
Sj \#k)__ tj > (x}k))p 26,

j=l jJ

for I. Therefore we obtain

I1< S’*))* ( S’*u’N))’- ll I](s(k))*vp-1 I]qq

> E[(x!k))p-l- 2el]
q

iI

i (k)

2i+1
> (X )p g

IluC:N)IIRR e
2"

Therefore

IIs(k)u(N)IIPR > Ilu(N)llPp

We have

8

Thus

p5. Additional remarks on extreme positive -contractions

LEMMA 8. Let T and let the graph G(T) be a tree. If all the entries of
T are maximal then (xi) ’(T) is unique up to a multiplicative constant.

Proof Suppose, to get a contraction, that there exist two different se-
quences (x’i), (x7) t’(T) such that x’.,1 xil 1. Then the corresponding
sequences (y) and (y)’) differ for some Jl. We may and do assume that
Jl Ja. Suppose yS’, < YI" Let e > 0 be such that

tjlil 1/.,p- + E tji YP-tjlil + E tjlilJJ1
JJ1
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We define a new matrix (tji) by

tji
tjlil -{- e

tji tjli

tji

if (i, j’) E

otherwise.

We have tji >_ tji and tjlil > tjlil. Put A {k" the path joining nodes k and
includes edge ilJ’l}. It is easy to see that (xi) ((ti)) where

x

thi---2 for
tjlil - 8

x for/cA

x’ otherwise.

Hence, by Corollary 1, II(ti)ll 1. This contradicts the fact that all the
entries of T are maximal. Therefore there are not two linearly independent
elements of (T).

Example 1. It should be pointed out that for some T there are more
that one linearly independent elements in ’(T) (even if the graph G(T) has
no cycle). We define a sequence (an) by

a (2 p+I 2)
1/(p- 1)

a 2 2a 1,

a2n +1 (2an an___l )1/(p-1) ain+2 2ain-1 ain (n N).

The sequence (an) is increasing. Let T (t.i) be defined as follows:

ti, i+

tll t21 t31 1/4,

ti+3, i+ 1/2, e N,

tji 0 otherwise.

Let

{!X 2k

if/= 1
ifi=3k+l,kN
otherwise
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and

2 if/= 1

x7 a2k if 3k, k N
1 otherwise.

Now it is easy to see that x’, x" (T).

PROPOSITION 3. Let T and let the graph G(T) be a tree. Suppose that
all entries of T are maximal. If tjlil O, tjEi2 0 and a (0, tjlil) then there
exists fl > 0 such that [[(t.i)[[ 1 and all entries of the matrix (t.i) are
maximal, where tji tji OI.tjjltii q- [3jj2ii2.

Proof Because the graph G(T) is connected we may restrict our atten-
tion to the case when tjli and tjzi2 belong to the same row or column. For
instance assume that Jl--J2. By Lemma 5 there exists (xi) (T). Fix
a (0, thg). Choose/3 > 0 such that

Xitjlil q- xi2tjli2 Tlqxiltjlil -[- qxi2tjli2

where

Tip-1 (tj,il O)/tjlil, p-1 (tjli2 + [)/tjli2.

Let

A k" the path joining nodes k and Jl include the edge ilJl},

and

B k" the path joining nodes k and Jl include the edge i2Jl}.

Note that A, 2 B. It is easy to see that (x’i) .g’((tyi)), where

TlX if cA

x’i i xi ifiB

,x otherwise.

Thus [[(ti)[I 1 (by Corollary 1). This construction shows us that if some
entry of a matrix is not maximal then no entry is maximal. If some entry of
(ti) is not maximal then doing the reserve operation to that presented above
we get that no entry of (tji) is maximal. Hence the entries of (ti) are maximal
and (t.i) [[ 1.
As an immediate consequence we get the following interesting fact.
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COROLLARY 2. For a positive contraction whose graph is a connected tree
either all entries are maximal or no entry is maximal.

Example 2. For c > 0 we define an operator T by

Tc(lgi) (c/g1, (Ul - u2)/2, (/’/2 -+- u3)/2, (u3 + u4)/2,... ), (Ui) .
Consider sequences (xi) (yj) such that

E tjixi-- Yj, E tjiYf -1 X]-1 with X
i=1 j=l

We have Y C, Y2 2(1 cP),

Xn+ 2Yn+ --X (n > 1),
p-1 p-1 p-1 2)Yn+l 2Xn --Yn (n >

Let a2n_ Yn and a2n X (n > 1). We have

a2n+2 a2n+l a2n+l a2n (n > 1)

and

p-1 -1 -1
a2n+l af, afn afA_11 (n > 2).

If c Pl/2 then a 1 for n > 2. And if c < /1/2 then a3 a 2 > 0 and

a4 a3 > 0, so (an) is increasing. Therefore for c (0, P/1/2 the set .(Tc)
is non-empty and .(Tc) has exactly one sequence (up to a multiplicative

constant). Obviously entries of T for c (0, Pf-f/2 ) are not maximal, so
T ext . Thus we get an example of non-extreme operator such that an
element of /(T) is unique. Note that the condition (ii) for the operator Tc
(c (0,PV/I/2 )) holds.

Suppose that IITcll < 1. Then

cp+
2n

k=l
-IITcull Ilull-

k=l

where

U
n-1

1, n
n-2 1

0, 0, 0, )"’"n’
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Using the mean-value theorem we obtain

1 P

k p k + sck whereO<s< 1.

Hence

n

cP < E (k+ 1/2)p-kp p 1

c=1
nP "" ’k=l

when n tends to infinity we obtain_
foltp 1

cP< dt=

Therefore we have IlZcll > 1 for c > PVC-/2. Hence the entries of T for

c "x//2 are maximal.

For c > z’X//2 we have a3 a 2 < 0, an a 3 < 0, so (an) is decreasing.
Because of results presented before there exists no such that a < 0 for all
n>no.
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