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Dedicated to Professor Edwin Hewitt for his great contributions to
Harmonic Analysis

Let G be an arbitrary locally compact (Hausdorff) group. The conjecture
in the title asserts that if LP(G) is closed under convolution for some
p € (1,»), then G is compact. In the present paper, we shall confirm this
conjecture.

In his 1961 paper [17], W. Zelazko solved the problem for all abelian
groups. The truth of the conjecture has been established for p > 2 and
arbitrary G by him [18] and M. Rajagopalan [11] independently; in the case
where either (a) p>2 and G is discrete, (b) p=2 and G is totally
disconnected, or (¢c) p > 1 and G is either a nilpotent group or a semi-direct
product of two LCA groups by Rajagopalan [10]-[12]; for p > 1 and solvable
groups by the above-mentioned two authors [13]; for p = 2 and arbitrary
groups by N. Rickert [15]; and for p > 1 and amenable groups by F.P.
Greenleaf [4]. Volume II of E. Hewitt—-K.A. Ross [5] gives accounts of some
of the above-mentioned cases. For related results and simplifications of
known proofs, we refer to G. Crombez [1], [2], R.J. Gaudet-J.L.B. Gamlen
[3], D.L. Johnson [6)}, P. Milnes [8], K. Urbanik [16], and W. Zelazko [19].

Let A, denote a left Haar measure on the locally compact group G. All
the Lebesgue spaces L” = L?(G) are taken with respect to Ag. Now let f
and g be two Haar measurable functions on G. Then the convolution
product

(F8)(x) = [f(»)g(y~'x) dy

is defined at each point x of G for which the function y — f(y)g(y~'x) is
Ag-integrable. For p € [1, =], we write f* g € LP(G) to mean that |f]*|g|
< o As-almost everywhere, f * g is Haar measurable on the set {|f] * |g| < o},
and ||f = g||, < ». It is easy to show that if either {f # 0} or {g # 0} has
o-compact closure, then {|f]*|g| < «} is a Borel set and f*g is Borel
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THE L?-CONJECTURE AND YOUNG’S INEQUALITY 615
measurable on it. (Unfortunately, the treatment of measurability in [5; vol. I,
pp. 288-290] has deficiencies; some of which are addressed in the addendum
to vol. II of that treatise.) Finally f is said to be symmetric if f# = f, where
f#(x) = f(x~1) for all x € G.

TueEOREM 1. Suppose that there exists p € (1,) such that f * g € LP(G)
for all symmetric functions f, g € L*(G). Then G is compact.

To prove this, we need three lemmas. Our proof is ab ovo and completely
self-contained. Given p € [1,], let p' =p/(p — D if p>1and p' =1 if
p = Let L? ={f e L?: f* = f}. We write |4| for A;(A) whenever A is a

Haar measurable subset of G. For any set A, ¢, denotes the characteristic
function of A.

LemMma 1.1. Let A be a compact symmetric subset of the general locally
compact group G. Then we have

|A|21A™*"| < |44 - |A™| - |A"|  form,n = 1.
Proof. Let m € N be given. If k,/ € Z* and k < m, then
Em*Eqmur = |[A™F on AT, (1)

In fact, pick any such k, [ and any x € 4'*?*, Then x = abc for some
a,b € A* and ¢ € A" Since 4! = A by hypothesis, it follows that

(€4m* & gmei)(x) =|Am N (XAHm)|
>|A™ N (abA™)|
=|(a™!4™) N (bA™)| = |4™7H|,

which confirms (1).
Integrating both sides of (1) over 4'*?*, we obtain

S I G IR K IR VS
whenever k < m. For kK = m — 1, this reduces to

U i IR L IV L P (2)
Taking m = 4 in (2), we get |A| - |A'T%| < |A4*| - |A'*4|; hence

| - 147 < |14% - 14772 (3)
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holds for all j > 6. But (3) is obvious for j = 3 and 4. Moreover, one checks
that (2) with m = 3 and / = 1 is nothing but (3) with j = 5. In other words,
(3) holds for all j > 3.

To complete the proof, we may and do suppose that m < nand m + n > 3.
Letting / = n — m, we then have
l41214™ "] < |A| - 4% - 14" by (3)
= |A] - |4¥) - AP
< |A% - 14 - 147 by (2),

as desired.

The following two lemmas are easy generalizations of the corresponding
results in Zelazko [19].

LemMA 1.2. Let p,q,r € [1,»] be such that p™' +q~ ' —r~ ' # 1. Sup-
pose that L? * L1 c L, i.e., f+ g € L" whenever f € L? and g € L. Then G is
unimodular, L? x LY C L', and there exists a positive finite constant C such
that

If = gll, < Collfll, - llglly forfEL? andg e L.

Proof. Notice that (f, g) — f * g is bilinear and that f* g > 0 whenever
f> & = 0. So it is easy to see that there exists a finite positive constant C such
that

If = gll, < Clifll, - llgll, forf& Ly and g€ LS. (4

Now let A be the modular function of G. Pick any nonzero symmetric
f,g € C}(G) and any a € G. Letting b = a~!, we then have

A(a)"|If * gll, = IIf * g * 8,
=“(5a *fx8,)* (8, * 8*5b)"r
< ClI8, % f*8,l1,18, % g * 8,ll, by (4)
= CA(a)"”'A(@)7f1l, gl

Plainly f * g is a nonzero continuous function on G, and

1
- #

1 1
-+ =
r-p 4

by the hypotheses. Thus the last inequality implies inf A(G) > 0, which is
equivalent to the unimodularity of G.
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So G is unimodular. Therefore, f € L? and g € L? implies |lf#||p = 11,
and ||lg*||, = ligll,- Hence

WA lell, <[[(f) + 1A1%) = (el + 1g1*)],
< C|lIfl + 1%, - Illgl + lgl*ll, by (4)
< 4C|Ifll, lgll,-

Thus the desired inequality obtains with C, = 4C.
Lemma 1.3. Letp,q,r € [1,%] and C, be as in Lemma 1.2. Then we have
(14| - |BN)"” VT < c3laB”
for all compact subsets A, B of G.

Proof. (Cf.[19]). Since ¢, * &5 = 0 off AB, we have

A - 1B = [£4% &5 dx
< |AB|/"||£4* £5]l, by Holder’s Inequality
< ColAB|""||€4ll, - €5]l, by Lemma 1.2
= Col4B|/"|A]'/7|B|/.
Hence
|411/7" -+ |B|V9 < ColAB|V". (5)
Moreover G is unimodular by Lemma 1.2. So f € L% and g € L% implies
If = gll, =[|(F* &), = llg* = 1,
< Collg*l,IIf*ll, by Lemma 1.2
= Collfll llgll,-

Therefore we may exchange p, g in (5):
14"/ 7|B|'/?" < Col4B|"/". (6)

Multiplying (5) and (6), we arrive at the desired inequality.
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Proof of the LP-conjecture. Suppose that 1 <p <« and L?*L? C L?.
Then, by Lemma 1.2 with p = g = r,G is unimodular, L? * L? c L?, and
there exists a finite positive constant C, such that

If * &ll, < Colifll, - ligll, for f,g € L*. (7)
Letting C, = CE', we also have
|4| - |B| < C,|4B| (8)
for all compact subsets 4, B of G (Lemma 1.3). In particular,
|4" /14" < C,/|A| forn =1 9)

whenever A is a compact set having positive Haar measure.

Now let g = p’. Suppose, with a view toward reaching a contradiction, that
G is not compact. Then G contains a compact symmetric set A, with e € 4,
such that

|4 >1 and C,/|A| <2-#+0, (10)

For each integer n > 2, let

a, = {n(log a7}, (1)
b, = {n(log n)34"} " (12)
Writing ¢, = £ 4+ for n > 0, we define
f=2Yag, and g= Y b, (13)
n=2 n=2

both pointwise.
We claim that f € L? and g € L% To confirm this, pick any n > 2. Then

(a,.1/a,)" =n(log n)44"| [{(n + 1)(log(n + 1))14**1]} by (11)
< 14" /||
< C,/|A] <277 by (9) and (10).

Soa,—a,.,=al—-a,./a,) = a,/2; hence

Ya,<2Y (a,-a,,,) =2a, forkz=2. (14)
n=k n=k
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Thus

14

Ifllp = by (13)

(2o

L+ Y ( % a,,)(gk &)

k=3 \n=k

p

_ (néa,,)pwl . ( Y an)p(|A"t ~ A1)

k=3 \n=k

< 2P{a5|A2| + Y a,flA"|} by (14)
k=3

_r Y {k(log k)?) ' <@ by (11).
k=2

Therefore f € L?, and similarly g € L.
Next we claim that f* g € L9. In fact, h € L% implies

Jr(x)(f*8)(x71) dx = (h*fxg)(e)

< |lk* fll,lle*ll, by Hélder’s Inequality
< Gollkll, ANl llgll, by (7),

which is finite by the last claim. Since G is unimodular, this confirms that
fxgell

Now we are going to show that ||f * g||, = %, which will of course complete
the proof. If m, k > 1 and x € A, then

(€n* Enri)(x) =|A4™ 0 (xA™ ) [ 2 |4™].

So

frg= Y X a,b(&,%€) by(13)
m=2n=2

o]

Z Z ambm+k(§m * §m+k)

oo
k=2m=2
o

Z Z ambm+k|Am|§k'

k=2m=2

v

v

Notice that (X7 _;c,)? = £7_,cf for any sequence (c,) of nonnegative num-
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bers. Hence

© © q
frelg= ¥ ( Zzambm+k|A’"|) [&cax

k=2 \m=

k=2\m=2

0 o q
= Z ( ambm+k|Am|) |Akl (15)

To prove the divergence of the series in (15), note that |4| > 1 by (10);
hence

|A™ TR < 144 - |A™| - |A¥| form, k > 1 (16)

by Lemma 1.1. Let us only consider those pairs (m, k) of integers which
satisfy 3 < k < m < 2k. Then

(m + k){log(m + k)}* < 3k(log3k)* < 12k(log k)*.
This, combined with (16) and (12), shows that

1
bir = . (17)
T (12144 - A - 144k (log k)2)

Similarly

1
an = , (18)
(8147 |k (log )7} "”

by (11). Combine (17) and (18) to get

1
12|14%| - |A™|k(log k) 4¥|/a”

(19)

ambm+k 2

Letting C = C, = 1/(12|4*)), we infer from (15) and (19) that

© 2k q
cla™| «
If«glld= % { r }|A|
“7 5 a2k 1A™ Kk (log k) A¥|1 /4

>C?Y (logk) ™ = w.
k=3

Hence ||f * g||, = o, which completes the proof.
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Now we are going to investigate the triples of indices for which Young’s
Inequality holds. Let p,q,r € [1,]. If 1/r=1/p + 1/q — 1, then we have

If * gll, < IIfll, max(gll, llg*|l,) forfeL? and geL?% (20)

by Young’s Inequality (see Theorem (20.18) of [5, Vol. I]). On the other
hand, s > r > 1 implies that L" c L* for all discrete groups, and L° C L" for
all compact groups. Combining these facts, we have that if

l < l + _1_ -1
r D q ’
then
LPx13cClL’
for all discrete groups and if
1. 1 1
—>—=+=-1,
r p q
then
LPxL1cCL

for all compact groups. Thus we are naturally led to the following two
problems:

Problem 1. If

< +

% —1 and LPxLiCL,

ST
Q=

does it follow that G is discrete?

Problem 11. If

—i—> +—=—1 and L?xLicCL,

|-
Q|-

does it follow that G is compact?

T.S. Quek and L.Y.H. Yap [9] give affirmative answers to these problems
for abelian groups. On the other hand, Theorem 9 of R.A. Kunze and E.M.
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Stein [7] states that if G = SL(2,R) and 1 < p < 2, then L? * L?> c L? holds.
In particular, Problem II is negative in general. However, we have:

THEOREM 2. Suppose that the noncompact group G has the property that
given ¢ > 0, there exists a compact subset A = A, of G, with sufficiently large
|A4|, such that

liminfn~!loglog |4%"| < &. (%)
n—oo

Let 1 < p < . Then there exists f € L? N Cy (G) such that
frLigLr

for all r, q € [1,] satisfying

s>l
r

1
q

|-

To prove this, let ||f]|, denote the uniform norm of any function f on G.
Define

IFll,, . = max{|Ifll,, Ifll.}

for f e L? N Cy(G), where p € [1,]. It is easy to check that ||f]|, , is a
complete norm on L? N Cy(G), that C(G) is dense in L, N C((G), and that
L? N Cy(G) is a closed subspace of L? N Cy(G).

Lemma 2.1. Suppose that p,q,r € [1,»], p > 1, and G satisfies (L? N
C*(LTN Cy) c L. Then G is unimodular, and there exists a finite positive
constant C, such that

Wf*gll, < Cilifll,,ullgllg,u forfeL?PNCy and geL?NC,.
If, in addition, G is noncompact, then r > max(p, q).

Proof. The existence of C; having the desired property is obvious.
To complete the proof, we may suppose that G is noncompact, Pick any
nonzero f, g € C/(G) and any a € G. Letting b = a~!, we then have

If* gll, = IIf * 8, * 8, * gll,
< Cl”f* 8b"p,u||8a * g”q,u

= ¢, max{A(a@) "7 1fll,» A@)If Il gy, -
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Since p' < «, this ensures that G is unimodular. Also note that f* g €
C(G). So, given n > 1, we can find a,, a,,...,a, € G so that the functions
8, *f+ 8, *f*g 1<k <n,have pairwise disjoint supports. It follows that

n
nr\fxgll, =|| X 8, *f*g
k=1

r

<C,

n
Y d,xf
k=1

gl 4, u

p,u

= ¢, max{n"?|Ifll,, If 1. JIgly. -

Since n can be chosen as large as one wishes, we must necessarily have r > p.
Also G is unimodular, so the set-inclusion in the hypotheses holds with p, g
interchanged (see the proof of Lemma 1.3). Hence r > g, as desired.

Lemma 2.2. Let G, p, q, r and C, be as in Lemma 2.1. Then we have
(41 - BNV < CHABP/”
for all compact subsets A, B of G with |A|, |B| > 1.

Proof. The necessary arguments to prove this are quite similar to those in
the proof of Lemma 1.3. So we omit the details.

Remark 2.3. Incase 1/r > 1/p + 1/q — 1, or equivalently 1/r' < 1/p’
+ 1/q', the proof of Lemma 1.2 shows that the apparently weaker inclusion
(LP N Cy*(L2N Cy) c L already implies the hypothesis (L? N Cy)*
(LN Cy) c L of Lemmas 2.1 and 2.2.

Proof of Theorem 2. Suppose that G satisfies the hypothesis of Theorem 2
and that 1 < p < oo,

Pick any r,q € [1,%] such that 1/r > 1/p + 1/q — 1. To force a contra-
diction, suppose that

(LP N Cy)*(LINC,) L.

Then (L? N Cy)*(L? N Cy) € L” by Remark 2.3. So Lemmas 2.1 and 2.2
provide a finite positive constant C, such that

(4] - 1BN'PV < chaBV” (21)

for all compact subsets 4, B of G with |4][, |B| > 1. Notice that r' < o
(since p’' <« and G is noncompact) and that our assumption on g,r is
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equivalent to the condition that g > 1, where

1 1
=rl= + =]. 22
B=r ( 7 3 ) (22)
Letting C,=CJ] and 4 =B in (21), we obtain |4|? < C,|4% for all
compact set 4 with |4] > 1. An inductive application of this inequality
yields

(C514))?" < C,14%"| forn > 1 (23)

for all such A4, where C; = C3/47P (recall g > 1).
Assuming that |4] is large enough, we obtain

loglog(C;|4"|) = nlog B + loglog(C,|A|)

for all n > 1, which clearly violates our hypothesis on G. Thus we have
confirmed that

(LPNnCH)*(L2nCF) ¢ L’ (24)

forall g, r > 1with1/r>1/p +1/q — 1.
Now choose and fix any countable dense subset {(g, r, )5 of

E={(q,r)e[1,oo)2;%>;1,-+%—1}. (25)

Given k > 1, (24) yields f, € L? N Cg such that
fillpu < 7z and fox (L8N CF) & L%

Define f = X%_,f, pointwise on G. Plainly f € L? N C§ and
fx(L*nCf) ¢ L'x fork > 1. (26)

To show that f has the desired property, pick any g, r € [1, %] such that
1/r > 1/p + 1/q — 1. Suppose to the contrary that f* L7 c L', Notice that
feLP so fxL! cL? by Young’s Inequality, and f* L? c L* by Holder’s
Inequality. Since f > 0, it follows that the mapping g — f * g is simultane-
ously of strong type (g, r), (1, p) and (p’,) on L. N L”. It follows from the
Riesz-Thorin Convexity Theorem and its proof [20] that f* L? c L for all
a,b € [1,») such that the point (1/a,1/b) belongs to the triangle with
vertices at (1/q,1/r), (1,1/p) and (1/p’,0). Notice that the last two points
lie on the line v = u + 1/p — 1 and that (1/q,1/r) is above this line. Thus
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the above triangle contains an interior point (u,v) with v > u + 1/p — 1.
Consequently our choice of the (g, r,) shows that (1/g,,1/r,) belongs to
this triangle for at least one (in fact, for infinitely many) k£ > 1. This is of
course absurd and therefore the proof is complete.

Remark 2.4. It is well known and easy to show that for each compact
subset A of a LCA group G, there exists k£ € N such that

|A"| = 0(n*) asn — .

The following result is due to Quek and Yap [9]. Our proof is considerably
simpler than theirs.

CoROLLARY 2.5. Let p,q,r €[1,%] and p > 1. Suppose that G is an
infinite LCA group and that L*(G)* LY(G) c L'(G).

(@) If G is discrete, then 1/r <1/p + 1/q — 1.

(b) If G is compact, then 1/r > 1/p + 1/q — 1.

(0) If G is neither discrete nor compact, then 1/r =1/p + 1/q — 1.

Proof. (a) Suppose that G is discrete (and infinite). If G is a torsion
group, then plainly G satisfies the condition in Theorem 2. So suppose that
G is not torsion. Then G contains (a copy of) Z. Given m € N, define
A=A, =[0,m]NZ. Then A" =[0,mn] N Z for all n > 1, so again G
satisfies the condition in Theorem 2. Hence 1/r < 1/p + 1/q — 1 in either
case by Theorem 2, provided that p < ». But p = ® clearly implies g = 1
and r = . Therefore 1/r < 1/p + 1/q — 1 for all cases.

(b) Suppose that G is compact (and infinite). Then G is either totally
disconnected (if the dual G is a torsion group) or contains a compact
subgroup G, such that G/G, = T (otherwise). To obtain the desired in-
equality, we may suppose that r > land 1/r+ 1/p + 1/q — 1.

Now let C, be the finite positive constant furnished by Lemma 1.2. Then
we have

|[A|V/P*1/9 < Cy|A%|/" for all compact 4 € G (27)

by Lemma 1.3 with 4 = B. Since G is nondiscrete and r' < o, (27) implies
1/p' + 1/q' > 0. Letting 8 = r'(1/p’ + 1/q') and C, = C}), we have

|A|# < C,|A?% for all compact 4 C G. (28)

If G is totally disconnected, then every neighborhood of e € G contains a
compact-open subgroup A. Therefore (28) is possible only when B > 1, or
equivalently only when 1/r > 1/p + 1/q — 1. (Notice that this part does not
require the commutativity of G.)

In case G is not totally disconnected, G contains a compact subgroup G,
such that G/G, = T, as was observed above. Let A, denote the normalized
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Haar measure of G,. Then we have
(Ag* LP)x(Agx L) CAg* L

by the hypotheses. Therefore, by Fourier transform or by any other methods,
we have that L? % L9 c L” holds for T. Taking 4 = [0, ¢] in (28), we obtain
tP < 2C,t for all ¢t € [0,27]. This is of course possible only when 1/r > 1/p
+ 1/q — 1. Plainly this establishes (b).

(c) Finally suppose that G is neither discrete nor compact. If p = =, then
it is clear that g = 1 and r = ®. So we may suppose p < oo,

Now consider the special case where G contains an open subgroup of the
form R X H for some locally compact group H. Since L? * L7 < L" holds for
G by hypothesis, it is clear that the same inclusion holds for R X H and
hence for R. Let C;, < » be as in (27) with G = R(incase 1/r=1/p + 1/q
— 1, take C, = 1). Then we have r' < « since R is noncompact and 1/p’ +
1/q' > 0 (recall p > 1). Taking A4 = [0,¢] in (28), we obtain t# < 2C,t for
all real ¢ > 0. Plainly this is possible if and only if B8 = 1, ie., 1/r=1/p +
1/q — 1.

In case G does not contain any open subgroup of the above form, G
contains a compact-open subgroup H (see (9.8) of [5, Vol. I]). Since G is
nondiscrete, part (b) applied to H ensures that 1/r>1/p +1/q — 1. On
the other hand, G is noncompact, so G/H is an infinite discrete abelian
group. Hence, arguing as in the proof of part (a), we get 1/r < 1/p + 1/q —
1. Consequently we obtain 1/r = 1/p + 1/q — 1, as desired.

I would like to thank Professor R.B. Burckel for providing me with useful
references, and Professor L.Y.H. Yap for calling to my attention his joint
work [9].

Remarks 2.6 (Added on March 23, 1990).

(1) The conclusion of Theorem 2 may be strengthened as follows: there
exists f € L' N C§ such that f/7 % L9 ¢ L’ for all p, q,r > 1 satisfy-
ing1/r > 1/p + 1/q — 1. A similar result holds in each of the three
cases considered in Corollary 2.5.

(i) Professor N. Lohoué kindly pointed out to me that his paper Estima-
tions L? des coefficients de représentation et opérateurs de convolution
(Advances in Math., vol. 38 (1980), pp. 178-221) resolved the L?-con-
jecture for almost connected groups.
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