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COMPACT HANKEL OPERATORS ON THE
BERGMAN SPACE

BY
KAREL STROETHOFF

1. Introduction

Let D = {z € C: |z| < 1} denote the open unit disk in the complex plane
C, and let A4 denote the usual Lebesgue area measure on C. For 1 < p < o0
and f: D — C Lebesgue measurable let ||f]l, = (/plfI” d4/7)'/?. The
Bergman space L?(D) is the Banach space of analytic functions f: D - C
such that ||f]|, < co. The Bergman space L%(D) is a Hilbert space; it is a
closed subspace of the Hilbert space L%(D, dA /) with inner product given by

o) = [ f(2)g(z) dA(z)/m,

for f, g€ L*D, dA/m). Let P denote the orthogonal projection of
L*(D, dA/7) onto L:(D). The map I — P is the orthogonal projection of
L*(D, dA/m) onto L2(D)* (the orthogonal complement of L2(D)
in L*(D, d4 /)). For a function f € L*(D, dA /), the Hankel operator H:
L2(D) - L2(D)* is defined by

H;g=(I-P)(fg), geLiD).

It is clear that H, is a bounded operator for every function f € L*(D, d4 /7).
In [2], Sheldon Axler raised the question of finding necessary and sufficient
conditions on the function f € L*(D, d4 /) for the Hankel operator H; to
be compact. Sheldon Axler answered a special case of this problem in [3]
where he considered conjugate analytic symbols. The “little Bloch” space %,
is the set of all analytic functions f on D for which

(1-1z1%)f'(z) >0 as|z] » 1.

Axler proved that for a function f in L2(D) (perhaps unbounded) the (densely
defined) Hankel operator H; is compact if and only if f € %,. In [8], Kehe
Zhu characterized the functions f& L*(D, d4/7) such that both Hankel
operators H, and H; are compact. In this paper we will characterize the
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160 KAREL STROETHOFF

functions f & L*(D, d4 /=) for which the Hankel operator H; is compact,
thus obtaining a complete answer to Sheldon Axler’s problem raised in [2].

In our characterization of the compact Hankel operators on the Bergman
space the Mobius functions on the disk play a crucial role. For A € D let the
Mobbius function ¢,: D — D be defined by

A—z
(p}‘(z)=1_—xz', z € D.

The main result of this paper is Theorem 6, which gives several necessary and
sufficient conditions on a function f € L*(D, d4 /=) for the Hankel operator
H, to be compact; one of these conditions states that the Hankel operator H,
is compact if and only if

Ifoor—=P(fe)ll,—0 as|A| »1".

In Section 2 we will give the preliminaries needed for the rest of this paper. In
Section 3 we will discuss how the Hankel operators behave when their symbols
are composed with M&bius functions. We will obtain an explicit formula for
the image of the reproducing kernels under Hankel operators. This formula
will be used in Section 4, where we prove the main result. We end with a
discussion of some open problems in Section 5.

I am grateful to Sheldon Axler for many helpful conversations. The basis for
the work in this paper (Section 3) was part of my Ph.D. dissertation that I
wrote at Michigan State University under his excellent guidance.

Dechao Zheng has informed me that he has also solved Axler’s problem and
independently obtained results similar to the ones in this paper.

2. Preliminaries

Point evaluation is a bounded linear functional on the Hilbert space L(D),
thus for every A € D there exists a unique function k, € L2(D) such that

f(A) ={f, k) forall f e I3(D).

These functions k,(A € D) are called the reproducing kernels for L2(D). It is

easy to verify that for every A € D the reproducing kernel k, is given by the
formula

ky(z) = forz € D.

1
(1-12z)

Because of the reproducing property of k, we have (k,, ky) = k,(A). Using
the above formula for k, it follows at once that ||k,|l, = 1/(1 — |A|?). For
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g € L*(D, dA/7) and z € D we have (Pg)(z) = {Pg, k,) = (g, k,), so we
get the following formula for the projection Pg:

(Pg)(z) = f _8(w) - dA(w)/m forz €D. (1)
(1 -wz)

For f € L*(D, dA/7) and g € L%(D), using (1) for the product fg and for

g = Pg we get the following formula for the Hankel operator Hy:

z w
(#8)(2) = [ LTS g0y aatnyym texzem. @)
For a function f € L*(D, dA/7), and a point A € D we will call f e @, — f(A)
a Mobius transform of f. In the next section we will see how a Hankel
operator transforms if its symbol is replaced by one of its Mdbius transforms.
First we will need some properties of the Mobius functions ¢,. The function
@, is easily seen to be its own inverse under composition: (@, ° ¢, )(z) = z for

all z € D. The following identity can be obtained by straightforward compu-
tation:

1-ap,(z 1- u):z
1_"’5}(‘)= lﬁ*gz) (u,\, z € D). (3)

The special case that ¥ = A yields
(1-A@(2))(1 -Az) =1- A2 (\,z€D). (4)

If we substitute u = ¢,(z) in (3) and make use (4) we obtain the well-known
identity:

o =)A -2
- = A3 D).
1= Iga(2)] o (.zeD) 5)
For a point A € D and 0 < r < 1 the pseudo-hyperbolic disk D(A, r) with
pseudo-hyperbolic center A and pseudo-hyperbolic radius r is defined by
D(A,r) = ¢,(rD). The pseudo-hyperbolic disk D(A, r) is also a euclidean
disk: its euclidean center and euclidean radius are

(1= r)A/(1=r?A?) and (1= AP2)r/(1=r2A1%),
respectively (see, for example, page 4 in [6]).

For a Lebesgue measurable set K € D, let |K| denote the measure of K
with respect to the normalized Lebesgue measure 4 /7. It follows immediately
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that:
1— A2
D ry = LT - Lo
1 - rp)?

For A € D, the substitution z = ¢,(w) results in the Jacobian change in
measure given by

(6)

dA(z)/m = |gi(w)|> dA(w)/m.

For a Lebesgue integrable or a non-negative Lebesgue measurable function h
on D we have the following change-of-variable formula:

fD()\ )h(z) dA(z) /=

s r

== (hee ) gy )/ ()

3. Mobius-transformations of the symbol

In this section we will prove that a Hankel operator transforms in a
unitarily equivalent way if its symbol is replaced by one of its Mobius
transforms. As a corollary of the proof we obtain an explicit formula for the
image of the reproducing kernels under a Hankel operator. This formula will

play a crucial role in the proof of our characterization of the compact Hankel
operators.

THEOREM 1. Let f € L°(D, dA/7). For each A € D the Hankel operators
H; and H,,, are unitarily equivalent.
More precisely, there exist unitary operators

U,: L2(D) > L2(D) and U,:L:(D)*— L2(D)*
such that
U2 o Hf"‘?)‘ = Hf ° Ul‘

Proof. Take g € L2(D) and let A € D. By (2) we have, for z € D,

(Hy.pg)(2) = ff(%(Z))_ _f()%( w))

g(w)dd(w)/m.  (8)
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In (8) make the substitution u = @,(w). Making use of identity (3) we have

1 1_
(1 - oalw) Z)2 1= Aulf
_ (1-aA)? 1
(1 - R2)’(1 — agy(2))? 11— Auf*
1 1

C(1=-12) (1 - aga(2))(1 - )
so that change-of-variable formula (7) transforms (8) into
(Hf"ir)\g)(z)

=2 o) - f(w) 1 N dd () /m
a1 - amp @Rt ) 4/

= (1= NP)ka(2) [ 4 ((‘f*_(za)ixz zf)()'z‘) (1= IN2)ky(u)

X(g°ox)(u) dd(u)/m
= (1 - |’\|2)kx(2)Hf((1 - |7\|2)kx(8°%))(¢x(2))-

Thus we have

Hf-.pxg = (1 - |>‘|2)ka,¢((1 - |7\|2)k>\(8°‘Px))°‘Px- )]
Define the operator U: L*(D, dA/m) — L*(D, dA /) by
Ug = (1- [A*)kr(gopy) forge LX(D, dd/m).
Since (1 — |A|2)k, = — @}, we have for g € L*(D, d4 /),
2
1Us13 = [ (&= 92)() [104(2)1* a4 (2) /m = g3,

so that U is well-defined. For g, h € L*(D, dA/7) we have

(U, by = [ (1= ) ka(2)g(9a(2)) h(2) dA(2)/m.



164 KAREL STROETHOFF

In the above integral make the substitution u = ¢,(z). We get

Vg, by = [ (1= N2 (1)) () () ()12 dA () /.

Now using identity (4) it is easy to verify that k,(@\(u))|@4(#)])? = kx(u), so
that

(Ug, hy = fD g(u)(T = NP)k(u)h(@a()) dA(u) /7 = (g, Uh).

Hence U is a self-adjoint operator on L%(D, d4 /7).

Take g€ L?*(D,dA/w) and put h = Ug. Differentiating the identity
x(p,(2)) = z we see that for each z € D, (1 — |A|2)%k,(2)kx(9r(2)) = 1, s0
that

2
(UR)(z) = (1 = A1*) ka(2) kal@a(2)) 8(2) = 8(2),
and thus Uo U = I. Hence U is a unitary operator on L%(D, dA /7).
Observe that U(L2(D)) € L2(D) and U(L3(D)*) c L2(D)*. The first of

these inclusions is obvious from the definition of U. The second inclusion
follows from the first since the operator U is self-adjoint. Let

Uy: LX(D) » L%(D) and U,: LX(D)' - L3(D)*

be the restrictions of U to L2(D) and L2(D)* respectively. Then both U; and
U, are unitary operators. We claim that

Uy H,., = H, U,
Let g € L2(D), then it follows from (9) that
H 8= (1= NP)ky(H o U)(8) o,
so that
(Lo H,., )(8) = (1 - |’\|2)k>‘((Hf°%8)°%)

=(1- |>‘|2)2k>‘(k>\°q’>‘)(Hf°U1)(g)
= (H/°U1)(8),

and our claim is verified. This completes the proof of Theorem 1. O



COMPACT HANKEL OPERATORS 165

The following proposition, a corollary of the proof of Theorem 1, gives a
formula for the image under H; of the reproducing kernels k, for A € D. This
formula will play an important role in the proof of our characterization of the
compact Hankel operators.

PROPOSITION 2. Let f € L*(D, dA /7). For each A € D we have
H(ky) = (f = P(fopr)° )k, (10)
Proof. Since (1 — |A|?)k,(ky° @,) = 1, it follows from (9) that
Hp. o (ky) = k\H (1) o @5 = kx(foor = P(f)o9y).
Replacing f by f o ¢, we get formula (10). O
4. Compact Hankel operators
In this section we will state and prove our main result, Theorem 6. To show
that the operator H, is compact we will actually consider the operator H*H,.

The following proposition gives a convenient way to represent this operator.

PROPOSITION 3. Let f € L*(D, d4 /7). Then for h € H*(D) and A € D,

2
R e
Proof. Let f € L*(D, dA/m, h € H*(D) and fix a point A € D. Then
(HFH)(N) = (HXHh, ky)
= (fn — P(f), Hyky)
= (fh, Hky) (since P(fh) L Hk,).

Now, P(f°@y)°, € L2(D), thus (P(f°@y)° @)k € LZ(D), so that we
have

h(z) dA(z)/=.

((P(fo@n)o@2)h, Hjky) = 0.
Using this we get
(Hf*Hfh)(k) =/, Hky)
= ((f— P(fo@r)oo)h, kax>
={(f=P(fom)e@)h,(f = P(fom)op)ks) (by (10))

oy 1£(2) = P(fo @) (oa(2)) [
D (1 =-Az)?

h(z) dA(z) /. O
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Remark. The formula in Proposition 3 also holds for # € L2(D): it can be
shown that the operator given by the integral in Proposition 3 is bounded, and
thus agrees with H*H, on L%(D).

The following lemma will be used in the proof of Lemma 5. For an
elementary proof we refer the reader to [3].

LeEMMA 4.

1
sup dA(w)/m < .
)\eD/D|1 —AB95(1 - |w]2)™?

In the proof of Theorem 6 we will use the following estimate.

LEMMA 5. Let f € L®(D, dA/m). Then there exists a finite positive constant
C (depending on f) such that for every A\ € D,

17G) = PG o )@, c
b e A G

Proof. Let fe L*(D,dA/w). In the integral at the left make the change-
of-variable w = ¢,(z). Using (5) and (7) we get
[l - P(fo@)(wa())[
D |1- A1 - j22)?
-1
(1- 27

< [I(£>9)00) = P(Fo9)() [

dA(z) /=

1
11— A®I(1 = jw]?)"”

Let M denote the quantity of Lemma 4. Applying Holder’s inequality using
conjugate indices 6 and 6/5 we see

i |£(2) = P(F o) (oa(2)[*
D |1-AzZP(1- |22)
5/6 1/6
B
<—<
(1= A2)"”

dA(w)/m.

dA(z) /=
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since the Bergman projection P maps L?*(D, d4 /7) boundedly into L24(D)
(for an elementary proof see [4]), and ||f e @,||24 < ||fll, forall A € D.O

Now we are ready to prove the main result of this paper.

THEOREM 6. Let f&€ L*(D,dA/7) and 1 < p < oo. The following state-
ments are equivalent:

(@) H; is compact;

®) lfeor—P(fepIl,=0as|A| =17

1 _
© DO fD an T PU R e dd/m =0 as | =17 for all
re (0,1).

Proof. (a) => (b) Suppose that H, is compact. It is well known that
(1 — MYk, — 0 weakly in L2(D) as [A| = 1~ (for a proof see [3]). The
compactness of H, implies that

(1= )kl > 0 as [ > 1.
Using Proposition 2 and change-of-variable formula (7) we get
Ifeorn—P(fo@)ll= (1 - AP)IHkllz >0 as|A] > 17

For 1 < p < o0, and application of Holder’s inequality yields the inequality

Ifoer=P(foor)l,

= "f°‘P)\ - P(f°q’>\)||z(“f°% = P(fo9,) uzp—z)p_l-

Using the boundedness of P we have

[ feor—P(fopn) uzp—z < Coallifepallzp-2 < Cpalifll o
Thus

Ifeor—P(fop)l, =0 as|A|>1".

(b) = (c) Suppose that (b) holds, and let » € (0, 1). Using change-of-varia-
ble formula (7) and formula (6) it is easy to verify that

1
|ID(A, r)| fD(x,,)lf— P(foqr)om| dd/m
4
= r2(1 - r)? Ifeoen- P(f“PA)“;, (11)

so that (c) follows.
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(c) = (a) The proof of this implication is divided into several steps. To
show that H, is compact it suffices to show that H*H, is compact. We will do
this by defining Hilbert-Schmidt operators S, (0 < p < 1) for which we will
then show that S, > H*H, in operator norm as p —> 1°.

Step 1. Suppose that (c) holds for some p € (1, o). To prove (a) we will

need (c) for p = 4. Let ¢ = p/(p — 1) be the conjugate index of p. Holder’s
inequality, (11) and the fact that

[fo@r—P(fopy) "3q < G lifll
give the inequality

ID(i, )l j;xx r)|f— P(fopr)oqil®dd/m

1/p

1 P
<C 3 DO — P(fepy)op,| dd ,
l’,r"f"oo(ID(A,r | ‘,;)(A,r)lf (f (P)\) (P)‘l /77
and our claim that (c) holds for p = 4 follows.

Step 2. Let 0 < p < 1. Define the operator S,: L2(D) - L*(D,dA/7) by

2
|f(z) - P(f°%)(%(z))|
Sh)(A) = A h(z)dA(z)/m,
(M) = xep0) [ F25— T () da(2)/
for h € L2(D), A € D. We claim that S, is a Hilbert-Schmidt operator. To
prove this claim we need to show that the kernel of S, is square-integrable
over D X D. Using Fubini’s Theorem we have

I ( [ ALt da(z)/w) 4/

= j;D (1 _ll)\lz)z(j;)l(f"%)(w) — P(fop)(w)|* dA(w)/w)dA(}\)/.,,
(by (7))

= 1 £ 7 Sup "f°‘PA“P(f°‘P>\)“:< 0,
— P” AepD

and our claim that S, is Hilbert-Schmidt is verified.
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Step 3. Now let 0 < r < 1. Using Proposition 3 and the definition of S, we
see that for h € H*(D) and A € D,

((HH, ~ 8,)B)(N)

= XD\pp(}\)f |f(2) - IZ(f ;\Px))(%(z)n

h(z) dA(z)/=.

By Minkowski’s inequality,

|(HX*H, = S,)hll,

|f(z) - P(f°%)(%(z)) |2 ?
< [[D\pn(/p(m TESvE lh(z2)| dA(z)/qr) dA()\)/qr]

172

2

1/2
17(2) = P(fo ) (pa(2))|°
' [I"\PD(fD\D(A,n 11— Az? IA(2)] dA(Z)/”) dA(A)/vr]
(12)

We will estimate the two expressions at the right hand side of (12) separately.
This will be done in steps 4 and 5 respectively.

Step 4. To save some writing we introduce the notation

1050 = B o N~ P @)l /.

By Cauchy-Schwarz

— P(fo 2
[, =L ool oy aa ey
: h(o)P
= D()\,r)lf_ P(fopy)opa| dd/mx ‘/;)A r)m dA(z)/m

r? 2(1 A1)’ :
<00 Tt L SO T g )/ (sing 6)
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Integrating the above inequality and applying Fubini’s Theorem we get

/;)\pn(-/;)(x,r)lf(Z) - 1;1(1;°;\PE>\I)2(%(2))| Ih(z)MA(z)/”) dA(N) /7
r sup I(A,r)

(1 = r2)* xeDr\pD
2
2 a-ne)
x [1r(2) (fm,,) T Az AN/ dA(2)/a
A change-of-variable shows that the inner integral is less than

[ 1 -z da(u) /o
rD

which is easily seen to be bounded by r2/(1 — r2)2. Hence we have the
following estimate for the first integral at the right hand side of (12):

1/2

1£(2) = P(fo @) (a(2)) [ i
[L\pb(*&(x,r) 11— Az|? |h(2)| dA(z)/ﬂ) dA(}\)/qr]

a‘—';;')i . Sgs DI(?\, )2 hll,. (13)
_ cDr»

Step 5. Now we estimate the second integral at the right of (12):

(‘/;)\D(x ” L I|’1(f_°)1p;|)2(‘px(2))| Ih(2)|dA(Z)/ﬂ)

17(2) = P(f o) (or(2))['

< dA(z)/n
fn\m,n 11 - Az2(1 - |z12)" ()
(- 121
X |h(z)|**———==73— dA(z) /7 (by Cauchy-Schwarz)
D\D(A, 7) 11-Az|
1/2

c 2(1 - |Z|2)

ST A oo BT g M (2)/m (by Lemma 5).
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Integrating the above inequality and applying Fubini’s Theorem we get

fl)\pD(L\D(x r)lf(Z) - };1(f_°;\";|)2("’>\(z))| lh(z)]dA(z)/,,) dA(N)/m

< cfjr1P - 1z12)"

1
X (fn\p(z,,) (1= AP = Az dA(’\)/ﬂ) dA(z) /. (14)

In the inner integral in (14) make the change of variable A = ¢,(u). Using
formula (7) and identity (5) we see

1
dA(\) /7
j;)\D(z,r)|1 - Az)*(1 - |7\|2)1/2 )
1 1
1 dA () /n
1 - |z12)"? fo\rvu — az|(1 - |u?)”
1 . 5/6
< dA(u)/m| |D\rD|'*
(1 _ |ZI2)1/2 (Lll _ u5|6/5(1 — |u|2)3/5 )/ I
(by Hélder’s inequality)
1 M5/5(1 _ r2)1/6 (by Lemma 4)-

S —————————————————
1 - jz2)"

Combining this with (14) we get an estimate on the second integral in (12):

oo, 220D e s

1/12
<CQA=r3)77 |, (15)

1/2

Step 6. Combining our estimates (13) and (15) with inequality (12) we see
that

|(&#pH, - s,)R],

sup I(A, r)? A, + C(1 = r2)"™

< —ls Il
(1 - r2)* reD\oD 2
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Since H*(D) is dense in L2(D) we can conclude that

2
\HXH, = S,|| < z-l——r-—z—)-z- . sg{) l)I(>\, Y2+ c@ - r2)72
-r € e

Since I(A, r) » Oas |A| = 1 for every 0 < r < 1 (by step 1) it follows easily
that S, > H*H, in operator norm as p — 1~. Because the S, are Hilbert-
Schmidt, thus compact, it follows that HXH, is compact, and therefore H, is
compact. O

To state a corollary we need to introduce more notation. For fe&
L>(D, dA/7) define f, the Berezin symbol of f, by f(A) =
(flea/ kall2s ka/1IkAllR) for A € D, so that

fO) = (= APY [1() — oGy M()/m forAeD.

As a corollary we get some of Kehe Zhu’s results [8].

COROLLARY 7. Letf€ L*(D,dA/m) and 1 < p < oo. The following state-
ments are equivalent:

(@) H; and H; are compact;
(b) llf°% f(>\)|l,, —>0as|A| > 1.

Proof. First observe that f(A) = [pfe@,dA/m (by change-of-variable
formula (7)), and thus

f(\) = P(fo9,)(0) =P(fegp,) (0) for A €D.

We will also make use of the fact that for an analytic function i on
D, P(h) = h(0).

(a) = (b) Suppose that both H, and H; are compact. Since H; is compact
we have

Using the boundedness of P as an operator of L?(D, dA/x) into LZ(D) we
get

feor=P(fem)|, =Ifoon—P(fom)], >0 asiAl > 1"

[P(fe2) —F(N)], =||P(f°% ~P(foq)) ",, 50 as|A| 1.
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The compactness of H, implies that ||f o @y — P(fo@))|l, > O0as [A] = 17,
which combined with the above statement gives that (b) holds.

(b) = (a) Suppose that ||f o, — f(A)], > 0 as |A| - 17. Again using
the boundedness of P it follows that || P(fe° ¢,) — f()\)||p —»0as |\ =17,
thus

[foor—P(fe@y)ll,=>0 as|A|] »1".

By Theorem 6 H; is compact. Since also If o @ —-f:()\)||p —»0as |A| =17,
Hj is compact. O

5. Remarks and open questions

In this section we discuss some open questions and directions for further
research.

(1) For f € LY(D, dA/7) (so f is not necessarily bounded) we can consider
H; as an operator L2(D) — L%(D)* densely defined by H,g = (I — P)(/g),
g € H*(D). It is possible that even for unbounded f the operator H, is
bounded. The question is to find necessary and sufficient conditions on f for
the operator H, to be bounded. For conjugate analytic functions on D the

answer is known. The Bloch space & is the set of all analytic functions f on D
for which

sup (1= 121 (2)l < oo.

In [3], Sheldon Axler proved that for a function f in L2(D) the (densely
defined) Hankel operator H; is bounded if and only if f € %. The proof of
Theorem 1 shows that for every A € D the (densely defined) Hankel operators
H, and H,,, are unitarily equivalent (in the sense that there exist unitary
operators U; and U, as in Theorem 1 such that also U;(H*(D)) ¢ H* (D)).
Consequently, a condition on f that is necessary and sufficient for the
operator H, to be bounded has to be Mdbius-invariant. I conjecture that an
answer for the general case is that for any 1 < p < oo,

sup [|foy = P(fopy)ll, < .
AeD

(2) Find necessary and sufficient conditions on f for the operator H, to be
in the Schatten p-class S”. For conjugate analytic functions on D the answer
has been found by J. Arazy, S. Fisher, and J. Peetre [1]. Theorem 1 implies
that the class of f in L'(D,dA/w) for which H, belongs to S” is again
Mbobius-invariant. Without proof we mention that for f in L*(D, dA /=) the
Hankel operator H, is Hilbert-Schmidt if and only if

"f ‘PA“P(f ‘Px)"z
dA(N) /7 < 0.
A o (A)/
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For a conjugate analytic function f on D the above condition is easily seen to
be equivalent to [p|f'(2)|2dA(z)/m < 0, ie., f belongs to the Dirichlet
space (a special case of Arazy, Fisher and Peetre’s results).

(3) For f, g€ L*(D, dA/x) find necessary and sufficient conditions for
the operator H*H, to be compact. For conjugate analytic symbols f and g
this question was raised in [3]. In this special case a necessary condition was
found by Sheldon Axler and Pamela Gorkin [5] and, independently, Dechau
Zheng [7] proved that this condition is necessary and sufficient. They found
that for bounded analytic functions f and g the operator H#Hj; is compact if
and only if (1 — |z|?) min {|f'(2)|, |g’(2)]} = O as |z| — 1. It follows from
the results in Zheng’s paper that this condition is equivalent to

fD|f°<p>\—f(>\)||g°<Px-g(?\)ldA/ﬂ->OasIM -1

The proof of Theorem 6 can be adjusted to show that for f, g € L*°(D, d4 /7)
the operator H*H, is compact if

fleo%— P(foa)llgoon— P(go9y)|dd/m >0 as|A| > 1-.

It is my guess that this condition is also necessary.
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