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Introduction

This paper deals with two concepts relating to modules over Abelian group
rings. One is factorisability, introduced in Nelson’s thesis (cf. [9], see also [5]),
the other is the module defect, first investigated in [3] in the more general
setting of orders in commutative algebras. Both now come into prominence in
work on Galois module structure, multiplicative as well as additive. The
background on the multiplicative side is the connection between the Galois
module structure of units or S-units on the one hand, and the quotients of
"L-values at zero" and generalised regulators on the other. Analogously we
relate the additive Galois module of algebraic integers with the quotients of
Galois Gauss sums and generalised resolvents. All this lies outside the "tame"
theory, as presented in [6].

Factorisability leads to an equivalence relation between lattices over integral
group rings, weaker than local isomorphism, and turning up naturally and
significantly when one sets out to compare multiplicative modules of units or
additive modules of algebraic integers with certain "standard" modules. The
module defect is then the natural channel for information on the structure of
our Galois modules. But beyond that the properties of module defects are
actually reflected in integral properties of certain L-value-regulator quotients
(or Gauss sum-resolvent quotients). We are then led to integral formulations
of problems and of theorems in the direction of the Stark conjectures (cf. [10],
[11]). For all this see [7], [8].
These number theoretic applications provide the motivation for the separate

treatment of some purely algebraic aspects, to be given in the present paper. It
is striking how our algebraic ideas and methods, which will be seen to be
absolutely elementary, although quite novel, lead to highly significant results
when applied to Galois module structure. We shall attempt to give some
indication of this at various places.
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408 A. FRHLICH

Notations. As usual Z is the ring of integers, Q the field of rational
numbers, Qp that of p-adic rationals. For any finite extension F of Q or Qp,
the ring of integers in F will be denoted by aF. "Ideals" in F are non zero
fractional ideals of ’F. The module index over aF is denoted by[ ]or (cf.
[1]). The algebraic closure of a field k is k c. The multiplicative group of a field
F is F*, the group ring of a group F over over a commutative ring R is RF.

This paper was written while the author was partly supported by a
Leverhulm Emeritus Fellowship.

1. Formal aspects

Throughout F is a finite Abelian group, Ft its character group. More
precisely we work over a basefield k Q (global case) or k Qp (local case)
and accordingly we take Ft Hom(F, kC*). A division. D of Ft is an
equivalence class in F*, with 0, 0’ belonging to the same division if (0’) (0)
(cyclic group generated by 0). 6a(Ft) is the set of subgroups of Ft, A is an
Abelian group which we write multiplicatively. We then consider the group
Map(ra(Ft), A) of maps f: 6a(I’t) A. We extend each f to a function on
the set of divisions by the MSbius rule

(1.1) f(D) I-I_f(C) (D’c)"
C<D

The product runs over the subgroups C of the cyclic group D generated by
any element 0 of D and is the MiSbius function. The use of the same symbol
f for the original function on subgroups of Ft and for the extended function
on divisions D should not create confusion: The only division which is also a
subgroup is that consisting of the identity of Ft and in this case the two
definitions coincide. Note that in general f(D) f(D), the symbol D here
and in the sequel always denoting divisions. Of course (1.1) for all D is
equivalent to

(1.2) f(G) I-I f(D)
D<G

for all cyclic subgroups G of Ft. If (1.2) holds for all subgroups G of Ft then
we call f factor&able. To restate this we introduce for any f its factorisable
form f’, given by

(1.3) f’(G) I-I f(D),
D<G
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for all subgroups G of Ft. f’ is factorisable. Now define f" by

(1.4) fiG) f’(G)f(G) -x for all G.

Then f is factorisable precisely when f(G) 1 for all G.
We actually make no use of the group structure of I’t, except to define

5a(Ft). Given G, the representation of I" over k c which is the sum Y’-oa/9 is
induced from the trivial representation of a unique subgroup A of I’--and of
course

(1.5) G GA annihilator of A in F.
The symbol Ga will always be used in this sense. Viewing f as a function on
the set of such induced representations, it will be factorisable precisely when it
extends to a homomorphism on the (additive group of the) rational representa-
tion ring of F (case k Q). Or again the original function f defines a
homomorphism from the additive group of the Burnside ring of F, and it is
factorisable precisely when it factorises through the rational representation
ring.

In the sequel let F be an extension of finite degree of k, inside k c. Write
F(O) for the field of values of the character/9 over F. Then

(1.6) F(O) F(D)

only depends on the division D of 0. Let oF denote the ideal group of F and
NF(D)/F the norm map .v(m ’-ffF.
A map f Map(SV(Fv), v) is said to have the norm property at D if

Next, for given F and D, let IF, 0 be the group of maps

(1.8a) g" D --* oa(D)

with

(1.8b) g(O) g(O) for all to Gal(F(D)/F).

We now call a map f Map(Sa(Ft), deF) F-factorisable if, for all subgroups
G of 1-’t, we have

(1.9) f(G) 1-I g(O),
OG

where g is a map of F* whose restriction to D lies in IF, D, for each D. The
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right hand side of (1.9) bracketed by divisions indeed makes sense in the group
e- Moreover f is F-factorisable if and only if it is factorisable and, for each
D, f(D) has the norm property. It is clear that F-factorisability also has an
interpretation in terms of representations of F.

It is clear that we could have considered more generally any suitable functor
of fields F, but ’F is the one which we shall need here. The motivation comes
from the structure problem for Galois modules such as tings of algebraic
integers or groups of units, which are not given explicitlymeven approxi-
matelymby generators and relations. The aim is then to gain information by
criteria of comparison with known "standard" modules. We consider injective
homomorphisms

(t.10) i: L -, M

say of ,,FF-lattices with finite cokernel in the applications one of these will
be an "arithmetic lattice" the other a known standard lattice. To each such
map we associate the function fi with values

(1 .lOa) f/(GA) O (coker iA) [MA LA]

(notation as in (1.5)). Here O is the OF-order ideal,
we have assumed, as we may, that M (R) F L (R)
in this FF-module. Clearly

] the ,e-index, where
F with M, L embedded

fioj= fif. (=composition)
(1.11)

f/.j fif ( direct sum).

What is important is that f7 (defined in (1.4)) only depends on the pair M, L
to within isomorphism, so that we may write

(1.12) fT=,M

Indeed, if i’ is a further such injective homomorphism L + M then ff71 is
actually F-factorisable, as we shall show below. (Note that f f is a group
homomorphism). We thus obtain equivalence relations

L A M iff is factorisable,
(1.a3) L/x e M iff is F-factorisable.

Next, let

be the maximal ,F-order of FF and for any aeI’-lattice L write L for its
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maximal ’-sublattice. If

(1.14) L (R) F -- M (R) F as FF-modules

we define the module defect by

(1.15) x(r, L, M) =2"(L, M) [L’L],,/[M" M],,v.

(See [3]--there we would have spoken of a codefect however; also see [7].) We
fabricate out of this a map Y’(Ft) -o "OF by setting

(1.16). Ma).

The earlier assertion on fi" f71 is then a consequence of:

(1.17) For i" L -o M the map v4, M" fi is F-factorisable.

This follows from the equation

[M" LI. =fix (L, M)-I[M" L] ..
ForOFt let

(1.18) e0 (ord F) -1 E0(3,) -1

be the associated idempotent, and write, for any division D,

eD L eo.
OD

This is an idempotent in FF. From the equation

YI

and corresponding equations with M, L replaced by Ma, La and Ft by Ga
(A < F) we easily conclude that .xz, M" fi is factorisable, and indeed

(1.19) ( ,,4, M f ) (D ) IMbeD LeeD ,,,.
We complete the proof by showing that .x

dz, . f has the norm property at
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each D, i.e., that for 8 D we always have

(1.20)
IMageD" LteD],,r= I-I g(O),

O.D

g(O) [(MgF())e
It is clear that g has the Galois property (1.8b). Moreover, denoting the

maximal order of (F(D)F)eD by, we have

(1.21) I-I g(O) [(Ma1(o)eD).,,# (La(o)eD).,/V’],.r(o.O.D

Next observe that M’ge
D and Lt’eD are lattices over the maximal order

t’eD of (FF)eD spanning the same (FF)eD-module, hence are locally isomor-
phic as t’eD-modules at all primes of a. Therefore MaF(O)eD and L’’aF(O)eD
are ’,,F(o)eD-modules isomorphic locally everywhere. If follows that

( Mae,)eD) ,Az ( Mae()eD) ,,,, ( LtaF()eD),W ( )
This however implies that

( M a :(o)eD ),A/"
IMbeD" LeD],,: oo"

This in conjunction with (1.21) now establishes (1.20).
For a list of properties of 2

"x see [3], [7, (4.5), (4.6)] or [2, 35.9]. We only
mention one:

(1.22) If L M, i.e., L and M belong to the same genus of aFF-lattices,
then 2L,’X M 1, hence by (1.17) L AF M.

This is immediately obvious as the global ,ix will localise.
We can now indicate how these ideas occur in the arithmetic setting. Let

N/K be a Galois extension of number fields, with

(1.23) Gal(N/K) r, [K. o] n.

Thus

(zr)" (R)z Q (Qr)" -- N aN (R)z Q.

But (ZF)" oN if, and only if, N/K is tame. However we still have

(1.24) zr" Aq aN
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even in the wild case (cf. [9] or [7]). An analogous result, although more
complicated, holds also for Galois modules of units (cf. [7]). Further details
will follow in 2.

2. Computations

We shall actually compute fL,t in two cases where it will be seen to be
highly divisible by primes p at which F is non-cyclic. We shall thus inciden-
tally show that our new concept admits effective computations and also that
factorisability equivalence is far from trivial. Both our theorems of this section
lead to non-trivial results on Galois module structure, the first multiplicative,
the second additive.

Let Jr be the augmentation ideal of ZF, and r ZF/(E3,) the residue
class ring of ZF mod the sum of the group elements. Then

Jr (R)z Q =r (R)z Q =- q/v (R)z Q

as QF-modules where q/N is the group of units mod + 1 in a real number field
N with Gal(N/Q)= F.

Following our general philosophy we should want to compare q/v with
either r or with Jr and indeed ,.x(jr, agv) turns up as part of a product of
L-value-regulator quotients. It is thus important to note that

i.e., Jr A r, if F is non-cyclic.
The commutative diagram with exact rows

with Z ZF given by 1 23, and ZF Z the augmentation, gives rise to
an exact sequence

(2.2) 0 --, Jr -- ’r -’ Z/ord(I’)Z --, O.

We then have to show that

(2.1 .a) fi is not factorisable.

This is a corollary of the more prec.ise Theorem 1 below, which gives exact
numerical information on fi’, so on fi.
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We shall need some more notations. For 0 Ft, 0 e the identity char-
acter, we define

a (0) ideal in Q(O) generated by the 0 (V) 1, all V r.

In addition we put

() 1.

These ideals occur also in an integrality theorem on certain L-value-regulator
quotients for unit groups q/n as above.
Next if G is an Abelian p-group of exponent pt with invariants

(pt, pt2,..., pt,) we write G() for that Abelian p-group with invariants
(pt-1, pt2,..., pt,) (not necessarily in order of magnitude). Now identifying
positive rationals with rational fractional ideals, and denoting their p-parts by
subscripts, we have:

THEOREM 1. (i) f/(G) ord(G) for any subgroup G of Ft.
(ii) For any division D of Ft

[

Z(D) FI o(o)=
8.D I, 1

ifD is of order pr > 1, p a prime,
otherwise.

For any subgroup G of Ft,

fit(V)p =Lt(G)

1-IZ’(G)
p

for each prime p, where G, is the p-Sylow group of G,

f,’(G) 1-I a(o).

(iii) If G is a p-group of order p" and exponent pt then

fit(G)/fit(G(O)) pp.-t

and so

In particular if G is of exponent p then

f.(G) p(’"- 1)/(p- 1)- n.
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We thus see that f. f’r, ’r is actually integral and highly divisible at the
relevant primes.

Proof Let A < F. The cohomology sequence of the exact-sequence (2.2) of
A-modules gives (writing g ord(F), d ord(A) for the moment)

As dig, I?II(A, Z/gZ) is of order d and so is III(A, Z’r) II2(A, Z). As

/(a, ) =/0(a,z) Z/dZ,

the above sequence reduces to

Therefore indeed fi(Ga) g/d ord(Ga), i.e., we have established (i).
By (1.2) for cyclic G we verify that indeed f(D) =p or 1 as indicated.

Also if the order of is not a prime power then ()= (1), while if it is
pr> 1, p a prime then (8)*(’’) p, the Euler function. This yields the
equation for f(D). This implies that we always have

f,’() I-I

and the rest of the theorem follows by elementary calculations. For instance

f,,()/f,,(<o>) Iq o(o).
OG

0 G)

Out second theorem will be stated in global terms. If ElF is an extension of
number fields then we have a natural embedding

Map((r*), Y) c Map((r*), Y).
We shall use this to compare maps f defined in the first place with respect to
different fields. For orders , in FF, the map f,, is always understood
to be defined in terms of or-indices. We shall write

h (G) ord(G)d(), h Map((r*), ’).
THEOREM 2. (i) For any number field F,
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and more generally

if is an order in FF which contains
(ii) Let Gp be the p-Sylow group of G < Ft, and G GI G’. Then

fork=h,h’,h.
(iii) Let G be a p-group, p a prime, of order pn and of exponent pt, with G co)

as defined prior to Theorem 1. Then

h’(G)/h’(G()) gt(p"-p"-l)+,"-1

and so

=p

In particular if G is of exponent p then

(G)- =pnp"-(l+...+,").

Thus we see again the phenomenon of an integral and highly divisible
map fi.
An immediate corollary is that for non cyclic F,

(2.3) ZFF A ’e, r,

a result proved in [9]. Nelson’s pr.oof is much simpler, but does not give the
detailed numerical properties of f.
We shall give an application to the situation described in (1.23), and

assuming (1.24). Let F be a subfield of K, say [K’F] m. Let be an
order in FI-’ containing /t’Q, r (R)z ’F. Then, viewing N as an FF-module, we
have"

(2.4) If F is non cyclic then Z,v will not admit multiplication by ..q’, and in
particular ’v ,m.

For sO= .t’r, r this is a theorem of Nelson (cf. [9]). In the particular case of
Kummer extensions N/K this is already in [4].
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Proofof (2.4). If aN admits ’ then it admits ’Q, r. Therefore z,N ’, r,
so by (1.24) ZFnA t’, r, i.e., ZF A t’Q, r contradicting (2.3). Note that
L A M if and only if Ln A M.

Proof of Theorem 2. (i) Let E be a number field containing the given
field F, and the values of all the characters/9 of F. We shall prove that

(2.5) ’,rfe21.,, /-1

If now is an order in FF containing t’, r (R)z ’F then /= (R) a is an
order in EF containing the primitive idempotents

(2.6) eo E e0 (see (1.18))
OD

of t’o, r. Thus

[,a .a]E, F e D< Gzx

which shows that f, ’e.r 1. In other words

fSEF, "J f--EF, t’E, F

and of course

Thus (2.5) is indeed what we need to prove (i) of the theorem.
(ii) Define a scalar product in EF with F as orthonormal basis. Denote by

M the ,e-dual of a lattice M spanning EF, with respect to this product. Then

But

eF ’eF, ’e,r ge,r

where for the moment we write ord(F) g. Therefore

(2.7) [/t’tr, r. aeF] 2 gg
aE
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Let A< F. Put

eA ord(A) -1 E (

Then

(dge, r) a= (dgE, r)eA, ord(i)(,,er) ea.

Therefore, writing [I" A] ord(GA),

(2.8) [dgae, r aeFa] E

g

The isomorphism

EreA E(F/A), yea , mod A

yields isomorphisms

dge, rea =dge, r/a, oerea = ,,(r/A).

Hence by (2.7), (2.8),

[,A OEra] 2 tt(g) 2t

E, r oe
gEt t-

But the map G (g2)ord(G) is clearly factorisable, and hence indeed we get
(2.).

(iii) We now look at h. Suppose the division D generates a group G of
order pm with (p, m) I. Write

h(D)p =pl(D).

Thus l(D) 0 if r 0, and for r > 1 we have

l(D) .,s(m/s) jpj#(pr-j)
slm j=O

dp(Pr)(m)( r+ p-11 )
ord(D)

P 1

( the Euler function)
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Then to every element 0 of Ff attach a weight

1
( 0 ) pr+ 1/(p-1)

if p ord(/9),
if ord(O) prm, (rn, p) 1, r > O.

Then h(D)p I-IoD,(O), and so

h’(G),= I-I*(0) for allG< F.
The assertions under (ii) and (iii) in Theorem 2 are an easy consequence of the
last equation.

3. A norm theorem

This section displays another aspect of the techniques in this subject. Our
aim is to prove a theorem relating to the norm property discussed in [}1.

THEOREM 3. Let the field F be of one of the following types:
(i) F is a numberfield and none of the prime divisors of ord(F) are ramified

in F/Q;
(ii) F is a non-ramified extension of Qp.

Let M be an avF-lattice and for Ga < Ft, let

gr/A the maximal order of F(F/A). Then for any division D of Ft, f(D) is
norm of an ideal in F(D ).

An immediate consequence of the theorem is that the value ’.M(D), for
,eF-lattices L, M, is a norm from F(D). For F Q this leads to norm results
on certain L-value-regulator quotients. Another consequence is the norm
property of maps fi for i" L M, as before.

Proof of Theorem 3. The hypothesis on F implies that (F, F is generated
over ,eF by the idempotents. We fix a prime p, also in the global case, and
denote by ]# the fi-part of the module index over e where fi lies above p.
In the local case ]# is just ]-r"

Let D be the given division. Our aim is to prove that if D Ga then

(3.1) f(D)/, [(MA)eD Me] /, [(MA)eD (MA) e] :
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where Me,, [x M, XeD X]. (3.1) for all/ implies that in fact

f(D) [(MA)eD
and this is clearly a norm from F(D).

Let F F F x, F, the p-Sylow group. Then

’F,r /F,F; )’f ’e,r and F* Fp r*.
Let D generate the group G. Then G G X G, G < F*, Gx< r*. Let
ord(G) pm, (m, p) 1. Let be the sum over all primitive idempotents
e corresponding to characters q G, of order p i. These lie in EFt, for some
splitting field E of I’,, but i FI’p and in fact is primitive in FFp (recall
(1.18) for the definition of %). Similarly let d be the sum over all primitive
idempotents gx corresponding to characters ) Gx of order d. Also put
ej E_0k, gt Eel,ge-

Write Gj, for the subgroup of G of order pt. If Gj, GA then

MA=

If gt Y’-,gt(i) (sum of primitive idempotents in FF x) then actually

[M(eJ(R)g,). D M(e;(R)ga)] [M(e(R)g,)’( M(e(R)g(t’))]
dlt p /t

Therefore

Hence

(-I H[M(ej(R)’d)" ( M(k(R)’d)f(D)#
j--O dim k<j

Aj,

where

Aj, a #( pr-j) . g(m/ds).
m

Thus A), d 0 if d < m, Aj, m g(pr--J)"
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We now have

-1

M(e(R))" M((R))* M(e’-(R))] A"

We have quite generally the following rule for orthogonal idempotents f, f:
gf+f. M/ M/:] [(gf +f2)fl. gf]

f(D)A [M(e,(R)gm)(g @ m)’M(,(R)gm)] A.

Thus

Let g, ,, + g’. As

M e’(R)s’)" M(e’(R)g") M(e’(R)g’)] 1

and as g’., 0 we get

f(D) [M(er(R)g")(e (R) g,)" M*e] .
But g (R) ,, eD, and M(e,(R)g) Ma for G Ga. This then is the required
result.
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