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CONJUGATE FUNCTIONS AND MODULI
OF CONTINUITY

BY
C.A. NOLDER

1.1 Introduction. We denote by € a domain properly contained in n-
dimensional Euclidean space R”. A continuous nondecreasing function

A(1): [0, 00) = [0,00) with A(0) = 0

is called a majorant if A(#; + £,) < A(#;) + A(2,), 0 < 1y, £, < c0. When f:
Q —> R™ and A(¢) is a majorant we write f € Lip,(Q) if there exists a
constant M < oo such that

(1.1) |£(x1) = F(x5) | < MA(1%; = x,])

for all x,, x, € Q. We denote the smallest such M by ||f||. When A(t) = ¢,
0 < a < 1, the classes Lip,(£2) are the usual Lipschitz classes. We write D for
the open unit disk of the complex plane, D for its closure and dD for its
boundary. Theorem 1.2 follows from theorems of Hardy and Littlewood (see
[9] and [2]). When 0 < a < 1, it can be derived from a similar theorem of
Privalov concerning conjugate functions on dD [15].

1.2 THEOREM. If f= u + iv is analyticin D, if AN(t) =t*,0<a <1, and
if u € Lip,(D), then f € Lip,(D). Moreover ||fl|x < C|lull, where C is a
constant which depends only on a.

The papers [6] and [7] by Gehring and Martio show that Theorem 1.2 holds
for a wide class of planar domains, so-called Lip,-extension domains (see
Section 2). On the other hand, simple examples show that Theorem 1.2 fails in
arbitrary domains.

The main result of this paper, Theorem 3.8, generalizes Theorem 1.2 to
quasiregular mappings in certain domains in R” and to somewhat more
general majorants than 7% Theorem 3.8 reduces to Theorem 1.2 in the case
that Q = D, K =1 and A(z) = t*

We first show that Theorem 3.8 holds locally in balls. The geometry of
Lip,-extension domains (Section 2) then guarantees that the result holds
globally.
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We define the modulus of continuity of a continuous function f: E - R™
over a set E C R" as

o(f,8 E) = sup{|f(x;) = f(x;)| : x1, x, € E and |x;, = x,| < 8}.

Moduli of continuity are nondecreasing with w(f,0; E) = 0. Moreover,
w(f,8: D) and w(f, 8; D) are majorants. Corollary 3.7 states that the moduli
of continuity of the components of a quasiregular mapping are locally equiv-
alent. In Section 4 we give examples of bounded analytic functions f = u + iv
in D with

m w(v,8; D)
smb w(u,8; D)

Hence in general the moduli of continuity of the components of a bounded
quasiregular mapping are not globally equivalent even in a ball.

2.1 Lip,-extension domains. When f: @ — R™ we write f € locLip,(Q) if
there exists a constant M such that (1.1) holds whenever x;, x, € @ with
|x; — x,| < 3d(x;, Q). Here d(x,, Q) denotes the Euclidean distance from
x, to the boundary of 2, 3. We denote the smallest such M by ||f]|%.

2.2 Remark. In[11)], Lappalainen shows that if (1.1) holds whenever
|x, = x,| < ad(x,, Q)

for some a < 1, then f € locLip,(£).

We call @ a Lip,-extension domain if there exists a constant b such that
Ifllx < blIflIXe for all f: @ - R™ That is, f€ Lip,() whenever f€
locLip,(2).  is a Lip,-extension domain if and only if there exists a
constant M such that each pair x,, x, € @ can be joined by a continuous
curve y C  satisfying

(2.1) / }‘(dd((y’z(ss))”aagﬂ))) ds < MA(|x, — x,|)

Y

(see [11]). These domains were first identified by Gehring and Martio for
A(?) = t* and called Lip,-extension domains [7)].

For certain A(?), the class of Lip,-extension domains is wide. All uniform
domains are Lip,-extension domains if and only if there is a constant 4 such
that

(2.2) f”‘(s) ds < AN(t)

o §
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for all 0 <t < oo (see [11] and [14]). In particular, if A(z) = ¢, all balls,
half-spaces, wedge-domains and quasiballs are Lip,-extension domains for all
0<acx<l

3.1 Quasiregular mappings. We refer to the following spaces of functions:

W,X(Q), Sobolev space of L-integrable functions with L™integrable distri-
butional first derivatives over .

W, 10e(2) = NW,(Q'), where the intersection is taken over all Q' compactly
contained in .
We write Df for the Jacobi matrix of f and |Df| for its norm as a linear
transformation. J; is the Jacobian determinant of f.

3.2 DEFINITION. A function f: Q@ — R” is K-quasiregular in Q C R”,
1<K <oo,if

@ fE€ Wl (®)

(b) |Df|" < KJ; ae. in Q.

When n = 2, f is 1-gr if and only if it is an analytic function. A function f
is a K-quasiregular homeomorphism if and only if it is K-quasiconformal in
the usual sense (see [17], [13] and [12)).

We first prove a local version of Theorem 1.2 for quasiconformal mappings.
Although this is a special case of Theorem 3.6, its proof is more geometric in
character. We assume from here on that A(¢) is a majorant.

3.3 THEOREM. If f= (fy, f55..., [,) is K-quasiconformal in Q, and if

f; € locLip,(2)

for somej = 1,2,..., n, then f € locLip,(Q) with ||f]|}** < C||fj||1>f’°. Here C is
a constant which depends only on n, A\ and K.

Proof. Since f is K-quasiconformal there exists a continuous, strictly
increasing function 8 (¢): (0,1) = (0, 00) such that lim,_0(¢) = oo,
lim, _, 05 (¢) = 0 and

|f(x1) -—f(x2)| |X1 = X,
(31) ieamricy R o)

for all x,, x, € Q@ satisfying |x; — x,| < d(x;, Q) (see [4]). We use the
notation

L(fox) = min [£(x) = £
L(fix) = max |1(x) = ()]



702 C.A. NOLDER
Choose C, so that 8;(C,) = 1. Fix x; € Q. For each x, € @ with
|%; — x,] < Cod(xq, 39),
(3.1) gives
|£(x1) = £(x2)| < d(f(x1), 0f(D)).

In other words, if B(y,r) = {x € R"||x — y| <r} then

(3.2) B(f(x1), L,(f,x,)) € f(2)

where r = |x; — x,|. By a standard distortion theorem (see [17] and for
n = 3, [4]), we conclude from (3.2) that

62 e

S ex(n)K= C(n’ K)’

where x(n) is a constant which depends only on n. Next choose x; so that
[X = %3] = |x; — x| =7

and f(x;) — f(x,) is a vector in the f-direction. Since f; € locLip,(£), (3.3)
gives

|f(x1) = f(x2)| < L,(f, x1)
< C(n,K)IL(f, x7)
< C(n, K)|f(x1) = f(x3)|
= C(n, K)lfj(’ﬁ) _fj(x3)l
< C(n, K)IAIRA (12, = x31)
= C(n, K)IINA(x, = xa])-

Hence f € locLip, ().
We immediately obtain the following theorem.

3.4 THEOREM. If f=(fy, f5,---,[,) is K-quasiconformal in a Lip,-exten-
sion domain Q and if f; € Lip,(Q) for somej=1,2,..., n, then

feLipy(Q) with ||fil < Clifilix,

where C is a constant which depends only on n, \, @ and K.
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We now prove Theorem 3.4 for quasiregular mappings. We use certain
integrability results which require the following definitions.

3.5 DeriNITIONS. If E C R" is a measurable set we write |E| for the
n-dimensional Lebesgue measure of E. We write dx = dx,dx,...dx, for
Lebesgue measure and assume this measure when it is omitted from an
integral. If B C R" is a ball, then 0B, 6 > 1, denotes the ball with the same
center as B and with a radius of o times that of B.

3.6 THEOREM. If f= (fy, f5s-.., f,) is K-quasiregular in Q and if

f; € locLip\(Q) forsomej=1,2,...,n
then
f € locLip,(Q)  with |IflI§° < CIfIIK®

where C is a constant which depends only on n, A and K.

Proof. By Remark 2.2, it is sufficient to show that
| £(x1) = f(x3)]| < CA(jx, = x5|) whenever |x; — x,| < }d(x;, 99).

Fix such an x; and x, and set B = B(x,, |x; — x,|). Then 4B < Q. Next if f
is K-quasiregular in ©,, then there exists an s > n, depending only on » and

K, such that fe& W} (Q,). Moreover for every open set A compactly
contained in &, we have

(3.4) (f|Df|’) <Cd(4,09,)" S’/‘(f |Df|" )l/n

where C is a constant which depends only on » and K. Here d(4, d€,) is the
Euclidean distance between A and d%,. See [1]. When f is quasiconformal,
this result is due to Gehring [5]. Since f € WX(B), the following estimate
holds for each x, y € B:

65 1) - s S dam n( 3 f1or)

where C(n) is a constant which depends only on n. Here diam B denotes the
Euclidean diameter of B (see [1]).
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Using (3.4), with @, =3/2B and 4 = B, and (3.5), with x = x, and
y = X,, we obtain

ssC_(nn) dlamB(lBI fIDf| )l/s

1 1/n
<C1d1amB(|B|f |Df|”) .

(3:6) |f(x1) = f(x2)| <

Next if f= (fy, f55-.., f,) is K-quasiregular in @, and if D is a ball with
6D C Q,, 6 > 1, then for every a € R and j = 1,2,..., n we have

6n (fionr) " s oxg ey - o)

where C is a constant which depends only on n (see [10]). Using (3.7) with
D = 3/2B and Q, = 2B, (3.6) becomes

1768) = 1) = o i [ =)

Choose a = f;(x;). When x € 2B, |x — x| < 3d(x;, 3Q) and since f; €
locLip,(£2) we obtain

1 1/n
68) 1700 = fx2)] 5 Cllp| gy [ Mo = )"

< GA(2|x;, = x,|)
< 2GA (1%, — x,1)-

Hence f € locLip, ().

3.7 COROLLARY. If f=(f, f5r-.., f,) is K-quasiregular in Q, then there
exists a constant C, depending only on n and K, such that

«(f,8; B) < Cw(f;,8; B)
forallj=1,2,..., nand all balls B with 2B C Q.

Proof. Since 2B C Q, f; is bounded in B and w(f;, §; B) is a majorant. If
x, y € @ with |x — y| < d(x, 9Q), then (3.8) gives

(3.9) |£(x) = f(»)| < 2C (£, 1x = y1; Bo)
where B, = B(x, }d(x, 9Q)).
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Now fix x;, x, € B. If x, € B(x,,3d(x;, 9Q)), then (3.9) holds with
x = x; and y = x,. Otherwise let L C B be the line segment joining x; to x,
and define points y; and balls B; as follows:

N =X

B;= B(y,, 4d(y;, 92))
Yi+1 € LN dB; where |y; — y1| < |yj41 — Nl

for j=1,2,..., N—1 where N is the integer such that x, €
B(yy, 5d(yy, 9R)). If r(B) is the radius of B and yy,; = x,, then d(y;, Q)
>r(B) for j=1,2,..., N+ 1 and we have

N-1

IN=-Dr(B) < X 1d(5,, 09)
k=1

N-1
= Z Vi+1 = Vil
k=1

< |xp = X,
< 2r(B)
and N < 9. Hence

17(5) £ 5 5 1 Gens) = FO0)]

k=1
N

< 2C3 E w(f;‘a lyk+l - ykl; B)
k=1

< 18C3w(fj, |x; — x,|; B).

The result follows.
The next result also follows from Theorem 3.6.

3.8 THEOREM. If f=(f}, f2,.-., f,) is K-quasiregular in a Lip,-extension
domain Q and if f; € Lip\(R) for some j = 1,2,..., n, then f € Lip\(Q) with
Ifllx < ClIfjll5, where C is a constant which depends only on n, @, N and K.

We next present an example which shows that Theorem 3.8 fails in arbitrary
domains.

3.9 Example. The function f(re®) = logr + i is analytic in

Q= {re’ll<r<o and0<6 <27}
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When 0 <a<landl <r <r,< oo wehave
1 «
lOgr2 - logrl < ‘&'(7‘2 - rl) .

Hence Re f € Lip,(Q), A(¢) = t* for all 0 < a < 1. However if z, = re’® and
z, = re'®"~9_ then

lim Argz, — Argz,

- =00 forall0 <a<1.
e—0 |21—22|

4.1 Other moduli of continuity. The unit disk D is a Lip,-extension domain
if and only if there exist constants C and b such that

(4.1) /0‘*&;) dt < CA(3)

whenever 0 < § < b. See [11]. The following theorem shows that the moduli of
continuity of the components of an analytic function in D need not be
equivalent when (4.1) fails. We use the notation g = e~ (?*+2),

0 ift=0,
! if0<t<a
P = &,
A (1) = log%(loglog%)
A,(a) ifa<t,
and
0 if t =0,

1 .
A, (1) = log(T)Ap(t) if0<t<a,

A(a) ifa<t,

for p > 1. A,(#) and A () are concave majorants.

4.2 THEOREM. For each p > 1 there exists an analytic function in D,
f=u+iv, withu € Lipxp(D) and v & LipAP(D). Moreover whenp > 1, f €
Lip, _ (D).
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Proof. First we define the boundary values of u as follows with m =
A (a)/a. Fort € [—m, m],

A (1) if0<t<a,
u(e’) = -m(t — 2a) ifa<it<2a,
0 otherwise.

If |t; — t,] < a, then
lu(e™) —u(e™)| < (1 + W/Z)Ap(le“l — e')).
If |t, — t,| = a, then
lu(e™) —u(e™)| <2A,(a) <2(1 + 7/2)A (je"s — e™2]).

Hence u € L1pA (dD). Since u is harmonic, when § < 3 Poisson’s formula
gives

37 log 7
log2

w(u,8; D) < Cllog( )w(u 8;dD) where C, =
Hence u € Lipxp(—ﬁ). The conjugate function on the dD is given by

v(e) = Z—W—fﬂ co t( )u(e”) ds.

v(t) is bounded when p > 1 and assuming 0 < § < a we have
v(e™®) —v(1) = f [cot cot t+9 )]u(e") dt
=3 f cot( ) u(e™) — u(e'=9)) dr.

Hence

2alv(e™®) - v(1)| = [ cot( )u(e”) dt
j;a+ cot( )(u(e") — u(e'=9)) dt‘
jj:;scot(%)(u(e") — u(e'*=9)) dt‘

>f06cot( )u(e") dt

_2Ap'-(a)cot(%)8 - Ap(a)cot(a : 8)3.
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We write C; = 3A ,(a)cot(a/2). Next

j(;cot( )u(e") dr > /81(—52 dr

0

p-1
_ 1 1
p-1 loglog%

}‘p—-l(s)
p-1"

Since lim,_, +A),_1(#) = co there exists 5> 0 such that 2(p — 1)Cyt <
A,_1(#) whenever 0 < ¢ < ¢,. Hence for § sufficiently small,

1
2alo(e™®) = v(1)| 2 57—y A-1(8).
Since
A, (1) 1
1 p_l__ = 1 —_— =
i Gy = i esiosy =
v & Llp)‘(D)

To show that f € Lip »,.,(D) we apply the following general inequality (see
[3, p. 106]). There is a constant C,, independent of f and w(y, t; dD), such
that

(v, 8; aD) < cl(fo““’(“’—’t;ab—) dt + SL"Mdt).

Since A ,()/¢ is nonincreasing, we obtain

s A, (1)

w(v,b‘;aD)sCz(f d+A(8)f8—1- )

- Cz((;—l—T)Mq(ﬁ) + A, (8)(log 7 — log 3)).

Hence v € Lip, -1( dD)and so f € Lipx’_l( dD). Since f is analytic it follows
that f e Llp,\ (5) Proofs of this last assertion can be found in [16] and [8].

This completes the proof of Theorem 4.2
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