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Introduction

Throughout this paper R will be a commutative ring with one, and all
R-modules will be unitary. Our purpose is to study commutative ring exten-
sions S of R. As a key tool in our investigation we introduce a torsion funetor
ts on R-modules which is determined by the set of all ideals I of R such that
IS--S. If R is an integral domain with quotient field Q, then t is the
classical torsion functor. We also introduce the category of all R-modules
that are R-submodules of S-modules. Again if R is an integral domain, then

’ is the category of classical torsion-free R-modules.
In 1 we show that if an R-module satisfies certain conditions, then it is in

fact a commutative ring extension of R. We also derive some of the properties
of the category s; in particular, that it is closed under direct limits.

In 2 we discuss faithful torsion functors on R-modules in general, and
apply these results to the special case of the torsion functor s. We let E
denote the injeetive envelope of R, g the set of all faithful ideals of R, ta the
torsion funetor determined by , and U/R the a-torsion submodule of E/R.
Using the results of 1 we show that U is a commutative ring extension of R
contained in E; and if is any faithful torsion functor and t(E/R) T/R,
then T is a commutative subring of U.

If 0 is the set of all ideals of R that contain a faithful, finitely generated
ideal of R, then ,y is equal to the set of all ideals I of R such that IE E.
We denote the associated torsion functor of by rE; and if rE(E/R) V/R,
then V is a commutative subring of U containing R.

Let S be a commutative ring extension of R, and T/R ts(S/R); then T
is a subring of S and is isomorphic to a unique subring of V that we identify
with T. We find that oars is equal to the category of all ts-torsion-free
R-modules if and only if s is closed under essential extensions, a property
somewhat weaker than S being flat. We prove that S is flat if and only if
Tor(B, S/R) is ts-torsion for all R-modules B.
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COMMUTATIVE RING EXTENSIONS 375

In 3 we define a commutative ring extension S of R to be a torsion
envelope of R if ,S/R is ts-torsion. In this case S is isomorphic to a unique
subring of V and ts(E/R) S/R. We prove that S is a torsion envelope of
R if and only if S is isomorphic to a fiat subring of V. We also prove that S is
a torsion envelope of R if and only if S is a flat ring bijection of R, a type of
ring that has been studied by Lazard [3]. We establish many of the important
properties of torsion envelopes, some of which have already been noted by
Lazard [3]. We show that there is a unique maximal torsion envelope of R
contained in V that contains a copy of every other torsion envelope of R. We
also show that S is a torsion envelope of R if and only if either PS S or
S, --- R, for every P Spec R.

In 4 we study integral domains R and their over-rings (i.e., the subrings of
the quotient field { of R that contain R) from the vantage point of the theory
we have developed. By the results of 3, S is a torsion envelope of R if and
only if S is isomorphic to a flat over-ring of R. We show that S is a flat
over-ring of R if and only if S f’)R, (P Spec R and PS @ S). Part of
these two results were shown by Richman [8] using different methods and
terminology. More generally we let ’ be any set of prime ideals of R and
study the properties of S fR (P ).
We define R to be a semi-Knfll domain if every non-zero, principal ideal of

R is a finite intersection of height one primary ideals of R, and every height
one primary ideal of R .contains a power of its associated prime ideal. In this
case R f’)R, (P SpecR and height P 1). Semi-Krull domains are
simultaneously generalizations of Krull domains and Noethefian, Cohen-
Macaulay domains. We characterize the flat over-tings of semi-Krull domains
and prove that they are also semi-Krull domains.

If R is a semi-Krull domain, I a non-zero ideal of R, and S the ideal
transform of I, then S fR, (P ’1) where ’1 is the set of all height one
prime ideals of R that do not contain I. A more general result holds for
Noethefian domains. If I is a finite intersection of height one primary ideals of
R, then S is flat if and only if S IS, a generalization of the case of
projective ideals of R.

In 5, R is again an integral domain and we say that an over-ring S of R is
a complemented extension of R if S/R is a direct summand of Q/R. Of
course S is then a flat over-ring of R. If R is a semi-Krull or Noethefian
domain, I a non-zero ideal of R, S the ideal transform of I, and = {1
a la I ), then S and R, are complementary extensions of R if and only if I
is a finite intersection of height one primary ideals of R whose associated
prime ideals are maximal ideals.of R. This result enables us to show that if R
is a semi-Krull or Noethefian domain, " a non-empty set of height one
maximal ideals of R, and ’ Spec R ", then S f’)Rp (P ’) is a flat
over-ring of R. In this case S is also semi-Krull or Noetherian; and if
P Spec R, then PS S if and only if P ". We apply these results to the
case where I is a finite intersection of height one primary ideals of R and
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show that if E(R/I)c Q/I, then every associated prime ideal of I is a
maximal ideal of R. This leads us finally to the corollary that if R is a
semi-Krull domain such that inj.dimRR 1, then R is a Noethedan, Goren-
stein domain of Krull dimension one.

In 6 we turn again to the situation where R is an arbitrary commutative
ring. We let " denote a category of R-modules that is closed under sub-mod-
ules. We define a pair (F, ) to be an o’-lifting of an R-module B if F
: F B, and every other such pair can be factored through (F, ). An
’-lifting (F, ) of B is called an ’-cover of B if f: F F and
implies that f is an automorphism of F. ’-covers, if they exist are unique.
Following a proof of Enochs [2] concerning flat covers we show that if - is
closed under direct limits, then every ’-lifting contains a direct summand that
is an ’-cover.

Let S be a commutative ring extension of R, B an R-module, C the
injective envelope of B, and " Horns(S, C) C the map defined by
(f) f(1). We let F -t(B) and IF; then (F, ) is an ’s-lifting of
B. Thus, since rs is dosed under direct limits, (F, ) contains a direct
summand that is an ’s-COVer of B. We prove that S is a torsion envelope of R
if and only if (F, ) is the ’s-COVer of B for every R-module B. This
generalizes a result of Banaschewsld for torsion-free covers over integral
domains [1]. We also show that s is equal to the category of all t-torsion
free R-modules if and only if the ’s-COver of an injective R-module is
R-injective.

1. Some general properties o! commutative ring extensions

DEFINITION.
canonical map

Let A be an R-module such that R c A, and define the

" Hom(A, A) A

by A(f) =/(1) for all f Homg(A, A).

PROPOSITION 1.1. is an R-isomorphism if and only ifA is a commutative
ring extension ofR such that Homs(A/R, A) O. In this case there is only one
ring structure on A that is compatible with its R-module structure.

Proof. Suppose that Ca is an R-isomorphism. Then Homs(A/R, A)---
ker pa 0. Let f Horns(A, A) and let x f(1). If y A, then there exi.sts
a unique g Horns(A, A) such that g(1)--y. We can then define
A A by h,(y)--g(x). Now is in the centre of Horns(A, A). For if
h Homs(A, A), then (h o g)(1)-- h(g(1)) h(y); and hence Xx(h(y))--
(h. g)(x) h(g(x))= h(hx(y)).
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Now if e is the identity map on A, then A(Ax) Ax(1) e(x) x f(1)
A(f)" Hence hx f, and so HomR(A, A) is a commutative ring extension

of R with composition of functions as multiplication. Thus we can use A to
make A into a commutative ring extension of R.
On the other hand suppose that A is a commutative ring extension of R

such that HomR(A/R, A) 0. Then ker A 0 and hence A is one-to-one.
If x A and f is multiplication by x on A, then a(f) x, and so a is
onto. Since Hom(A/R, A) 0, it is easy to see that there is only one ring
structure on A that is compatible with its R-module structure.

DEFINITION.
canonical map

Let A be an R-module such that R c A and define the

by 8A(x)= x (R) 1.

PROPOSITION 1.2. 8A iS an R-isomorphism if and only ifA is a commutative
ring extension of R such that A (R) A/R O. In this case tpa is also an
R-isomorphism.

Proof Suppose that 8a is an R-isomorphism. Then

A (R) A/R -- Coker A 0.

Let x A and define d’: A --, A by $’x(y) ,l(x (R) y) for all y A. Then
d’x is an R-homomorphism, and we can define an R-homomorphism

d’a" A --, HomR(A, A)

by d’a(x ) 8’ for all x A. It follows immediately that Ca o a is the
identity map on A, and thus a is onto and d’a is one-to-one.
Now Hom(A/R, Homs (A, A)) --- Hom(A (R) A/R, A) 0; and hence

if g Hom (A/R, A), then d’A o g 0, and so g 0. Thus ker tpa --- HomR(A/R, A)= 0; and is an isomorphism. Therefore, A is a commutative
ring extension of R by Proposition 1.1.
On the other hand suppose that A is a commutative ring extension of R

such that A (R) A/R 0. Then cokera--A (R) A/R 0, and so i$A is
onto. Now there exists an R-homomorphism 1: A (R) A --, A defined by
a(x (R) y) xy for all x, y A; and it is clear that /A 8A is the identity on
A. Thus 8a is one-to-one, and so is an isomorphism.

Remarks. Propositions 1.1 and 1.2 are not dual to each other for there are
many examples of commutative ring extensions S of R such that tks is an
isomorphism but /s is not. For example let R be an integral domain with
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quotient field Q, and let S be a subring of Q properly between R and Q.
Then tks is an isomorphism by Proposition 1.1. However, if/s is an isomor-
phism, then S (R) S/R 0 by Proposition 1.2; and this is not true if S is a
finitely generated R-module.

DEFINITION. Let S be a commutative ring extension of R. Then S is said
to be a ring bijection of R if the inclusion map: R --, S is an epimorphism in
the category of tings. The following Corollary 1.3 is well known and follows
immediately from Propositions 1.1 and 1.2.

COROLLARY 1.3. Let S be a commutatioe ring extension of R. Then the
following statements are equioalent:

(1) S is a ring bijection of R.
(2) The map 8s: S --, S (R) S is an R-isomorphism.
(3) S (R) S/R-- O.
(4) HomR(S/R, B) 0 for every S-module B.

PROPOSITION 1.4. Let S be a commutative ring bijection of R. Then the
following statements are true:

(1) An R-module B has at most one S-module structure compatible with its
R-module structure.

(2) If A and B are S-modules, then Hom(A, B) Horns(A, B) and
A (R) B=A(R)sB.

(3) If an S-module is R-flat (or R-injective), then it is S-flat or S-injectioe.

Proof. (1) follows easily from the fact that Horns(S/R, B) 0 for every
S-module B; (2) follows from (1); and (3) follows from (2).

DEFINITION. Let S be a commutative ring extension of R. Define #’s to
be the category of all R-modules that are R-submodules of S-modules. For
each R-module A define 0,: A -, A (R)s S by O,(x) x (R) 1 for all x A.

PROPOSITION 1.5. (1) Let A be an R-module. Then A is in s if and only
if 0 is one-to-one.

(2) s is closed under R-submodules, inverse limits, and direct limits.

Proof. (1) Of course if 0A is one-to-one, then A is in s. Conversely,
suppose that A is an R-submodule of an S-module B. Then we have a
commutative diagram:

A (R)sS.. B



COMMUTATIVE RING EXTENSIONS 379

Hence it is sufficient to prove that 0n is one-to-one. But if we define

hB" B (R)R S B

by hn(b (R)R s) sb for all s S and b B, then hn * 0n is the identity map
on B, and hence 0n is one-to-one.

(2) It is obvious that s is closed under R-submodules and inverse limits.
Let { Aa} be a dire(R)ted family of R-modules that are in s, and let A

LimAa. For each a we have an exact sequence:

0A,--,A,(R) S

by part (1). Since Lim is an exact functor, we have the exact sequence

0 A Lim(A. (R)g S).

But (R)s commutes with direct limits and hence Lim(A, (R)s S) -= A (R)s S.

Therefore, A is in s.
2. Torsion functors

DEFINITION. A subfunctor t of the identity functor on R-modules is said
to be a torsion functor if it satisfies the following two axioms:

(tl) If B is an R-submodule of the R-module A, then A t(A) if and
only if B t(B)and A/B t(A/B).

(t2) t(t(A))= t(A).
A is said to be t-torsion if A t(A) and t-torsion-free if t(A)= 0. The
following properties of a torsion functor are easy to verify:

(t3) If B A, then t(A)q B t(B).
(t4) A/t(A) is t-torsion-free.
(tS) If A is t-torsion-free, then so is E(A), the injective envelope of A.
(t6) Direct limits of t-torsion R-modules are t-torsion; and inverse limits

of t-torsion-free R-modules are t-torsion-free.
(t7) If A is t-torsion, then so is Torff(A, C) for all R-modules C and

n>0.
Let t be a torsion-funetor and define oa to be the family of all ideals I of R

such that R/1 is t-torsion. It is dear that if A is an R-module and x A,
then x t(A) if and only if (0:x) . It is easy to check that satisfies the
following two axioms for ideals I and J of R:

,f(1) Ifl andlcJ, thenJ.
#’(2) If J t and (I: r) oa for all r J, then I .ft-
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We note that it follows from (1) and (J2) that if I and J are in t, so
is IJ.
On the other hand let be a family of ideals of R that satisfy Axioms (1)

and (2). We can then define its associated torsion functor L, on R-modules
by

td(a) {x AI(0:x) }

for all R-modules A. It is readily verified that t, is indeed a torsion functor;
and we say that o is a torsion family of ideals of R.
We say that a torsion functor on R-modules is faithful if t(R)= O.

Clearly t is faithful if and only if every ideal in is faithful (i.e., has 0
annihilator). We then say that is faithful.

Examples. (1) Let 9 be the set of all faithful ideals of R. Then is a
torsion family of ideals of R and a is a faithful torsion functor. Furthermore,
if t is any faithful torsion functor, then c 9 and hence t(A) ta(A) for
every R-module A.

(2) Let 5a be a multiplicatively dosed subset of R and let

,.s { I c R I N S,a* fS )

Then Js,, is a torsion family of ideals of R and

Js,, { I c RIIRs,,=

In particular if J is an ideal of R, and Sa (1 a[ a J ), then

s, (I c RII + J R).

Also if P is a prime ideal of R and 5a= R P, then drs= (I c R II - P }.
(3) Let ’ be a non-empty set of prime ideals of R and let

oe= {I c RII . P for any P ’}.

Then .#’, is a torsion family of ideals of R, and we denote its associated
torsion functor by t,.

In the next proposition we generalize these examples and lay the basis for
the use of torsion functors to study commutative ring extensions of R.

PROPOSITION 2.1. (1) Let A be an R-module and dA { I c R IIA A }.
Then is a torsion family of ideals of R and its associated torsion functor will
be denoted by ta. IfA is a faithful R-module, then ta is a faithful torsion functor.

(2) Let fir be the set of all ideals ofR that contain a faithfulfinitely generated
ideal ofR; and let E be the injective enoelope of R. Then ,St= dee (i.e., 1 d if
and only if IE E) and so ar is a faithful torsion family of ideals of R.
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Proof (1) It is clear that ,a satisfies Axiom Y(1). Hence suppose that
J ’J’.4 and that I is an ideal of R such that (I: r) Ya for every r J. We
wish to show that I Ya; i.e., that IA A. Let x A; then x ET-rx,
where r J and x A. Let

then KA A and so x Ejm=ltijyj where tij - K and yj A. Hence we have

x ,m__l(Y’.7=lritij)yj.

But ritij - I for all and j, and so A =/A. It is dear that if A is a faithful
R-module, then oa is a faithful family of ideals of R.

(2) Since 1 E, we have e. On the other hand suppose that

I Ra + +Ra

is a faithful, finitely generated ideal of R. Let x (at, a2,... an) Rn; and
let e,..., e be the standard free basis of R. Let y E; then since
(0" x) 0 and E is injective, there exists an R-homomorphism f: R" E
such that f(x) y. But then y ET-taif(ei) IE, and so E IE. Hence
e =, and by part (1), d is a faithful torsion family of ideals of R.

DEFINITION. Let 92 be the set of all faithful ideals of R; let E be the
injective envelope of R; and let U= {x El(R" x) }. Then U/R
ta(E/R). Let be a faithful torsion functor on R-modules and let

T= el( : x)

Then T/R t(E/R), and T U. The next proposition demonstrates that U
is a commutative ring extension of R and that T is a subring of U.

PROPOSITION 2.2. (1) The canonical maps

fly: Hom(U,U) U and r: Hom(T, T) T

are R-isomorphisms. Thus U is a commutative ring extension of R and T is a
subring of U.

(2) IfA is a t-torsion free R-module, then A r.
(3) If C is a t-torsion-free injective R-module, then the canonical map

c: Hom(T, C) C

defined by bc(f) f(1) for all f Hom(T, C) is an R-isomorphism. Thus C
is an injectioe T-module.
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Proofi (1) We have an exact sequence:

Homn( T/R, T) Hom(T, T) T Ext(T/R, T).

T is an essential extension of R and thus is t-torsion-free. Hence because T/R
is t-torsion we have HomR(T/R, T) 0. We have an exact sequence

Hom(T/R, E/T) Ext,(T/R, T) - O.

Since E/T is t-torsion-free, we have HomR(T/R, E/T) 0, and thus

Ext,(T/R, T) 0

also. Therefore, the first exact sequence shows that kr is an R-isomorphism.
Hence T is a commutative ring extension of R by Proposition 1.1. Similarly
Pv is an R-isomorphism and U is a commutative ring extension of R. It is
obvious that T is an R-submodule of U. It remains to show that T is a
subring of U.

Let x, y T and let x y denote their product in T and x o y their product
in U. Define f: T ---} U by f(y) x .y x. y for all y in T. Then f is an
R_-homomorphism and f(R) 0, and hence f induces an R-homo_rnorphism
f: T/R U. But T/R is t-torsion and U is t-torsion-free. Hence f 0, and
so f- 0, and thus T is a subring of U.

(2) We have an exact sequence

Tor((A, T/R) - a A (R) T.

Since T/R is t-torsion, so is Tor((A, T/R); and thus its image in the
t-torsion-free R-module A is 0; and so/, is one-to-one.

(3) We have an exact sequence

0 - Hom(T/R, C) --, Hom(T, C) C O.

But T/R is t-torsion and C is t-torsion-free. Thus Hom(T/R, C) 0 and so
g’c is an R-isomorphism.

Remarks. (1) We have U E if and only if the canonical map
Horns(E, E) E is an isomorphism. For if x E, ! (R: x) and c
(0: 1), then there exists f Hom(E, E) such that f(x) c and f(1) 0.

(2) It follows from Proposition 2.2 that E is both the T-injective envelope
of T and the U-injective envelope of U.
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(3) Let x E and J { u Ulux U}.ItcanbeshownthatifJisa
faithful ideal of U, then x U. Thus if is a faithful torsion functor on
U-modules, then E/U is o-torsion-free.

PROPOSITION 2.3. Let S be a commutative ring extension of R.
(1) Every R-module in s is ts-torsion-free.
(2) If B is an R-module and Os: B -o B (R) S is the canonical map, then

ts(B ) c Ker/s.

(3) Let T/R ts(S/R); then T is a subring of S and is both ring and
R-isomorphic to a unique subring of U. If we identify T with its image in U, then
T/R ts(E/R).

Proof. (1) Let A be an S-module and C an R-submodule of A. Let
xts(C) and l=(0:x); then SI=S and hence xSx=S(Ix)=O.
Therefore, C is ts-torsion-free.

(2) We have B/Ker 0 -= Im 0s s. Thus B/Ker 0B is s-torsion-free by
part (1), and so ts(B) Ker 0.

(3) It is obvious that T is a subring of S. Let 0 x T and I (R: x);
then SI S and so Sx S(lx). Therefore lx is a non-zero ideal of R and
hence T is an essential extension of R. Therefore we can assume that T c E.
To complete the proof of (3) it is sufficient by Proposition 2.2 to prove that
ts(E/R) T/R. Hence it is sufficient to prove that E/T is ts-torsion-free.

Let 1 be an ideal of R such that IS S. Then it is sufficient to prove that
Home(R/I, E/T) 0. We have the exact sequence

Hom(R/I, E) Hom(R/I, E/T) ---, Ext,(R/I, T)

Since E is an essential extension of R, it is s-torsion-free. But R/I is

ts-torsion and so Hom(R/I, E) 0. Therefore it is sufficient to prove that

Extra(R/I, T) O.

We have an exact sequence

Horns(R/I), S/T) Ext,(R/I, T) Ext,(R/I, S).

S/T is s-torsion-free and R/I is s-torsion, and thus

Hom(R/I,S/T) =0.

Also Extra(R/I, S) is ts-tOrsion and is an S-module. Hence by part (1),

ExtX ( R/I, S) O.

Thus we have ExtX(R/I, T) O.
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Remarks. Let ,, be the set of all ideals of R that contain a faithful finitely
generated ideal of R. By Proposition 2.1, = Jig is a faithful torsion family
of ideals of R. Let V/R re(E/R); then by Proposition 2.2, V is a com-
mutative subring of U. Let S be a commutative ring extension of R and
T/R ts(S/R). By Proposition 2.3, T/R ts(E/R). Since s
we have

ts(E/R) c t(E/R).

Thus in fact T is a commutative subring of V.

PROPOSITION 2.4. Let S be a commutative ring extension of R. Then the
following statements are equivalent:

(1) s is equal to the cateogry of all ts-torsion-free R-modules.
(2) ts(B) Ker 8s for all R-modules B.
(3) s is closed under essential extensions.
In this case if P is a prime ideal of R such that PS S and J is a P-primary

ideal of R, then SJ tq R J.

Proof. (1) (2) Let B be an R-module, B B/ts(B), and II" B B
the canonical map. Then we have a commutative diagram:

B.--B (R) R S

1 I’I(R)1

(R). s

Since B is s-torsion-free, it follows from our assumption that B s. Hence
by Proposition 1.5 (1), 8 is one-to-one. It follows from the diagram that if
x KerOs, then x Ker rl ts(B); and so KerOs c ts(B). The reverse
inclusion is provided by Proposition 2.3 (2).

(2) (1) If B is a ts-torsion-free R-module, then KerOs ts(B) O,
and hence B is isomorphic to an R-submodule of the S-module B (R)R S, i.e.,
B s. On the other hand if B s, then B is ts-torsion-free by Proposition
2.3 (1).

(1) (3) It is obvious that essential extensions of ts-torsion-free R-mod-
ules are again s-torsion-free.

(3) (1) Let A be a ts-torsion-free R-module. By Proposition 2.3 (1) it is
sufficient to prove that A is in s. Let 0 x A and I (0:x); since
s(A) 0 we have S/IS O. Lt C be the R-injective envelope of S/IS;
then by assumption C s. We let C FICx (0 x A); then C is an
injective R-module and C s. We have an R-homomorphism f: A C
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such that f(x) 1 + IS, 0; and we define an R-homomorphism f: A ---, C
by f(y) (fx(Y)) for all y A. Then f is one-to-one, and hence A is in rs.
Now assume that S satisfies the three equivalent conditions of the proposi-

tion; let P be a prime ideal of R such that PS, S, and J a P-primary ideal.
Since R/J is ts-torsion-free, Ker #R/J ts(R/J) 0. But Ker/gR/J (SJ N
R)/J, and so SJ (3 R J.

PROPOSITION 2.5. Let S be a flat commutative ring extension of R and B an
R-module. Then the following statements are true:

(1) s is equal to the category of all ts-torsion-free R-modules.
(2) ts(B) Ker 0B --- TOrl(B, S/R).
(3) B is ts-torsion-free if and only if Torl(B, S/R) 0; and B is ts-torsion

if and only if B (R) S O.

Proof. (1) Let A s and let C be an essential extension of A. By
Proposition 2.4 it is sufficient to prove that C s. Because S is fiat we have
a commutative diagram with exact rows:

0 ---,A -C

O A (R)R S--- C (R) S

Since . is one-to-one by Proposition 1.5, we have Ker Oc N A 0, and hence
Ker Oc 0; and thus C s.

(2) Since S is fiat, Ker 0B --- Torx(B, S/R); and we have ts(B) Ker 0s
by Proposition 2.4.

(3) This follows immediately from part (2).

COROLLARY 2.6. Let S be a commutative ring extension of R. Then S is

R-fiat if and only if TOrla(B, S/R) is ts-torsion for all R-modules B.

Proof. If S is R-flat, then Tor(B, S/R) is s-torsion by Proposition 2.5.
On the other hand if Tor(B, S/R) is s-torsion, then the exact sequence

0 Tor(B, S) Tor(B, S/R)

shows that Tor((B, S) is ts-torsion also. But Tor((B, S) is an S-module and
hence ts-torsion-free by Proposition 2.3 (1). Thus Tor((B, S)--0 for all
R-modules B, and so S is R-fiat.

Remarks. (1) It is not true in general that if s is equal to the category of
ts-torsion-free R-modules, then S is fiat. For let R be a Noetherian local ring
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with maximal ideal M and let S IIR/M; then S is a commutative ring,
and since fqM= 0, we have a canonical ring injection of R into S. Now
MS S, and hence every R-module is s-torsion-free. If A is a finitely
generated R-module, then IqMA 0 and hence A IIA/MA; and
IIA/MA is an S-module. Since rs is closed under direct limits by Proposi-
tion 1.5, every R-module is in s. Moreover, if I is an ideal of R, then
IS tq R fq(I + M) I. However, S is not R-flat.
A more general example is to let R be any commutative ring with I that has

an ideal J such that R/J is not R-flat. We let S R .R/J and R -} S the
canonical diagonal ring homomorphism. Then S/R = R/J; and if I is any
ideal of R we have ISOR=I. If A is any R-module, we define ha
A (R)S---,A by

ha(x (R) (r, + J)) rx

where x A and r, R. Then ha . 0a is the identity on A, and so 0a is 1-1.
Thus every R-module is in s, but S is not R-flat.

(2) It is not true in general that if S is a commutative ring bijection of R,
then S is R-flat; or even that s is equal to the cateogry of all ts-torsion-free
R-modules. For let R be a quasi-local integral domain with quotient field Q,
and let J be a non-zero ideal of R. Let S= QR/J, and RS the
canonical diagonal ring homomorphism. Then S/R -- Q/J, and so S (R) S/R

0. Thus by Corollary 1.3, S is a ring bijection of R. Clearly S is not R-flat.
If I is any ideal of R, then IS R I + J R, and so every R-module is

s-torsion-free. However, since S is a non-flat ring bijection of R, s is not
equal to the category of all ts-torsion-free R-modules as we shall see in
Corollary 3.5.

(3) It is not true in general that if S is a commutative ring extension of R
such that PS R P for every prime ideal of P of R, then s is equal to
the category of all s-torsion-free R-modules. For let R be a quasi-local ring
that has two non-zero principal ideals Jx Rxx, and J2 Rx: such that
J J: 0. Let S R/Jx R/J2, and let R - S be the canonical diagonal
ring homomorphism. If I is an ideal of R, then

+ +

Thus every R-module is s-torsion-free. If P is a prime ideal of R, then either

J c P or J: c P and so PS R P. However, if I R(xx + x), then

IS R Rxt + Rx2 k I.

Hence if A R/I and 0a" A A (R) S is the canonical map, then

Ker Oa (IS 3 R )/I : O,

and so A s by Proposition 1.5(1).
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A similar example is obtained if R is an integral domain that is not
integrally closed, and S is its integral closure, then PS N R P for every
prime ideal P of R. But if a/b S R, where a, b R, then a bS R
and a q Rb.

In general if S is a commutative ring extension of R such that IS R I
for every ideal I of R, then every R-module is ts-torsion-free; and every cyclic
R-module is in ars. But it is an open question whether this implies that -s is
equal to the category of all R-modules.

DEFINITION. R is said to be reduced if R has no non-zero nilpotent
elements. If R is reduced and E is the injective envelope of R, then E is a
commutative, von-Neumann regular ring extension of R; and if min R denotes
the minimal prime spectrum of R, then min R is compact if and only if E is
R-flat (see [6, Propositions 1.12 and 1.16]).

PROPOSITION 2.7. There exists a commutative ring extension S ofR such that
Tor(A, B) is ts-torsion for all R-modules A and B and n > 0 if and only ifR is
reduced and min R is compact. In this case E is such an extension.

Proof. Suppose that such a ring S exists. Let A be an S-module and B an
R-module. Then Tort(A, B) is an S-module and hence s-torsion-free by
Proposition 2.3 (1); but it is ts-torsion by assumption and so Tort(A, B) =.0.
Therefore, every S-module is R-flat. Now E is s-torsion-free and hence
E s by Proposition 2.5 (1). Therefore, E is an R-direct summand of an
S-module. Thus E is R-flat.

Let I be an ideal of R; then 1/12 =- Torte(R/I, R/l) is ts-torsion. Hence,
since S is R-fiat, SI/S12 --- S (R) I/I - 0 by Proposition 2.5 (3). Therefore,
$I SI2, and it follows that R is a reduced ring. Since E is R-fiat, min R is
compact.

Conversely, suppose that R is reduced and that min R is compact. Then E
is an R-fiat, commutative, von Neumann regular ring extension of R. Let I
and J be ideals of R. Then

E (R) Torl(R/I, R/J) --- E (R) (I 0 J)/IJ --- E(I J)/(EI)(EJ) O.

Hence Tort(R/I, R/J) is te-torsion by Proposition 2.5 (3). It follows easily
that Torff(A, B) is e-torsion for all R-modules A and B and n > 0.

3. Torsion envelopes

DEFINITION. We shall say that an R-module A is a torsion envelope of R if
A is a commutative ring extension of R such that A/R is t,-torsion.
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Remarks. (1) Let A be a torsion envelope of R and 6a a multiplicatively
closed subset of R. It is easy to see that As, is a torsion envelope of
Furthermore, if I is a proper ideal of R such that IA R I, then AlIA is a
torsion envelope of R/I.

(2) If 5a is a multiplicatively dosed set of non-zero-divisors in R, then
is a torsion envelope of R. Hence if Q is the total ring of quotients of R, then
Q is a torsion envelope of R. It will follow from the next proposition that a
subring of Q containing R is a torsion envelope of R if and only if it is R-fiat.

(3) Let E be the injective envelope of R and V/R te(E/R). We recall
that V is a commutative ring extension of R; and if S is a commutative ring
extension of R and T/R s(S/R), then T is a commutative subring of V
and T/R s(E/R) (see the remarks following Proposition 2.3).

PROPOSITION 3.1. Let A be an R-module such that R A. Then the follow-
ing statements are equivalent:

(1) A is a torsion-envelope of R.
(2) A is an R-flat subring of V.
(3) A is an R-flat commutative ring extension of R and there exists an

R-module B A such that B (R) A/R O.
(4) A is an R-flat ring bijection of R.
(5) A is a flat R-module and A (R) A/R O.
(6) A is an essential extension ofR andfor all x A we have A (R x)A.

Proof (1) =, (2) A is a subring of V by the preceding Remark (3). Since
A/R is tA-torsion, so is Tor(B, A/R) for all R-modules B. Hence A is R-flat
by Corollary 2.6.
(2)=(3) Let xE, yA/R, and I=(0:y). Since y V/R=

te(E/R), we have E= IE; and hence x F,’].taix where x E and
a I. Thus

x (R) y axi (R) y xi (R) aiyi O,
i-1 i-1

and soE(R) A/R=O.
(3) (4) Since A is R-fiat, Tor(B/A, A/R) is ta-torsion by Corollary

2.6. Hence the exact sequence

Tor((B/A, A/R) a (R) A/R B (R) a/R 0

shows that A (R)R A/R is a-torsion. But A (R) A/R is an A-module and
hence is t,-torsion-free by Proposition 2.3(1). Thus A (R) A/R= 0, and so A
is a ring bijeetion of R by Corollary 1.3.

(4) ** (5) This follows from Proposition 1.2 and Corollary 1.3.
(4) =, (1) A (R) A/R 0 by Corollary 1.3 and hence A/R is ta-torsion

by Proposition 2.5(3).
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(1) (6) Since A is a subring of V c E by the preceding Remark (3), A
is an essential extension of R. And A (R: x)A for all x A since A/R is
ta-torsion.

(6) (1) We can assume that A c E, and then A/R c tA(E/R) T/R.
T is a commutative ring extension of R by Proposition 2.2, and A c T. Let
y T and I=(R:y); then IA=A by definition. Hence we have 1=
..laixi where a I and x A. Let r ay; then r R and

Y= E (aiy)xi= E rixi A.
i--1 i=1

Hence A T, and so A is a commutative ring extension of R and thus a
torsion envelope of R.

PROPOSITION 3.2. Let R c T c S be commutative ring extensions of R.
Then the following statements are true:

(1) If S is a torsion envelope of R, then T is a torsion envelope of R if and
only if T is R-flat.

(2) If S is a torsion envelope of T and T is a torsion envelope of R, then S is
also a torsion envelope of R.

(3) If S is a torsion envelope of R, then S is also a torsion envelope of T.

Proof. (1) This follows from Proposition 3.1.
(2) LetxSand J= { a Tlax T}. Then JS S and hence

1= ay
i-1

where a J and yi S.

Since T/R is tr-torsion, there exists an ideal I of R such that IT T and
Ia c R and I(aix) R for all 1,..., n. Let K la + +Ia,; then
K is an ideal of R, Kx R and KS S. Thus S/R is s-torsion, and so S is
a torsion envelope of R.

(3) Let x S and 1 (R" x); then 1S S. Since (T1)x T and S(TI)
S, it follows that S is a torsion envelope of T.
A portion of the next Proposition was also proved by Lazard [3, Proposition

IV, 3.3] in a different form.

COROLLARY 3.3. There exists a unique maximal torsion envelope M of R
contained in V. M contains a unique copy of every torsion envelope of R; and
M itself has no torsion envelopes.

Proof. It is obvious that if S and T are torsion envelopes of R in V, then
ST is also a torsion envelope of R. The proposition now follows from Zom’s
Lemma and Propositions 3.1 and 3.2.
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It is interesting to compare the next Proposition with the equivalence of
statements (1) and (4) in Corollary 1.3.

PROPOSITION 3.4. Let S be a commutative ring extension of R. Then S is a
torsion envelope ofR if and only if HornR(S/R, A) 0 for every ts-torsion-free
R-module A.

Proof. If S is a torsion envelope of R, then S/R is ts-torsion, and the
statement follows immediately. Conversely, suppose that Hom(S/R, A) 0
for every ts-torsion-free R-module A. Let T/R ts(S/R); then S/T is

ts-torsion-free and S/R maps onto S/T. Hence S/T---0, and so S is a
torsion envelope of R.

COROLLARY 3.5. Let S be a commutative ring bijection of R. Then the
following statements are equivalent:

(1) S is a torsion envelope of R.
(2) S is R-fiat.
(3) s is equal to the category of all s-torsion-free R-modules.

Proof. The corollary follows from Propositions 3.1, 2.5, 3.4 and Corollary
1.3.

In the following proposition we collect some facts that we have developed
separately.

PROPOSITION 3.6. Let S be a torsion envelope of R, Then the following
statements are true:

(1) IfA s, then the R-injectioe envelope ofA is S-injectioe.
(2) An R-module has at most one S-structure that extends its R-module

structure.
(3) If A and B are S-modules, then HomR(A, B) Homs(A, B) and

A(R) B=A(R)sB.
(4) An S-module is R-fiat (or R-injective) if and only if it is S-fiat (or

S-injective ).
(5) IrA is an S-module and B is a ts-torsion R-module, then Tor(B, A)

0 Ext (B, A) for all n > O.
(6) If R is Noetherian (or coherent) so is S.

Proof. (1) This follows from Proposition 2.2.
(2) and (3) follow from Proposition 1.4; and since S is R-flat so does (4).
(5) With the assumptions on A and B, Torff(B, A) 0 for all n > 0 for

any commutative ring S. By (4) we can compute Ext,(B, A) by taking an
S-injective resolution X of A. But then HomR(B, X)---0, because B is

ts-torsion and X is ts-torsion-free. Hence Ext,(B, A) 0.
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(6) This follows from (4) and the fact that S is Noetherian if and only if a
direct sum of S-injective modules is S-injective (and S is coherent if and only
if a direct produce of S-flat modules is S-flat).

LEMMA 3.7. Let S be a commutative ring extension ofR and let I be an ideal
ofR such that IS S. Then there exists a prime ideal P ofR such that I P, P
is maximal with respect to the property PS S, and PS (3 R P.

Proof. By Zom’s Lemma there exists an ideal P of R such that I c P and
P is maximal with respect to the property PS S. Since P c PS t3 R and
PS N R has the same properties as P, we have P PS q R. Now suppose
that a, b R, a P and ab P. Then (P + Ra)S S, and multiplying by
b, we see that b PS R P. Hence P is a prime ideal of R.
The following Proposition has also been proved by Lazard [3, Proposition

IV, 2.4].

PROPOSITION 3.8. Let S be a commutative ring extension of R. Then S is a
torsion envelope ofR if and only iffor every prime ideal P ofR either PS S or
S,=Re.

Proof. Assume that S is a torsion envelope of R and that P is a prime
ideal of R such that PS S. Because S is R-flat, PS c R P. Suppose that
S, Re. Now Sa, is a torsion envelope of Re and hence PSi, Se. But then
PS R P; and this contradiction shows that Se Re.

Conversely, assume that for every prime ideal P of R either PS S or
Se Re. Suppose that S is not a torsion envelope of R. Then there exists
x S such that if I (R: x), then 1S S. By Lemma 3.7 there exists a
prime ideal P of R such that I c P and PS S. Hence by assumption
S, Re. It follows that there exists u R- P such that ux R. This
contradiction shows that S is a torsion envelope of R.

COROLLARY 3.9. Let S be a torsion envelope of R; let SpecsR be the set of
all prime ideas P of R such that PS S; and let Spec S be the set of all prime
ideals of S. Then:

(1) There exists a one to one, order preserving correspondence between
SpecsR and Specs given by P PS for P SpecsR and R for
#a Spec S.

(2) If P SpecsR, then S/PS is a subring of Re/PR, that contains R/P.
(3) P is maximal in SpecsR if and only if S/PS= R,/PRe.
(4) SpecsR contains every minimal prime ideal of R.
(5) If P Spec R, then P SpecsR if and only if Se Re.

Proof. (1) Let P SpecsR; then PS R P because S is R-flat. Hence
S/PS is a torsion envelope of R/P. Since Re/PRe is the injective envelope
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of R/P, it follows from Proposition 3.1 that S/PS is a subring of Rv/PRv
that contains R/P. Hence S/PS is an integral domain, and thus PS Spec S.

Let Spec S and P R. Since S/PS is contained in the quotient
field of R/P by the preceding paragraph and (/PS) R/P 0, we have

= PS.
(2) This was proved in part (1).
(3) This follows directly from parts (1) and (2).
(4) Let P be a minimal prime ideal of R. Then every dement of PRv is

nilpotent, and hence P does not contain a faithful, finitely generated ideal of
R. Therefore PS S.

(5) This follows from Proposition 3.8.

We have remarked earlier that if E is the injective envelope of R, then
E= U if and only if the canonical map ke: Homs(E,E)E is an
isomorphism. The next corollary gives necessary and sufficient conditions in
the case where R is a reduced ring for E-- V; i.e., for E to be a torsion
envelope of R.

COROLLARY 3.10. Let R be a reduced ring. Then E is a torsion envelope ofR
if and only if irdn R is compact and Ee Re for every minimal prime ideal P
of R.

Proof. This follows from Proposition 3.8 and the fact that E is R-fiat if
and only if min R is compact, if and only if the only prime ideals P of R such
that PE E are the minimal prime ideals of R (see [6, Proposition 1.6]).

Remarks. (1) Let R be a reduced ring such that the total ring of quotients
Q of R is a von Neumann regular ring. Then E is a torsion envelope of R if
and only if E Q. For if E is a torsion envelope of R, then E is a torsion
envelope of Q by Proposition 3.2(3). In this case, since every prime ideal of Q
is minimal, we would have Ee Qe for every prime ideal P of Q by Corollary
3.10, and hence E Q.

(2) If R is a reduced ring and P is a non-essential prime ideal of R, then
Ee Re by [6, Proposition 3.9]. Now there exists a reduced ring R with an
infinite number of minimal prime ideals and every one of them non-essential
(see [6, Example 3]). Hence in this case Ee Re for every minimal prime
ideal P of R. But min R is not compact [6, Proposition 3.15] and hence by
Corollary 3.10, E is not a torsion envelope of R.

(3) In general if R is any commutative ring, then it follows from Proposi-
tion 2.1 that E is a torsion envelope of R if and only if (R:x) contains a
faithful finitely generated ideal of R for every x E.

DEFINITION. R is said to be a semi-regular ring if every R-module is a
submodule of a flat R-module. If R is a reduced ring, then it is semi-regular if
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and only if it is von-Neumarm regular; and if R is Noetherian then it is
semi-regular if and only if it is quasi-Frobenius (see [7, Propositions 2.7 and
3.4]). The next proposition generalizes the preceding Remark (1).

PROPOSITION 3.11. Assume that the total ring of quotients Q of R is a
semi-regular ring. Then Q is the unique maximal torsion envelope ofR. Moreover
an R-module is to-torsion-free if and only if it is an R-submodule of a flat
R-module.

Proof. Let M be the unique maximal torsion envelope of R. Then Q c M
and M is the unique maximal torsion envelope of Q. Thus without loss of
generality we can assume that R Q. Then M/R is contained in a fiat
R-module; and every flat R-module is an R-submodule of an M-module.
Hence M/R is both tin-torsion and tin-torsion-free, and thus M R. The last
statement of the Proposition follows from Proposition 2.5(1).

DEFINITION. Let I be a faithful ideal of R and define I * ( x ElIx c
R }. As in the case of an integral domain we have I * -= HornR(I, R). We then
define S On(In) *. By analogy with the integral domain case we call S the
ideal transform of I. If I contains a faithful, finitely generated ideal of R, then
I is a projective ideal of R if and only if H* R in which case I itself is
finitely generated. For such an ideal we also have S IS, and S is R-flat.
Akiba [0] has given an example of an integral domain R and a non-projec-

tive prime ideal P of R such that if S is the ideal transform of P, then PS S
and S is R-flat.

PROPOSITION 3.12. Let I be a faithful ideal ofR and S the ideal transform of
I. Then:

(1) S is a commutative subring of U that contains R.
(2) If I contains a faithful, finitely generated ideal of R, then S is a torsion

envelope of R if and only if S is R-fiat.
(3) If S IS, then I contains a faithfulfinitely generated ideal ofR and S is

a torsion envelope of R. In this case Spec S is equal to the set of all ideals PS
such that P is a prime ideal of R that does not contain I.

Proof. (1) It is clear that S is an R-submodule of U. If x and y are in S,
then their product in U is again in S, and hence S is a subring of U that
contains R.

(2) If I contains a faithful, finitely generated ideal of R, then S c V; and
the proposition now follows from Proposition 3.1.

(3) Assume that S IS: then dearly I contains a faithful, finitely gener-
ated ideal of R. Moreover, since InS S for all n > 0, S/R is a s-torsion
R-module; i.e., S is a torsion envelope of R.
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By Corollary 3.9 Spec S is equal to the set of all ideals of the form PS,
where P is a prime ideal of R such that PS S. Now if PS S, then I P
because 1S S. On the other hand if P is a prime ideal of R such that
PS S, then 1 F.ki_lPiXi, where pi P and x S for 1,..., k. Now
there exists an integer n > 0 such that l"x c R for all 1,..., k. Thus
I" c P and so I c P. Thus Spec S is equal to the set of all ideals PS where P
is a prime ideal of R such that I P.
The following example shows that the ideal transform S of an ideal I of R

is not necessarily a torsion envelope of R, even when I is a faithful, projective
ideal of R and S is R-fiat.

Example. Let k be a field, K a countably infinite direct product of copies
of k, and let R be the set of sequences in K that are constant except for a
finite number of coordinates. Let e, be the dement of R that is 0 everywhere
except for the nth-coordinate where it is equal to 1. Let J E, + Re,; then J
is a faithful projective ideal of R. Now K is the injective envelope of R and
J* K. Thus K is the ideal transform of J. Since R is avon Neumann
regular ring, it has no proper torsion envelopes by Proposition 3.11. Thus K is
R-fiat, but is not a torsion envelope of R.
We note that if R is a Noetherian local domain of Krull dimension one with

quotient field Q, and if ! is any non-zero ideal of R, then the ideal transform
of 1 is Q, Q is flat, and of course 1Q Q.

4. Semi-Krull domains

Throughout this section R will be an integral domain with quotient field Q.
A subring of Q that contains R is called an over-ring of R. It follows from
Proposition 3.1 that a commutative ring is a torsion envelope of R if and only
if it is a fiat over-ring of R. Richman has proved part of this result by a
different technique [8, Theorem 1]. He has also proved Proposition 4.1
[8, Corollary to Theorem 2], but we shall append a proof using our results for
the sake of completeness.

PROPOSITION 4.1. Let S be a commutatioe ring extension of R and let be
the set ofprime ideals P ofR such that PS S. Then S is a fiat ooer-ring ofR if
and only if S fiRe(P c).

Proof. If S f’lRv(P c), then Sv Rv for all P ’. Hence S is a
flat over-ring of R by Proposition 3.8. Conversely, assume that S is a fiat
over-ring of R. If P , then Sv Rv by Proposition 3.8 and hence

s c C , v(P

On the other hand let x f’IRv(P ) and J (R: x). If JS k S, then by
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Lemma 3.7 there exists P ’ such that J c P. But since x Re, we have
J g: P. This contradiction shows that JS S, and so x + R s(Q/R). But
ts(Q/R) S/R by Proposition 2.3(3), and hence x S. Thus

s nR (P

Remarks. We note that if P1,---, Pn is a finite set of height 1 prime ideals
of R and ’= R -U’-IPi, then Ra- f3’_tRe, by Proposition 4.1.

DEFINITION. Let ’ be a non-empty set of prime ideals of R and let

Jr= {IcRllCPforanyP ).

Then Je is a torsion family of ideals of R and we denote its associated
torsion funetor by te. Let S fqRe(P ), let ds { 1 R IIS S )_, and
let be the set of prime ideals P of R such that S c Re. We call the
closure of ’. With this notation we have the following:

PROPOSITION 4.2. (1) t(Q/R) S/R, S f’IRe(P ’); and ds c dt
c .’,.

(2) S is a flat ooer-ring of R if and only if s .
Proof. (1) Let T/R t,(Q/R). Let x S and P ; then (R’x)

_
P

and so (R" x) ’e. This S T. On the other hand let x T and P ’.
Since (R’x) dry, we have (R’x) P and so x Re. Therefore, x S
and so S T.

It is obvious that S f’lRe(P ) and that ’. Hence e. Let
I ’s and P c. Then Se Re; and since S 1S we have 1Re Re.
Therefore, I P and so I . Thus rs .

(2) Assume that S is a flat over-ring of R and let I r. Suppose that
I s; i.e., IS 4: S. Then by Lemma 3.7 there exists a prime ideal P of R
such that 1 P and PS S. By Proposition 3.8 Se Re and so P . But
then ! P by the definition of r. This contradiction proves that I ’s.
Hence s .

Conversely, assume that Js J; then ts t. Since S f’IRe(P )
we have by part (1) that t(Q/R) S/R. Therefore S/R is ts-torsion; i.e., S
is a torsion envelope of R; i.e., S is a fiat over-ring of R.
We remark that ’ not only contains every prime ideal of R that is

contained in some dement of ’, but may contain other prime ideals as well.

DEFINITION. If J is an ideal of R, we let rad J denote the intersection of
the prime ideals of R that contain J.
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PROPOSITION 4.3. Let R be a Noetherian domain, I a proper, non-zero ideal
of R, S the ideal transform of I, and c the set ofprime ideals of R that do not
contain I. Then:

(1) S fqRe(P c), and so t,(Q/R) S/R.
(2) If tad I is an intersection ofprime ideals of R of height one, then S is a

fiat ooer-ring of R if and only if S IS.

Proof. (1) Let x S and P . There exists t > 0 such that Itx c R.
Since I P, we have x Re; and so

s c fRe(’ ’).

On the other hand let x f’)Re(P ), x R, and let J (R: x). Then
J P for any P , and so every prime ideal of R that contains J also
contains I. Thus I rad J. Since R is Noetherian, there exists > 0 such that
I (7_ (rad j)t C. J. Hence Itx c R, and so x S. Thus

S ClR(P ().

By Proposition 4.2(1) we have te(Q/R) =S/R.
(2) If S IS, then S is a flat over-ring of R by Proposition 3.12(3).

Assume that rad I is an intersection of prime ideals of R of height one, and let
P be one of these prime ideals. Since R is Noetherian and P has height one,
there exist dements a, b R such that (Rb:Ra) P. Let x a/b; then
(R:x) P, and so x P-t I-t c S. If S is a fiat over-ring of R; i.e., a
torsion envelope of R, then PS S. ,Hence (rad I)S S; and since I
contains a power of rad I we have IS S.

DEFINITION. We shall say that R is a semi-Krull domain if:
(1) Every non-zero, proper, principal ideal of R is a finite intersection of

height one primary ideals of R.
(2) Every height one primary ideal of R contains a power of its associated

prime ideal.

LEMMA 4.4. Let R be a semi-Krull domain and a, b non-zero elements of R
such that a q Rb. Let x=a/b Q and J=(R:x). Then J is a finite
intersection of height one primary ideals of R; and some power of rad J is
contained in J.

Proof. We have Rb J1 N rJ,, where J/ is a Pi-pdmary ideal of R
and P is a prime ideal of R of height one. Thus

J (R: x) (Rb: Ra) (Jl: Ra) n Ra).
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Now (J: Ra) is either a Pcprimary ideal of R, or is equal to R. Hence some
power of rad J is contained in J.
The following proposition will provide many examples of semi-Krull do-

mains.

PROPOSITION 4.5. R is a semi-Krull domain if and only if R satisfies the
following three conditions:

(1) If b is a non-zero, non-unit element of R, then the set of height one prime
ideals of R that contain b is finite and not empty.

(2) If P is a height one prime ideal of R, then eoery non-zero ideal of Re
contains a power of PR.

(3) Re R, where P ranges ooer the height one prime ideals of R.

Proof Assume that R is a semi-Krull domain. Let b be a non-zero,
non-unit dement of R. Then Rb J1 N NJn, where J is Pi-pdmary and
Pi is a prime ideal of R of height one. Then Rb contains a power of
P1P2 Pn, and thus P, P2,..., P are the only height one prime ideals of R
that contain b.

Let P be a height one prime ideal of R; then every non-zero, proper,
principal ideal of Re is of the form bRe, where b P. With the notation of
the preceding paragraph we can assume that P Pt, and hence bRe JtRe
contains a power of PRe.

Let x a/b Re, where P ranges over all height one prime ideals of R,
and a, b R. Then (R:x) (Rb: Ra) is not contained in any height one
prime ideal of R. Thus by Lemma 4.4, a Rb; i.e., x R.

Conversely, assume that the three conditions of the proposition are satisfied.
Let P be a height one prime ideal of R and J a P-primary ideal of R. Since
JRe contains a power of PRe, J contains a power of P.

Let b be a non-zero, non-unit dement of R, and let Pt,..., P be the set of
height one prime ideals of R that contain b. Since bRe, is a PRe,-pdmary
ideal of Re,, J bRe, t3 R is a Pcpdmary ideal of R that contains b. If P is
a height one prime ideal of R that is not equal to any of the P’s, then
bRe Re. Since R --Re, where P ranges over all of the height one prime
ideals of R, it follows that Rb Jt J.

Examples of semi-Krull domains. (1) A Knfll domain satisfies the three
conditions of Proposition 4.5.

(2) A Noethedan integrally dosed domain is a Krull domain.
(3) A Noethedan domain with the property that every non-zero principal

ideal is unmixed of height one satisfies the axioms of a semi-Krull domain.
(4) A Cohen-Macaulay Noethedan domain satisfies the property of Exam-

ple (3).

PIOPOSITION 4.6. Let R be a semi-Krull or a Noetherian domain. Let c be
a non-empty set of height one prime ideals ofR and let S CIR,(P c). Then
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S, R for all P c; and
contain any P

Qfor every prime ideal P’ ofR that does not

Proof. If P , then S Re, and so Se Re. Let x be a non-zero
dement of Q; then if R is Noethedan, or if R is a semi-Krull domain by
Lemma 4.4, there are only a finite number of height one prime ideals P of R
such that x Re- Thus we have an exact sequence

0 --, Q/S

_
Q/Re(P c).

P

Let P’ be a prime ideal of R that does not contain any P . We have a
derived exact sequence

0 Q/SI,, ., Q/(Re)e,(P ).
P

Thus to prove that S; Q it is sufficient to prove that (Re)e, Q for every
P . But if P , then R- P’ contains an element of P; and hence
(Re)e, has no non-zero prime ideals. Thus (Re)e, Q.

PROPOSITION 4.7. Let R be a semi-Krull domain, c a non-empty set of
height one prime ideals of R, and S f’lRe(P c). Then the following
statements are equivalent:

(1) S is a flat over-ring of R.
(2) s is equal to the category of s-torsion-free R-modules.
(3) If P is a prime ideal of R such that PS S, then PS R P.
(4) lfP is a height oneprime ideal ofR such that PS S, then PS R P.
In this case c is the set of height one prime ideals P of R such that PS S.

Proof. (1) (2) follows from Proposition 2.5; (2) (3) follows from Pro-
position 2.4; and (3) (4) is trivial. Hence assume that (4) is satisfied. To
prove that S is a flat over-ring of R we shall prove that S/R is ts-torsion. Let
x S, J (R: x); and suppose that JS S. By Lemma 4.4 rad J is a finite
intersection of height one prime ideals of R and some power of rad J is
contained in J. Thus there exists a height one prime ideal P of R such that
J c P and PS S. By assumption we have PS R P.

If P x, then S c Re, and so x Re. But then J P, and this
contradiction shows that P ’. Hence by Proposition 4.6 we have Se Q.
But then PS R # P, and this contradiction shows that JS S. Thus S/R
is ts-torsion; i.e., S is a fiat over-ring of R.
Now assume that S is a flat over-ring of R. If P ’t, then S Re, and so

PS S. On the other hand suppose that P is a height one prime ideal of R
such that PS S. If P t, then Se Q by Proposition 4.6. But since
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PS S we have by Proposition 3.8 that Se
that P . Re. This contradiction shows

PROPOSITION 4.8. Let R be a semi-Krull domain and S a commutative ring
extension of R. Let 1 be the set of height one prime ideals P of R such that
PS =k S. Then S is afiat ooer-ring ofR if and only if S fqRe(P 1)- In this
case S is also a semi-Krull domain.

Proof If S fRe(e 1), then PS N R P for all P 1. Thus S is
a flat over-ring of R by Proposition 4.7. On the other hand assume that S is a
flat over-ring of R. By Proposition 4.1 we have S c Rp(P e). On the
other hand let x fRp(P 1), x R, and let J (R: x). By Lemma 4.4

rad J P c CPn,

where the P’s are height one prime ideals of R; and some power of rad J is
contained in J. Since J P for any P ’t, none of the P’s are in ’. Thus
by definition of ’t, PS S for all 1,..., n. Therefore, JS S and so
x + R is an element of ts(Q/R). But ts(Q/R) S/R by Proposition 2.3(3),
and so x S. Thus S rRe(P ’l).
Assume that S is a flat over-ring of R. They by Corollary 3.9 the set

(PSIP }

is the set of height one prime ideals of S. If P ’, then Sp Re iS a
quasi-local domain of Krull dimension one with maximal ideal PSp PRp.
Thus S, has no proper localization other than Q and so Sps Sp. Therefore

ns,,s(e cR,(P ) s.

Moreover, it follows that every non-zero ideal of Ses Re contains a power
of PRe (PS)Sm.

Let x a/b be a non-zero, non-unit dement of S, where a, b R. Let
Pt,..-, P be the set of height one prime ideals of R that contain Ra. Since
Sa Sx and Ra contains a power of PxP2 P, it follows that the set of
height one prime ideals of S that contain Sx is a subset of PS,..., PS. Thus
all three conditions of Proposition 4.5 are satisfied by S, and so S is a
semi-Krull domain.

PROPOSITION 4.9. Let R be a semi-Krull domain, I a non-zero ideal
ofR, and S the ideal transform ofL Let c be the set ofprime ideals ofR that do
not contain I, and c the set of prime ideals in c of height one. Then S--"
f’)Re(P ), and S Re(P ’t); and t,(Q/R) S/R t,I(Q/R).
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Moreover, if I is a finite intersection of height 1 primary ideals of R, then S is

fiat if and only if S IS.

Proof Let x S and P . There exists > 0 such that Itx R. Since
I P, we have x Re; and so S [’)Re(P ). Since ’t ’ we have

On the other hand let x f’IRe(P ’t), x R, and let J (R:x). Then
J P for any P ’t, and so every height one prime ideal of R that contains
J also contains I. By Lemma 4.4, tad J is a finite intersection of height one
prime ideals of R and there exists > 0 such that (rad j)tc j. Since
I c rad J, we have I C J also. Thus Itx R, and so x S. Thus

s

By Proposition 4.2(1) we have t(Q/R) S/R t(Q/R).
If S IS, then S is a flat over-ring of R by Proposition 3.12(3). Conversely,

assume that S is a flat over-ring of R. Let P’ be a height one prime ideal of R
that contains I. Since S R,(P ’) and P’ ’t, it follows from
Proposition 4.7 that P’S S. If I is a finite intersection of height one primary
ideals of R, then I contains a power of tad I, and so we have S IS.

Remarks. (1) With the notation of Proposition 4.9, we see that if I is not
contained in any height 1 prime ideal of R, then S R.

(2) Let R be a semi-Krull domain and I a non-zero, proper, projective
ideal of R. Then I-t is finitely generated by elements xt,..., x of Q; and
hence

I n (R: xi)
i--1

is a finite intersection of height one primary ideals of R by Lemma 4.4. Let S
be the ideal transform of I; then by Proposition 4.9, S Re, where P
ranges over the height one prime ideals of R that do not contain I; and S is a
flat over-ring of R because S IS.

(3) Let S be a commutative ring extension of a semi-Krull domain R.
Then it follows from Proposition 4.9 that S is the ideal transform of an ideal
that is a finite intersection of height one primary ideals of R if and only if
S f’lRe(P (1), where 61 is a set of height one prime ideals of R whose
complement in Spec R contains only a finite number of height one prime
ideals.
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5. Complemented extensions

Throughout this section R will be an integral domain with quotient field Q.

DEFINITION. Let A and A’ be R-submodules of Q. Then A and A’ are
said to be complementary extensions of R if A A’ R and A + A’ Q;
i.e., if

Q/R =A/R A’/R.

An over-ring S of R is said to be a complemented extension of R if S/R is a
direct summand of Q/R. We recall that SpecsR { P Spec RIPS S }.

If S and T are over-rings of R, we let ST (E’/.xstils S, ti T }. Then
ST is the over-ring of R generated by S and T.

PROPOSITION 5.1. Let A and A’ be complementary extensions of R. Then"
(1) A and A’ are fiat over-rings of R.
(2) Let SpecaR and ’ SpecA,R. Then
Spec R; and c c,= O.
(3) A IqRe(P ) and A’ f’)R,,(P’ ’). Thus A’ is the unique

complement ofA.
(4) If P c, then Ae Re and A’e Q.
(5) If I is a non-zero ideal of R then 1A R I if and only if 1A’ A’.

Proof. Let x A; then x a/b where a, b R. Since A/R is a direct
summand of Q/R, it is a divisible R-module; and hence A bA + R. Thus

xA =aA + xR c A,

and so A is an over-ring of R. Similarly A’ is an over-ring of R. We have the
exact sequence

This sequence shows that A and A’ are flat over-tings of R.
Let P be a non-zero prime ideal of R. Then from the exact sequence (.) we

obtain the exact sequence

0 RpAeAe, --, Q ---,0.

But Re is a quasi-local ring, and hence Q/Re is an indecomposable Re-mod-
ule (see [5, Proposition 1.2]). Thus either A, Re and A, Q, or vice versa.
Statements (2), (3) and (4) now follow from this and Proposition 4.1.

Let I be a non-zero ideal of R; then since A/R is a divisible R-module, we
have A IA + R. Thus A/1A--R/(IA R). Hence from the exact se-
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quence (,) we have

Since any homomorphism from R/I onto itself is an isomorphism, it follows
from this that IA C R I if and only if A’/IA’ O.

PROPOSITION 5.2. Let g and g’ be two sets ofprime ideals of R such that
’L) r,= Spec R. Let S f’)Rp(P ) and S’= Rp,(P’ rg,). Then the

following statements are equivalent"
(1) S and S’ are complementary extensions of R.
(2) r 0 and S and S’ are fiat over-rings of R.
(3) ss,

Proof. Without loss of generality we can assume that -- c and
Since ’ " Spec R, we have S S’ fIRp(P Spec R) R.

(1) (2) This follows from Proposition 5.1.
(2) (3) If SS’ Q, then SS’ has a non-zero prime ideal and we let

P R. We can assume that P ’: and then since P " we have
SA Re. Because S’ is a flat over-ring of R we have PS’ S’ by Proposition
3.8. Therefore, P(SS)’ SS’. But P(SS’) ; and this contradiction shows
that SS Q.

(3) = (1) Let P be a prime ideal of R; then we can assume that P
and hence Sp Re. But then Q Q/, Si,S[ S, and hence

(s + s’)p= s, + s:,= Q.

Since this is true for every prime ideal P of R, we have S + S’ Q; i.e., S
and S’ are complementary extensions of R.

PROPOSITION 5.3. Let I be a non-zero ideal of R, c the set ofprime ideals of
R that do not contain I, c, the set ofprime ideals of R that contain I,

s n ,(P e and = (1 ala I).

Then"
(1)
(2) If rad I Pt N NPn where every Pi is a prime ideal of R of height

one, then Rs, Cl’:_ Re, if and only if eoery Pi is a maximal ideal of R.
(3) S and Rs, are complementary extensions of R if and only if Ss, Q.

Proofi (1) Let x Rso and J (R" x); then there exists a I such that
1 a J. Hence J P’ for any P’ ’ and so x CIRp,(P’ r,). On
the other hand let x f’lRe,(P’ ’) and let J (R" x). Suppose J r3
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; then I + J 4: R. Thus there exists a prime ideal P’ of R such that
I + J c P’. Therefore P’ ’, and so x Rp,. But then J P’, and this
contradiction shows that J t3 4, , and hence x Rg.

(We note that in fact, since R, is a flat over-ring of R, we have Rg f’lRp,
where P ranges over the prime ideals P of R such that PRy 4: R.9,; i.e., the
prime ideals P such that I + P 4= R, and hence this is the set .)

(2) Assume that tad I Pt t3 t3P where every P is a prime ideal of
R of height one. By part (1) we have Rgc FIb’.tRy,,; and by the remark
following Proposition 4.1 we have f’l=lRp, Ra-, where ’= R O’_IP.
Assume that R= Ra-, and that one of the P’s, say P, is not a maximal

ideal of R. Let P be a maximal ideal of R containing P. Then P is not equal
to any of the P’s, and hence P 3 ’4= . Therefore PRr Ra., and so

PR R.9,. Hence there exists a I such that 1 a P. But I c Pt c P;
and this contradiction shows that every P is a maximal ideal of R.

Conversely, assume that every P is a maximal ideal of R. Let u " and
suppose that I + Ru 4: R. Then there exists a prime ideal P such that
I + Ru P. But since I P, P is equal to one of the P’s; and since u P,
P is not equal to any of the P’s. This contradiction shows that I + Ru R.
Hence there exists r R such that ru 5a. Thus 1/u =r/m R. There-
fore Ra-c R, and so Rr Rg.

(3) If S + R= , then clearly S.,= . Conversely, assume that S,= ;
i.e. SRy= Q. Since S f’IRp(P g), and Rg= CIRp,(P’ ’) by part
(1), and gt3 " Spec R, we see that S and Rg are complementary exten-
sions of R by Proposition 5.2.

PROPOSITION 5.4. Let I be an ideal of R, S the ideal transform of I, g the
set ofprime ideals of R that do not contain I; and 5"= (1 a[a I ).

(1) If S IS, then S is a flat over-ring of R and S f’lRp(P g).
(2) If S is a complemented extension of R, then the following statements are

equivalent:
(a) S= IS.
(b) S f’IRp(P ) and S - Rp if I c P.
(c) Ry is the complement of S.

Proof. (1) Assume that S IS. Then S is a flat over-ring of R by
Proposition 3.12(3). Hence by Proposition 4.1, S fIRp(P ), where is
the set of prime ideals of R such that PS 4 S. Let P ; then PS 4: S and
IS S and so I P; i.e., P ’. Conversely, let P ’. Let x S and
J (R: x); then there exists t > 0 such that I C J. Since I P, we have
J P; thus x Re, and so S Re. Therefore, PS 4 S, and so P .
Hence ’ , and so S f’IR,(P ).

(2) (a) =* (b) Follows from part (1).
(b) = (c) Let A’ be the complement of S. Let " be the set of prime

ideals of R that contain I; by Proposition 5.3(1) we have R.9, f3Rp,(P’
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’). Since S Re for P ’, we have A’ f’IR,,(P’ c,) by Proposition
5.1. Thus Rs,= A’.

(c) (a) Since 1R,t R I, we have S 1S by Proposition 5.1.

PROPOSITION 5.5. Let R be a semi-Krull domain and I I i,
where I is a Pi-primary ideal ofR and Pi is a height one prime ideal of R. Let S
be the ideal transform of I and S’ = CI’.1Rp,. Then S S’ R; and if S is a

fiat over-ring of R we have SS’ Q.

Proof. Let x be the set of height one prime ideals of R that do not
contain 1 and let { Pt,..., P }. By Proposition 4.9, S fIRe(P t).
Hence by Proposition 4.5(3), we have S S’ R. By Proposition 4.6, Se, Q;
and if P t, then S# Q. Thus (SS’), Q for every height one prime
ideal P of R.
By the remarks following Proposition 4.1, we have S’ Ra-, wher ’= R

LI’_tPi; and so S’ is a flat over-ring of R. Thus if S is a fiat over-ring of R,
then SS’ is also a flat over-ring of R. In this case, since SS’ Re for any
height one prime ideal P of R, we have SS’ Q by Proposition 4.8.

Remarks. With the preceding notation Proposition 5.5 seems to suggest
that if S is a fiat over-ring of R, then S and S’ are complementary extensions
of R; but there are many examples to show that this is not true in general. For
example let R be a Noethedan regular local ring of Krull dimension > 1. Let
I Rp, where p is a non-zero prime dement of R, and let Sa= { pln > 0}.
Then S Rs, is flat and so is S’ Re. We have SS’ Q and S tq S’ R;
but if q is a non-unit of R Re, then 1/qp S + S’. Thus S + S’ Q and
so S and S’ are not complementary extensions of R. However, if S is a
complemented extension of R, then by Propositions 4.9, 5.1, 5.3 and 5.4, R
is the complement of S, Rs, S’, and every P is a maximal ideal of R. We
shall have an even sharper result in the next Proposition.

PROPOSITION 5.6. Let R be a semi-Krull or a Noetherian domain. Let I be a
non-zero, proper ideal ofR, 5’= {1 a la I ), and S the ideal transform ofL
Then S and Rs, are complementary extensions of R if and only if I is a finite
intersection ofprimary ideals whose associated prime ideals have height one and
are maximal ideals of R. In this case if P is a prime ideal of R, then PS S if
and only if P is one of the associated prime ideals of I.

Proof. Assume that S and Rs, are complementary extensions of R. Let M
be a maximal ideal of R that contains 1, and let P be a non-zero prime ideal
of R contained in M. Since MRs, Rs,, we have PR, 4: Rg also. Thus by
Proposition 5.1(2) we have PS S. Hence 1 F,’f.lpjxj, where pj P and
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x S. Now there exists t > 0 such that Itxj R for all j 1,..., m. Hence
m

j--1

and so I c P.
Now I is contained in at most a finite number of height one prime ideals of

R, and thus M contains only a finite number of height one prime ideals of R.
In either the Noetherian or semi-Krull case M is the union of the height one
prime ideals of R that it contains. Thus M has height one. Therefore, if
Pt,-.-, Pn are the height one prime ideals of R that contain I, then every P is
a maximal ideal of R, and no other prime ideal of R contains I. Thus we have

n

I--- ’ (IRp (3 R),
iffil

and IRp, C3 R is a P-primary ideal of R. Now as we have seen in the
preceding paragraph, PS S for all 1,..., n; and if P is a prime ideal of
R that is not equal to any of the P’s, then S c Rp by either Proposition 4.3 or
4.9, and so PS 4: S.

Conversely, assume that I Ix c3 c3I,, where I is a P-primary ideal of
R and P is a maximal ideal of R of height one. By Proposition 4.3 or 4.9 we
have S C3Rp(P g) where ’ is the set of prime ideals of R that are not
equal to any of the P’s; and by Proposition 5.3(2), Ry= ’..Rp,. Thus
S (3 Rg= R; and it follows from Proposition 4.6 that (Rs,,)p for every
P . Thus to prove that S and R are complementary extensions of R it is
sufficient to prove that Sp, for all 1,..., n.

If R is a semi-Krull domain, then S (Rp(P ’t), where ’t is the set
of height one prime ideals of R that are not equal to any of the P’s, by
Proposition 4.9. Thus in this case Sp, for all 1,..., n by Proposition
4.6. Hence we can assume that R is a Noetherian domain.

Let P be one of the P’s, let x , and let J (r R rx S ). If J P,
then x S,, and hence we can assume that J c P. Since P has height one, P
is an associated prime ideal of J, and so J ----J1 J2 where Jx is P-primary
and J_ is a finite intersection of primary ideals of R whose associated prime
ideals of R are all different from P. Since P is a maximal ideal of height one,
we have Jx + J R. Thus 1 a + a where at Jt and a2 J; and so
x ax + ax. We have Jaxx c S and Jtax S. Since J P, we have
atx S,, and thus it is sufficient to show that ax S. Now there exists
t > 0 such that I C J1, and hence Itax is a finitely generated R-submodule
of S. Thus there exists rn > 0 such that Im(Itax) c R. Therefore, ax S,
and hence x Sp. Thus Sp, for all 1,..., n.

COROLLARY 5.7. Let R be a semi-Krull (or a Noetherian domain); let ’ be
a non-empty set of height one maximal ideals of R; let be the complement of
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’ in Spec R; and let S fir,(P c). Then S is a fiat ooer-ring ofR and S
is a semi-Krull domain (or a Noetherian domain); and ifP is a prime ideal of R,
then PS S if and only if P c,.

Proof. If P , then S, R; on the other hand let P " and let
S(P) fiRe, where P’ ranges over all prime ideals of R different from P.
Then by Proposition 5.6, we have P$(P) $(P). Since S(P) c S, we have
PS S also. Thus S is a flat over-ring of R by Proposition 3.8. If R is a
semi-Krull domain, then S is a semi-Krull domain by Proposition 4.8; and if
R is a Noethedan domain, then S is a Noethedan domain by Proposition 3.6.

Remarks. With the notation of Corollary 5.7, we note that by Corollary 3.9
there is a one to one, order preserving correspondence between Spec S and
given by P --, PS for P . Thus Corollary 5.7 shows that we can remove
any or all of the height one maximal ideals of R and no other prime ideals by
passing to a suitable flat over-ring of R.

DEFINITION.
of A.

If A is an R-module, let E(A) denote the injective envelope

L 5.8. Let R be an integral domain, I I I, where I is a
Prprimary ideal of R and Pi is a non-zero prime ideal of R; and assume that

c O./L Then:
(1) IfP is a prime ideal of R, then P + I q R if and only if there exists one

of the Pi’s such that either Pi c P or P c Pi.
(2) IfR is a Noetherian domain, then every Pi is a height one maximal ideal

of R.
(3) If R is a semi-Krull domain and eoery P has height one, then eoery Pi is

a maximal ideal of R.

Proof. (1) Let 6a= {1 ala I}; then by [5, Proposition 2.3],
inj.dima,l= 1. Since R,/Isoc Q/Is,, we can without loss of generality
assume that R Rs, and that inj.dimsI 1. Thus I is contained in the
Jacobson radical of R, and hence by [4, Corollary 2.5] we have E(R/I) Q/L

Let P be a prime ideal of R and assume that P P for any 1,..., n.
Then there exists b P such that b LI’.P; and we let x 1/b + I Q/L
Now there exists a monomorphism: R/I R/I R/I such that

1 + I (1 + 1,...,1 + I,,).

Since Q/I is an essential extension of R/I, this monomorphism extends to a
monomorphism
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We identify Q/I with its image and we have x (xt,..., x) where x
E(R/I). Then

(bxx,..., b,,.) + + ,,)

and so (0 bx) 1 for all 1,..., n. Since b P it follows that (0 x) 1
also. Thus bl (O" x) f’l’/.l(O" xi) f’l..li I. Therefore I c P; and
since rad I P CP, it follows that there exists P such that P c P.

(2) Assume that R is a Noethefian domain. We follow the argument of
part (1), except that we allow P to be any height one prime ideal of R and b
to be any non-zero dement of P. Then as in (1) we have bi f3’{.x(O" xi) and
x is a non-zero dement of E(R/I). But since R is Noethefian and I is a
P-pfimary ideal of R, (0: x) is also a Pcpfimary ideal of R. Hence there
exists an integer k > 0 such that (Px tP)k c M c P, and thus there
exists a P such that P c P. But since P has height one it follows that P P.
Thus R has only a finite number of height one prime ideals, and so R has
Krull dimension one. Thus every P is a maximal ideal of R of height one.

(3) Assume that R is a semi-Krull domain and that every P has height
one. We follow the proof in part (1) except that we assume that P is a height
one prime ideal of R different from any of the Pi’s and that b is an dement of
P not in any of the P’s. Then as in (1) we have I M c P; and since I
contains a power of Px & t3 P, there exists a P such that P c P. Since P
has height one, we have P P; and this contradiction shows that the P’s are
the only height one prime ideals of R. It follows that R has Krull dimension
one, and so every P is a maximal ideal of R.

COROLLARY 5.9. Let I I I, where I is a Prprimary ideal of R
and Pi is a non-zero prime ideal of R, Let S be the ideal transform of I and
S’ {1 a [a I }. Assume that either R is a Noetherian domain, or that R is
a semi-Krull domain and every Pi has height one. Then E(R/I) c Q/I if and
only if inj.dima,I, 1 and every Pi is a maximal ideal of R of height one. In
this case S and Rso are complementary extensions of R.

Proof. If R is any integral domain then by [5, Proposition 2.3], E(R/I) c
Q/I if and only if inj.dims,Is 1 and Rs, is a complemented extension of
R. Corollary 5.9 now follows immediately from Proposition 5.6 and Lemma
5.8.

DEFINITION. We recall that a Noethefian domain of Krull dimension one
is called a Gorenstein ring if inj.dimR 1.

PROPOSITION 5.10. Let R be a semi-Krull or a Noetherian domain such that
inj.dimIR 1. Then R is a Noetherian Gorenstein ring of Krull dimension one.
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Proof Let b be a non-zero, non-unit element of R. Then Rb It
cI where I is a P-primary ideal of R and P is a prime ideal of R. If

R is a semi-Krull domain then we can assume that every P has height one.
Now inj.dimRb 1, and so Q/Rb is R-injective. Therefore E(R/Rb)
Q/Rb, and so by Corollary 5.9 every P is a maximal ideal of R of height one.
It follows that R has Krull dimension one. Thus for the remainder of the
proof we can assume that R is a semi-Krull domain, and we shall prove that
R is Noetherian.

Let P be a non-zero prime ideal of R and b 0 P. Then with the
preceding notation P is one of the P’s belonging to Rb. Since every I
contains a power of P it follows that there exists a R such that (Rb" Ra)

P. Thus if x a/b + R, then (0"x) P. Thus Q/R contains a copy of
R/P for every non-zero prime ideal P of R. Since Q/R is R-injective, Q/R is
what we have called in [4] a universal injective module for R. Hence it follows
from [4, Theorem 2.1] that pk/pk+t is a finite dimensional vector space over
R/P for every k > 0.
We can assume that the P’s in the decomposition_of Rb are all different,

and thus I + Iy-- R for all j. Thus,_ if we let R-- R/I, _then by the_
Chinese Remainder Theorem we have R R_/Rb =- R R,,. Now R
has only a single p_time_ideal P/I and pk/k+t is a finite dimensional
vector space_over R/P. Moreover, there exists > 0 such that pt= O. It
follows that R is an Artinian, and hence Noetherian, ring. Thus R R/Rb is
a Noetherian ring for every nonzero, non-unit element b of R. Therefore, R is
a Noetherian domain.

COROLLARY 5.11. Let I 11 N In where I is a Pi-primary ideal of R.
Let S be the ideal transform of I and ,9= {1 a la I }. Assume that either R
is a Noetherian domain, or that R is a semi-Krull domain and every Pi has height
one. Then inj.dimRI--I if and only if the following three conditions are
satisfied:

(1) Inj.dimRsIs, 1.
(2) S and Rso are complementary extensions of R.
(3) S is a Noetherian Gorenstein ring of Krull dimension < 1.
In this case the following three conditions are also satisfied:
(4) R has Krull dimension one.

n

(5)

(6) If c1 is any set ofprime ideals of R, c2 Spec R 1, 31 f’)R,(P
c1), and S2 f’)R,(P 2), then S1 and S2 are complementary extensions

ofl.

Proof. If (1), (2) and (3) are satisfied, then inj dimI 1 by [5, Proposi-
tion 2.4]. Conversely, assume that inj diml 1.
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By Corollary 5.9, S and Rso are complemented extensions of R; and every
P is a maximal ideal of R of height one. Thus Rso= I"I=IR/, by Proposition
5.3. By [5, Proposition 2.4] we have inj.dimsS < 1. If inj.dimsS 0, then
S Q and S is certainly a Noetherian Gorenstein ring of Krull dimension 0.
Hence we can assume that inj.dimsS 1. Now S is a flat over-ring of R.
Hence if R is Noetherian, then so is S by Proposition 3.6; and if R is a
semi-Krull domain, so is S by Proposition 4.8. Therefore, by Proposition 5.10,
S is a Noethedan Gorenstein ring of Krull dimension one. If P is a prime
ideal of R different from any of the P,.’s, then height P height PS < 1 by
Corollary 3.9. Thus R has Krull dimension one.

Let Sx and $2 be as described in the statement of this corollary. Then

St N Sz fiRe (P SpecR) R.

By Proposition 4.6, (St)
Thus

Q for all P and (S2)e O for all P t-

(Sx + S2) f’l(S + S2) e (P SpecR) Q;

and so S and $2 are complementary extensions of R.

COROLLARY 5.12. Let R be a Krull domain. Then the following statements
are equioalent:

(1) lnj.dimRR-- 1.
(2) R is a Dedekind ring.
(3) R has Krull dimension one.

Proof The equivalence of (1) and (2) is a consequence of Proposition 5.10;
and the equivalence of (2) and (3) is a fairly obvious and standard result.

6. ’s-Cover ol R-modules

Throughout this section R will be an arbitrary commutative ring and "will be a category of R-modules that is closed under submodules.

DEFINITION. If A and B are R-modules, then the symbol X: A --, B
will mean that X is an R-homomorphism from A to B. A pair (F, ) is said to
be an :-lifiing of B if:

(1) F#" and 0: F B.
(2) If (A, tk) is a pair such that A #" and t: A -, B, then there exists

: A -, F such that ft.
An #’-lifting (F, 0) of B is said to be pure if the only R-submodule P of F

such that P c ker and F/P is P 0.
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PROPOSITION 6.1. An ’-lifting ( F, Ca) of B is pure if and only iff: F F
and f implies that f is one to one.

Proof. Assume that (F, ) is a pure ’-lifting of B and that we have f:
F F and f . Then kerf c ker and F/kerf c F. Thus F/kerf "and so kerf 0. Conversely, assume that (F, ) is an ’-lifting of B such that
if f: F -o " and f , then f is one to one. Let P be an R-submodule of
ker and suppose that F/P ’. Then induces : F/P - B and hence
there exists X: F/PF such that ,=. Let II" FF/P be the
canonical map and f XII. Then f: F F and f , and so kerf 0.
But P c kerf, and so P 0. Hence (F, ) is pure.

DEFINITION. An ’-lifting (F, ) of B is said to be an ::-cover of B if
f: F -, F and f implies that f is an automorphism of F. It is obvious
that if F ’, then (F, 1) is an ’-cover of F. Two ’-liftings (F, ) and
(F2, 2) of B are said to be isomorphic if there exists an isomorphism
,:F -o F2 such that q2, . We will say that (F, q) is a sublifting in
(F2,2) if F c F2 and q 21F; and that it is a direct summand of (F2, 2)
if F is a direct summand of F2 and

PROPOSITION 6.2. (1) Let (F1, ) and (F2, 02) be two :-liftings ofB. Then
(F, thl) is a direct summand of (F2, 02) if and only if F2 F B C, where
C c ker2 and 01 21F1

(2) Let (F, th) be a pure -lifting of B. Then (F, q) has no proper direct
summands. Thus iff: F -o F, Of th, and Im f is a direct summand of F, then
f is an automorphism of F.

(3) If (F, th) is a pure :-lifiing of B and F is R-injective, then (F, th) is an
.W-cover of B.

Proof. (1) Suppose that (Fx, qbx) is a direct summand of (F2, t2). Then
there exists an R-submodule A of F2 .such that F2 F @ A and
By definition there exists ," F2 -o F such that 02- Thus 2, 2- Let

Then it is easily verified that F2 F B C and C c ker 2.
(2) It follows immediately from part (1) that a pure #’-lifting has no

proper direct summands. Suppose that f: F F, Of , and that F1 Im f
is a direct summand of F. If we let [F, then (F, 0) is an #’-lifting of
B and a direct summand of (F, 0). Hence Im f F and so f is onto. Since f
is one to one by Proposition 6.1, f is an automorphism of F.

(3) This follows immediately from part (2) and Proposition 6.1.
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PROPOSITION 6.3. Let (F1, 01) and (F2, 02) be two oar-liftings of B. Then
(1) If (F1, g}l) is pure, then it is isomorphic to a sublifting in (F2, 2).
(2) If ( F1, rkl) is an r-cover of B, then it is isomorphic to a direct summand

o/
(3) If (F1, b) is an ’-cover of B and (F2, 02) is pure, then (F1, bl) is

isomorphic to ( F2, 02).

Proof There exist x: F --, F2 and )t2: F2 --, F such that 02 and
g}lh2 02. Thus (hzhl): F F and 1(2A1)"" . Parts (1) and (2) are
easily deduced from these equations; whereas (3) follows from (2) and
Proposition 6.2(2).

PROPOSITION 6.4. Assume that is closed under essential extensions. Let C
be an injective R-module and (F, gl) a pure -lifting of C. Then F is an injective
R-module; and (F, b) is an ’-cover of C.

Proof. By Proposition 6.2 it is sufficient to prove that F is an injective
R-module. Let G be the injective envelope of F; by assumption G .. Since
C is R-injective, there exists if" G --, C which extends : F --, C. It is obvious
that (G, ) is an. #’-lifting of C.
Now suppose that P c ker and G/P ’. Let P’ P F; then P’ c

ker and F/P’ G/P. Thus F/P’ #’, and since (F, g}) is pure, we have
P’ 0. But G is an essential extension of F, and so P 0. Thus (G, ) is a
pure #’-lifting of C. Hence by Proposition 6.2(3), (G, if) is an #’-cover of C.
Therefore, by Proposition 6.3(3), (G, tk) is isomorphic to (F, ), and hence
G = F. Thus F is an injective R-module (i.e., F G).

DEFINITION. Let B c C be R-modules, and let (G, t) be an #’-lifting of
C. Let F -I(B) and 0:F--} B the restriction of ff to F. Then clearly
(F, gi) is an #’-lifting of B. (F, 0) is called the restriction of (G, ) to B.

Remarks. If C is an essential extension of B, then G is an essential
extension of F. For ker tk c F; and if x G ker p, then there exists r R
such that 0 * r(x) B. Thus 0, rx F, proving that G is an essential
extension of F.

PROPOSITION 6.5. Let C be the R-injectioe envelope of B, (G, ) an -lift-
ing of C, and (F, g,) the restriction of (G, ) to B. Then:

(1) If (F, ) is a pure ’-liting of B, then (G, ) is a pure at-lifting of C.
(2) If G is R-injective, then both (F, ) and (G, ) are ’-cooers if and only

if either one of them is a pure :-lifting.

Proof. (1) Assume that (F, 0) is a pure #’-lifting of B. Let P c ker ff--
ker g} and suppose that G/P $r. Then F/P c G/P, and so F/P :.
Since (F, 0) is pure, P 0; and thus (G, ) is pure.
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(2) Assume that G is an injective R-module. If (F, ) is pure, then (G, k)
is pure by part (1); and hence (G, k) is an ’-cover of C by Proposition 6.2(3).
On the other hand assume that (G, k) is a pure ’-lifting. Then (G, k) is an
’-cover of C by Proposition 6.2(3). We must show that (F, ) is an ’-cover
of B. Let f: F --, F be a map such that f--- q}. Since G is R-injective we can
extend f to g: G --, G. The problem we have to overcome is that we don’t
necessarily have kg k.
We shall prove first that g-t(F) F. Let y g-t(F). Since f , we

have F Im f + ker ; and so g(y) f(x) + z, where x F and z ker ,.
Hence without loss of generality we can assume that g(y)= z. Suppose
y F; then y ker k F, and hence there exists r R such that 0 =# rk(y)

B. But then ry k-t(B) F and so rp(y) ,l,(ry) q,f(ry) /g(ry)
(rz) 0. This contradiction proves that g-t(F) F.

We next define d’: (F +lm g) -, C by (x + g(y)) p(x + y) for all
x F and y G. Now d’ is well-defined; for if x + g(y) 0, then y
g-(F) cF; and hence (x+y) f(x+y)f(x)+f(y)fk(x+
g(y)) 0. Since C is R-injective, we can extend d’ to all of G; and we call the
extension d’ as well. We then have that d’ on F and d’g k.

Since (G, k) is an ’-lifting of C, there exists ?t: G --, G such that kh o.
But then k(hg) d’g k; and since (G, k) is an eover of C it follows that
hg is an automorphism of G. Thus h is onto and g is one to one. Therefore, f
is one to one also, and this proves that (F, ) is a pure ’-lifting of B by
Proposition 6.1.
Now X(F) F; for if x F, then kh(x) d’(x) (x) B, and so

h(x) k-l(B) F. Thus on F we have h q}; and hence 2 is one to one
on F because (F, ) is pure. But since G is an essential extension of F by the
remarks preceding this proposition, it follows that h is one to one on G. Thus
h is an automorphism, and hence so is g h-t(hg). Since g-X(F) F and
g f on F, it follows that f is an automorphism of F. Thus (F, q,) is an
’-cover of B.

PROPOSITION 6.6. Assume that is closed under direct fimits, and let
(F, ep) be an ’-lifting of B. Then (F, ep) contains a direct summand that is an
-cover of B.

Proof. Let (P.} be a linearly ordered family of R-submodules of ker
such that F/P, o: for all a. Let P U.P; then P ker and F/P

LimF/P. o. Thus by Zom’s Lemma we can assume that P is maximal

with respect to these properties. We let _: F/P ---} B be the map induced hy
q}; then it is fairly obvious that (F/P, ei,) is a pure ’-lifting of B. It now
follows from Proposition 6.3(2) that we can assume without loss of generality
that (F, ) is a pure ’-lifting of B. We shall prove that (F, ) is an ’-cover
of B.
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Let f: F F be a map such that f . Then f is one-to-one and we
shall prove that it is onto. Let be a non-limit ordinal such that card F <
card 8. For each a < , let F F. We shall define by transfinite induction
ff: F --. Fa for all a < fl < 8 such that the following four properties are
satisfied:

(1) If a < y < fl < , then fff ff;
(2) ff
(3)
(4)
We assume that f has been defined for all a < -/</3 to satisfy these four

properties, and we shall define ff: F F to satisfy them. If fl is not a limit
ordinal then we can define ff ff-i for an a # I and fh 1. Then it
is easy to verify that the four properties are satisfied. Hence assume that fl is a
limit ordinal. Since the maps { fv } for a < y < fl are a directed family we can
use them to form L--- LimFa. Then by the properties of direct limits there

exists ja" F, L such that j Jvf for all a < y < fl; and since f
there exists k: L B such that kj . Since L " by assumption, there
exists h: L F such that X k. We now define ff: F
for a < fl and ffl 1,. Then it is easily verified that f-satisfies the four
listed properties.
By transfinite induction we have defined f: F F for all a < to

satisfy the four properties. Since f , and (F, ) is pure, f is one to one
by Proposition 6.1. If a </, we have f--f+if; and so Imf c Im f+l.
Since card F < card/, there exists a < such that Im f Im f+. Thus if
x F, there exists y F such that

f+(x) f(y) f+x(f(Y)).

But f+x is one to one, and hence x f(y). Therefore, f is onto, and so
(F, ) is an ’-cover of B.

Remarks. The proof of Proposition 6.6 was modeled closely after the proof
of Lemma 2.3 in [2].

DEFINITION. Let S be a commutative ring extension of R, B an R-mod-
ule, and C the R-injective envelope of B. For the remainder of this section we
shall let

k: Hom(S, C) C

denote the canonical map defined by k(f)= f(1) for all f Horns(S, C).
We shall let (F, ) denote the restriction of (Horns(S, C), k) to B. Thus

F { f Horns(S, C)[f(R) c B }.



PROPOSITION 6.7. Let S be a commutative ring extension of R. Then:
(1) Every R-module B has an :s-cover.
(2) If C is the R-injectioe envelope of B, then (Homs(S, C), ) is an

’s-lifting of C; and (F, rk), the restriction of (Hom(S, C), ) to B, is an
’s-lifting of B. Thus the s-cooer of B is a direct summand of (F,

Proof. We shall first prove that (HomR(S, C), ) is an #’s-lifting of C.
Hence suppose that A s and f: A C. Let 0: A--,A(R)S be the
canonical map. Then 0a is one to one by Proposition 1.5; and so, since C is
R-injective, there exists g: A (R)R S --, C such that g0, f. Define h: A ---,

Horns(S, C) by h(x)(s) g(x (R) s) for all x A and s S. Then dearly
h f, and so (Horn(S, C), ) is an ’s-lifting of C. It follows immediately

that the restriction (F, ) is an ’s-lifting of B.
Now s is closed under direct limits by Proposition 1.5. Hence by

Proposition 6.6, (F, ) contains a direct summand that is an #’s-cover of B.

DEFINITION. Let S be a commutative ring extension of R and B an
R-module. The s-cover of B that exists by Proposition 6.7 is unique up to
isomorphism by Proposition 6.3(3); and we shall denote it by (s(B), s).

PROPOSITION 6.8. Let S be a commutative ring extension of R. Then the
following statements are equivalent:

(1) :s is equal to the category of all ts-torsion-free R-modules.
(2) s(C) is an injectioe R-module for every injective R-module C.

Proof. (1)= (2) s is dosed under essential extensions by Proposition
2.4. Hence s(C) is R-injective for every injective R-module C by Proposi-
tion 6.4.

(2) = (1) Let B s and let C be the R-injective envelope of B. By
Proposition 2.4 it is sufficient to prove that C s. By assumption s(C) is
R-injective. Let (F, ) be the restriction of (s(C),) to B. Then by
Proposition 6.5(2), (F, ) is an s-Cover of B. But (B, ls) is an #’s-cover of
B, and hence (B, ls) is isomorphic to (F, ) by Proposition 6.3(3). Therefore
ker Csc ker 0, and so Osc is one to one. Since an #’s-lifting map is always
onto, Csc is an isomorphism. Therefore, C ---s(C) s.

Remarks. The equivalence of Proposition 6.8 is not too surprising in the
sense that the condition that s is equal to the cateogry of s-torsion-free
R-modules is a generalization of the condition that S is flat; and S is fiat if
and only if Homg(S, C) is R-injective for every injective R-module C. Since
:s(C) Hom(S, C), this raises the question of when the two are equal.
More light will be shed on this in the next proposition and its corollary. The
next proposition also generalizes Banaschewski’s results for torsion-free covers
over an integral domain [1, Proposition I and its corollary].



COMMUTATIVE RING EXTENSIONS 415

PROPOSITION 6.9. Let S be a commutatitioe ring extension of R, B an
R-module, and C the R-injectioe envelope of B. Let (F, th) be the restriction of
(Homn(S, C), ) to B. Then the following statements are equivalent:

(1) S is a torsion envelope of R.
(2) ( F, ) is an :s-cooer of B for every R-module B.

Proof. (1) (2) By Proposition 3.1, S is R-flat; and so HomR(S, C) is
R-injective. Thus by Propositions 6.5(2) and 6.7 it is sufficient to prove that
(HomR(S, C), tk) is pure, for then (F, ) will be an #’s-COVer of B. Hence
suppose that 0 = P c ker , and let 0 4= f P. Then there exists s S such
that f(s) O. Since Homn(S, C) is an S-module, g sf is also an element of
Homn(S, C). We have (g) (if)0) f(s) # O, and thus g ker .
Therefore, g + P is a non-zero element of Homn(S, C)/P.

Let I (R:s); then I os because S is a torsion envelope of R. Now

and so g + P is a ts-torsion dement of Homs(S, C)/P. Therefore, since
every dement of s is ts-torsion-free by Proposition 2.3(1), we have

HomR(S, C)/P . s.
Thus (Homs(S, C), if) is pure.

(2) = (1) Suppose that S is not a torsion envelope of R. Then there exists
s S such that if I (R:s), then S 1S. Let B S/IS and let C be the
R-injective envelope of B. Let x s + R in S/R; then (0"x) I, and so
there exists f: S/R --, C such that fix) 1 + IS. Thus Hom(S/R, C) O.

Let (F, ) be the restriction of (Horns(S, C), ) to B. By assumption (F, )
is an #’s-cover of B. But B is an S-module and so (B, 1s) is an #’s-Cover of B.
Thus (F, ) is isomorphic to (B, ls) by Proposition 6.3(3). Hence ker 0.
But ker ker tk -= Hom(S/R, C) O. This contradiction proves that S is
a torsion envelope of R.

COROLLARY 6.10. Let S be a commutative ring extension of R and assume
that s is equal to the category of all s-torsion-free R-modules. Then the
following statements are equivalent:

(1) S is a torsion envelope of R.
(2) (Horns(S, C), ) is an s-cover of C for every injective R-module C.

Proof. That (1) = (2) follows from Proposition 6.9. Hence assume (2). Let
B be an R-module. C the R-injective envelope of B, and (F, ) the restriction
of (Hom(S, C), if) to B. By Proposition 6.8, Hom(S, C) is an injective
R-module. Hence (F, 0) is an #’s-Cover of B by Proposition 6.5(2). Thus S is
a torsion envelope of R by Proposition 6.9.



416 EBEN MATLIS

DEFINITION. Let ’0 be the class of all R-modules that are submodules of
flat R-modules. Then ’0 is closed under direct limits. Hence by Proposition
6.6 any ’o-lifting of an R-module B contains a direct summand that is an
’o-Cover of B. It would be interesting to know which rings have the property
that every one of its modules has an ’0-cover. The next Proposition will
provide some examples. We note first that if S is any commutative ring
extension of R, then ’0 c s.

PROPOSITION 6.11. Let S be a commutative ring extension of R and assume
that S is R-fiat and is a semi-regular ring. Then o s, and hence every
R-module has an o-cooer. Moreover, if C is an injectioe R-module, then the
o-cooer of C is a fiat, injective R-module.

Proof. Since S is semi-regular, every S-module is an S-submodule of a fiat
S-module. Since S is R-fiat, every fiat S-module is a fiat R-module. Thus
s c ’0; and ’0 c s for any commutative ring extension S. Let C be an
injective R-module. Then s(C) is a direct summand of HomR(S, C) by
Proposition 6.7. HomR(S, C) is an injective S-module, and hence is a direct
summand of a fiat S-module. Thus Horns(S, C) is R-fiat; and it is R-injective
since S is R-fiat.

Examples. Next we exhibit two general types of rings that have the
property that every one its modules has an ’0-cover.

(1) Let R be a reduced ring such that min R is compact. Then E, the
injective envelope of R, is a flat, von-Neumann regular, commutative ring
extension of R, and hence Proposition 6.11 applies.

(2) Let R be a Noetherian Gorenstein ring. Then Q, the total ring of
quotients of R, is a flat, quasi-Frobenius, commutative ring extension of R.
Hence Q is semi-regular and Proposition 6.11 applies.

PROPOSITION 6.12. Let R be a Noetherian ring and S a commutative ring
extension of R such that S/R has finite length. Then every finitely generated
R-module has a finitely generated rs-cooer.

Proof. Let B be a finitely generated R-module and let C be the R-injective
envelope of B. Now (s(B), s) is contained in (HomR(S, C), k) by Proposi-
tion 6.7. Thus

Ker qbs c ker k =- Hom(S/R, C).

But HomR(S/R, C) has finite length since both S/R and the socle of C have
finite length. Thus kers has finite length. There exists a finitely generated
R-submodule A of s(B) such that s(B) A + ker s. Hence s(B) is a
finitely generated R-module.
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Remarks. With the notation of Proposition 6.12 we observe that if socle
B 0, then B s. For in that case Horns(S/R, C) 0, and hence ker

0. Since Cs is onto, we have B ---s(B) s.
DEFINITION. Let S be a commutative ring extension of R. An R-module

B will be said to be S-cotorsion if HomR(S, B) 0 and Ext,(S, B) 0. B
will be said to have S-bounded order if (0:B) s (i.e., S (0: B)S).
Clearly if B has S-bounded order, then it is S-cotorsion. Thus if I s (i.e.,
IS S), then R/I is S-cotorsion.

PROPOSITION 6.13.
R-module. Let C
HornR(S/R, C/B).

Let S be a torsion envelope of R and B an S-cotorsion
be the injectioe envelope of B. Then s(B)

Proof. Let (F, ) be the restriction of (Hom(S, C), ) to B. Then by
Proposition 6.9, F #’s(B). We have a natural injection

0 Hom (S/R, C/B) Hom (S, C/B),

and since B is S-cotorsion, the natural map 1" Hom(S, C) --, HomR(S, C/B)
is an isomorphism. Hence if we let v -e, then v: Horns(S/R, C/B) --,.
Hom(S, C) is one to one. It is easy to verify that

Im v ( f Hom(S, C)lf(1) B ) F.

COROLLARY 6.14. Let S be a torsion envelope of R; and suppose that I is an
ideal ofR such that IS S, and Eli is the injective envelope of R/I, where E is
the injective envelope of R. Then s(R/I) -- Hom(S/R, S/R).

Proof. Let B R/I and C E/I; then C/B = E/R. Thus

s(R/I) =Homg(S/R, E/R)

by Proposition 6.13. Since S/R is ts-torsion by assumption, E/S is ts-tor-
sion-free by Proposition 2.3. Thus Hom(S/R, E/S) 0, and so

Homa(S/R, E/R) -- HomR( S/R, S/R).
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