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Introduction

Throughout this paper R will be a commutative ring with one, and all
R-modules will be unitary. Our purpose is to study commutative ring exten-
sions S of R. As a key tool in our investigation we introduce a torsion functor
tg on R-modules which is determined by the set of all ideals I of R such that
IS = S. If R is an integral domain with quotient field Q, then ¢, is the
classical torsion functor. We also introduce the category % of all R-modules
that are R-submodules of S-modules. Again if R is an integral domain, then
F, is the category of classical torsion-free R-modules.

In §1 we show that if an R-module satisfies certain conditions, then it is in
fact a commutative ring extension of R. We also derive some of the properties
of the category %; in particular, that it is closed under direct limits.

In §2 we discuss faithful torsion functors on R-modules in general, and
apply these results to the special case of the torsion functor z5. We let E
denote the injective envelope of R, % the set of all faithful ideals of R, ¢y the
torsion functor determined by %, and U/R the ty-torsion submodule of E/R.
Using the results of §1 we show that U is a commutative ring extension of R
contained in E; and if ¢ is any faithful torsion functor and #(E/R) = T/R,
then 7 is a commutative subring of U.

If # is the set of all ideals of R that contain a faithful, finitely generated
ideal of R, then £ is equal to the set of all ideals I of R such that IE = E.
We denote the associated torsion functor of # by #; and if tz(E/R) = V/R,
then V is a commutative subring of U containing R.

Let S be a commutative ring extension of R, and T/R = tg(S/R); then T
is a subring of S and is isomorphic to a unique subring of V' that we identify
with T. We find that %; is equal to the category of all tg-torsion-free
R-modules if and only if & is closed under essential extensions, a property
somewhat weaker than S being flat. We prove that S is flat if and only if
Tor}(B, S/R) is tgtorsion for all R-modules B.
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COMMUTATIVE RING EXTENSIONS 375

In §3 we define a commutative ring extension S of R to be a torsion
envelope of R if S/R is tg-torsion. In this case S is isomorphic to a unique
subring of V and t;(E/R) = S/R. We prove that S is a torsion envelope of
R if and only if S is isomorphic to a flat subring of V. We also prove that S is
a torsion envelope of R if and only if S is a flat ring bijection of R, a type of
ring that has been studied by Lazard [3]. We establish many of the important
properties of torsion envelopes, some of which have already been noted by
Lazard [3]. We show that there is a unique maximal torsion envelope of R
contained in V' that contains a copy of every other torsion envelope of R. We
also show that S is a torsion envelope of R if and only if either PS = S or
Sp = R for every P € SpecR.

In §4 we study integral domains R and their over-rings (i.e., the subrings of
the quotient field Q of R that contain R) from the vantage point of the theory
we have developed. By the results of §3, S is a torsion envelope of R if and
only if S is isomorphic to a flat over-ring of R. We show that S is a flat
over-ring of R if and only if S = NR, (P € SpecR and PS # ). Part of
these two results were shown by Richman [8] using different methods and
terminology. More generally we let ¥ be any set of prime ideals of R and
study the properties of S = NR, (P € ¥).

We define R to be a semi-Krull domain if every non-zero, principal ideal of
R is a finite intersection of height one primary ideals of R, and every height
one primary ideal of R contains a power of its associated prime ideal. In this
case R=NR, (P € SpecR and height P = 1). Semi-Krull domains are
simultaneously generalizations of Krull domains and Noetherian, Cohen-
Macaulay domains. We characterize the flat over-rings of semi-Krull domains
and prove that they are also semi-Krull domains.

If R is a semi-Krull domain, I a non-zero ideal of R, and S the ideal
transform of I, then § = NR, (P € ¥,) where ¥, is the set of all height one
prime ideals of R that do not contain I. A more general result holds for
Noetherian domains. If I is a finite intersection of height one primary ideals of
R, then S is flat if and only if S = IS, a generalization of the case of
projective ideals of R.

In §5, R is again an integral domain and we say that an over-ring S of R is
a complemented extension of R if S/R is a direct summand of Q/R. Of
course S is then a flat over-ring of R. If R is a semi-Krull or Noetherian
domain, I a non-zero ideal of R, S the ideal transform of I, and &= {1 —
ala € 1}, then S and R, are complementary extensions of R if and only if 1
is a finite intersection of height one primary ideals of R whose associated
prime ideals are maximal ideals of R. This result enables us to show that if R
is a semi-Krull or Noetherian domain, ¥’ a non-empty set of height one
maximal ideals of R, and ¥ = SpecR — ¥/, then S = NR, (P € ¥) is a flat
over-ring of R. In this case § is also semi-Krull or Noetherian; and if
P € Spec R, then PS = S if and only if P € €’. We apply these results to the
case where I is a finite intersection of height one primary ideals of R and
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show that if E(R/I) c Q/I, then every associated prime ideal of I is a
maximal ideal of R. This leads us finally to the corollary that if R is a
semi-Krull domain such that inj.dimzR = 1, then R is a Noetherian, Goren-
stein domain of Krull dimension one.

In §6 we turn again to the situation where R is an arbitrary commutative
ring. We let & denote a category of R-modules that is closed under sub-mod-
ules. We define a pair (F, ¢) to be an #-lifting of an R-module B if F € #,
¢: F — B, and every other such pair can be factored through (F, ¢). An
F-lifting (F, ¢) of B is called an F-cover of B if f: F— F and ¢f=¢
implies that f is an automorphism of F. #-covers, if they exist are unique.
Following a proof of Enochs [2] concerning flat covers we show that if & is
closed under direct limits, then every #-lifting contains a direct summand that
is an F-cover.

Let S be a commutative ring extension of R, B an R-module, C the
injective envelope of B, and y: Homg(S,C) = C the map defined by
Y(f) =f(1). We let F =y }(B) and ¢ = y|F; then (F, ¢) is an Flifting of
B. Thus, since % is closed under direct limits, (F, ¢) contains a direct
summand that is an F-cover of B. We prove that S is a torsion envelope of R
if and only if (F, ¢) is the Frcover of B for every R-module B. This
generalizes a result of Banaschewski for torsion-free covers over integral
domains [1]. We also show that & is equal to the category of all ¢-torsion
free R-modules if and only if the F-cover of an injective R-module is
R-injective.

1. Some general properties of commutative ring extensions

DEFINITION. Let 4 be an R-module such that R € 4, and define the
canonical map

v,: Homg(4,4) » 4

by ¥,(f) = f(1) for all f & Hom (4, 4).

PROPOSITION 1.1. v, is an R-isomorphism if and only if A is a commutative
ring extension of R such that Hom p(A/R, A) = 0. In this case there is only one
ring structure on A that is compatible with its R-module structure.

Proof. Suppose that {, is an R-isomorphism. Then Homz(A/R, 4) =
kery, = 0. Let f € Homg(4, 4) and let x = f(1). If y € A, then there exists
a unique g € Homg(4, A) such that g(1) =y. We can then define A,:
A > A by A (y)=g(x). Now A, is in the centre of Homg(4, 4). For if
h € Homg(4, 4), then (h°g)(1) = h(g(1)) = h(y); and hence A (h(y)) =
(hog)(x) = h(g(x)) = h(A ().
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Now if e is the identity map on A4, then ¢ ,(A,) = A, (1) = e(x) = x = f(1)
= ¢ ,(f). Hence A , = f, and so Hom (4, A) is a commutative ring extension
of R with composition of functions as multiplication. Thus we can use ¥, to
make A4 into a commutative ring extension of R.

On the other hand suppose that A4 is a commutative ring extension of R
such that Hom z(A4/R, A) = 0. Then ker Y, = 0 and hence v, is one-to-one.
If x € A and f is multiplication by x on A, then y ,(f) = x, and so ¢, is
onto. Since Hom z(A4 /R, A) = 0, it is easy to see that there is only one ring
structure on A that is compatible with its R-module structure.

DEFINITION. Let A4 be an R-module such that R € 4 and define the
canonical map

8, A>A®zA
by d,(x)=x® 1.

PROPOSITION 1.2. 8, is an R-isomorphism if and only if A is a commutative
ring extension of R such that A ® A/R = 0. In this case ¢, is also an
R-isomorphism.

Proof. Suppose that §, is an R-isomorphism. Then
A® A/R = Cokerd, = 0.

Let x € 4 and define &,: 4 > Aby &,.(y) =87 (x ® y) for all y € A. Then
&, is an R-homomorphism, and we can define an R-homomorphism

&, A —> Hompg(4, A)

by &,(x) =&, for all x € A. It follows immediately that ¢ o0&, is the
identity map on A4, and thus ¢, is onto and &, is one-to-one.

Now Hom z(4/R, Hom (A4, A)) = Homz(A4 ® A/R, A) = 0; and hence
if g € Homy (A4/R, A), then &,° g = 0, and so g = 0. Thus ker y , = Hom
(A/R, A) = 0; and ¢, is an isomorphism. Therefore, 4 is a commutative
ring extension of R by Proposition 1.1.

On the other hand suppose that 4 is a commutative ring extension of R
such that 4 ®; A/R = 0. Then cokerd, =4 ®; A/R=0, and so §, is
onto. Now there exists an R-homomorphism 7n,: 4 ® ; A = A defined by
n4(x ® y) = xy for all x, y € 4; and it is clear that 5, §, is the identity on
A. Thus §, is one-to-one, and so 8, is an isomorphism.

Remarks. Propositions 1.1 and 1.2 are not dual to each other for there are
many examples of commutative ring extensions S of R such that yg is an
isomorphism but §g is not. For example let R be an integral domain with
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quotient field Q, and let S be a subring of Q properly between R and Q.
Then Y is an isomorphism by Proposition 1.1. However, if g is an isomor-
phism, then S ®; S/R = 0 by Proposition 1.2; and this is not true if S is a
finitely generated R-module.

DEFINITION. Let S be a commutative ring extension of R. Then § is said
to be a ring bijection of R if the inclusion map: R — § is an epimorphism in
the category of rings. The following Corollary 1.3 is well known and follows
immediately from Propositions 1.1 and 1.2.

COROLLARY 1.3. Let S be a commutative ring extension of R. Then the
following statements are equivalent:

(1) S is a ring bijection of R.

(2) The map &5: S = S ®y S is an R-isomorphism.

3 Sop S/R=0.

(4) Homg(S/R, B) = 0 for every S-module B.

PROPOSITION 1.4. Let S be a commutative ring bijection of R. Then the
following statements are true:

(1) An R-module B has at most one S-module structure compatible with its
R-module structure.

(2) If A and B are S-modules, then Hom p(A, B) = Homg(A, B) and
A®y B=A®B.

(3) If an S-module is R-flat (or R-injective), then it is S-flat or S-injective.

Proof. (1) follows easily from the fact that Hom 4(S/R, B) = 0 for every
S-module B; (2) follows from (1); and (3) follows from (2).

DEFINITION. Let S be a commutative ring extension of R. Define % to
be the category of all R-modules that are R-submodules of S-modules. For
each R-module 4 define 6,: 4 - 4 ®; S by 6,(x) =x ® 1 for all x € 4.

PROPOSITION 1.5. (1) Let A be an R-module. Then A is in % if and only
if 8, is one-to-one.
(2) % is closed under R-submodules, inverse limits, and direct limits.

Proof. (1) Of course if 8, is one-to-one, then A is in % Conversely,
suppose that A4 is an R-submodule of an S-module B. Then we have a
commutative diagram:
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Hence it is sufficient to prove that 6, is one-to-one. But if we define
Ap: B®;S—> B

by Ag(b ®; s) = sb forall s € S and b € B, then Ao 0, is the identity map
on B, and hence 6 is one-to-one.

(2) Itis obvious that % is closed under R-submodules and inverse limits.
Let {A,} be a directed family of R-modules that are in %, and let 4
= LimA,. For each a we have an exact sequence:

0,
0>4,24,8; S
by part (1). Since Lim is an exact functor, we have the exact sequence
0> A4 - Lim(4,®; S).

But ®; commutes with direct limits and hence Lim(4,®; S) =4 ®; S.
Therefore, A4 is in F.

2. Torsion functors

DEFINITION. A subfunctor ¢ of the identity functor on R-modules is said
to be a torsion functor if it satisfies the following two axioms:

(t1) If B is an R-submodule of the R-module A4, then 4 = t(A4) if and
only if B = ¢(B) and A/B = t(A/B).

(t2) 1(1(A)) = t(A).

A is said to be t-torsion if A = t(A) and t-torsion-free if t(A) = 0. The
following properties of a torsion functor ¢ are easy to verify:

(t3) If B C A, then t(4) N B = t(B).

(t4) A/t(A) is r-torsion-free.

(t5) If A is z-torsion-free, then so is E(A4), the injective envelope of A.

(t6) Direct limits of z-torsion R-modules are ¢-torsion; and inverse limits
of t-torsion-free R-modules are z-torsion-free.

(t7) If A is t-torsion, then so is TorX(4, C) for all R-modules C and
n=0.

Let ¢ be a torsion-functor and define %, to be the family of all ideals I of R
such that R/I is t-torsion. It is clear that if 4 is an R-module and x € 4,
then x € t(A) if and only if (0:x) € 4,. It is easy to check that £, satisfies the
following two axioms for ideals I and J of R:

J(1) IfI€S, and ICJ, then J €5,

F(2) IfJe s, and (I:r) € 4, forall r €J, then I € .5,
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We note that it follows from (#1) and (£2) that if I and J are in 4, so
is IJ.
On the other hand let # be a family of ideals of R that satisfy Axioms (£1)

and (£2). We can then define its associated torsion functor ¢, on R-modules
by

t,(4) = (x € 4](0:x) € #)

for all R-modules A. It is readily verified that 7, is indeed a torsion functor;
and we say that # is a torsion family of ideals of R.

We say that a torsion functor ¢ on R-modules is faithful if t(R) = 0.
Clearly ¢ is faithful if and only if every ideal in %, is faithful (i.e., has 0
annihilator). We then say that %, is faithful.

Examples. (1) Let A be the set of all faithful ideals of R. Then U is a
torsion family of ideals of R and ? is a faithful torsion functor. Furthermore,
if ¢ is any faithful torsion functor, then £, C % and hence #(A4) C ty(A) for
every R-module 4.

(2) Let & be a multiplicatively closed subset of R and let
Jo={ICR|IINF+ @}.
Then £, is a torsion family of ideals of R and
JIo={ICR|IR,=R,}.
In particular if J is an ideal of R, and &= {1 — ala € J }, then
JI,={ICR|I+J=R}.

Also if P is a prime ideal of R and &= R — P, then S,= (I C R|I ¢ P}.
(3) Let € be a non-empty set of prime ideals of R and let

SIe¢={ICR|I¢PforanyP € ¢}.

Then £, is a torsion family of ideals of R, and we denote its associated
torsion functor by t.

In the next proposition we generalize these examples and lay the basis for
the use of torsion functors to study commutative ring extensions of R.

PROPOSITION 2.1. (1) Let A be an R-module and ¥, = {I C R|IA = A}.
Then #, is a torsion family of ideals of R and its associated torsion functor will
be denoted by t ,. If A is a faithful R-module, then t , is a faithful torsion functor.

(2) Let # be the set of all ideals of R that contain a faithful finitely generated
ideal of R; and let E be the injective envelope of R. Then #= S (i.e., I € F if
and only if IE = E) and so § is a faithful torsion family of ideals of R.
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Proof. (1) 1t is clear that £, satisfies Axiom #(1). Hence suppose that
J € £, and that I is an ideal of R such that (I:r) € £, for every r € J. We
wish to show that I € £; i.e., that I4 = A. Let x € 4; then x = X/_,r.x,,
where 7, € J and x; € 4. Let

K=({I:r)n---n(Ir,);
then K4 = A4 and so x; = L7_;¢;;y; where t;; € K and y; € A. Hence we have
x = Z(Ziantiy) vy

But r;z;; € 1 for all i and j, and so 4 = I4. It is clear that if 4 is a faithful
R-module, then £, is a faithful family of ideals of R.
(2) Since 1 € E, we have #; C 2. On the other hand suppose that
I=Ra,+ -+ +Ra

n

is a faithful, finitely generated ideal of R. Let x = (a,, a,,..., a,) € R"; and
let e,,...,e, be the standard free basis of R". Let y € E; then since
(0: x) = 0 and E is injective, there exists an R-homomorphism f: R" — E
such that f(x) = y. But then y = ¥’ ,a,f(e;) € IE, and so E = IE. Hence
Fr =7, and by part (1), £ is a faithful torsion family of ideals of R.

DEFINITION. Let A be the set of all faithful ideals of R; let E be the
injective envelope of R; and let U= {x € E[(R:x) € A}. Then U/R =
ty(E/R). Let ¢t be a faithful torsion functor on R-modules and let

T={x€E|(R:x) €S}

Then T/R = t(E/R), and T C U. The next proposition demonstrates that U
is a commutative ring extension of R and that T is a subring of U.

PROPOSITION 2.2. (1) The canonical maps
Yy Homg(U,U) > U and Yr:Homg(T,T) > T
are R-isomorphisms. Thus U is a commutative ring extension of R and T is a
subring of U.
(2) 1If A is a t-torsion free R-module, then A € F.
(3) If C is a t-torsion-free injective R-module, then the canonical map

éc: Homg(T,C) - C

defined by ¢.(f) = f(1) for all f € Hom x(T, C) is an R-isomorphism. Thus C
is an injective T-module.
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Proof. (1) We have an exact sequence:
¥
Hom x(T/R, T) - Homx(T, T) > T - ExtL(T/R, T).

T is an essential extension of R and thus is #~torsion-free. Hence because 7/R
is r-torsion we have Hom 4(T/R, T') = 0. We have an exact sequence

Hom(T/R, E/T) - ExtL(T/R,T) - 0.
Since E/T is t-torsion-free, we have Hom z(T/R, E/T) = 0, and thus
ExtL(T/R,T) =0

also. Therefore, the first exact sequence shows that {; is an R-isomorphism.
Hence T is a commutative ring extension of R by Proposition 1.1. Similarly
Yy is an R-isomorphism and U is a commutative ring extension of R. It is
obvious that T is an R-submodule of U. It remains to show that T is a
subring of U.

Let x, y € T and let x - y denote their product in T and x o y their product
in U. Define f: T > U by f(y)=x-y—xoy forall yin T. Then f is an
R-homomorphism and f(R) = 0, and hence f induces an R-homomorphism
f: T/R - U. But T/R is t-torsion and U is t-torsion-free. Hence f = 0, and
so f = 0, and thus T is a subring of U.

(2) We have an exact sequence

é
TorR(A4,T/R) » A > A ®,T.

Since T/R is t-torsion, so is Tor{(4, T/R); and thus its image in the
t-torsion-free R-module A4 is 0; and so 8, is one-to-one.
(3) We have an exact sequence

2
0 - Homk(T/R, C) - Hom(T,C) = C - 0.

But T/R is t-torsion and C is t-torsion-free. Thus Hom x(T/R, C) = 0 and so
¢¢ is an R-isomorphism.

Remarks. (1) We have U= E if and only if the canonical map y:
Homg(E, E) — E is an isomorphism. For if x€ E, I=(R:x) and c €
(0: I), then there exists f € Hom z(E, E) such that f(x) = c and f(1) = 0.

(2) It follows from Proposition 2.2 that E is both the T-injective envelope
of T and the U-injective envelope of U.
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(3) Let x€ E and J = {u € Ujux € U}. It can be shown that if J is a
faithful ideal of U, then x € U. Thus if ¢ is a faithful torsion functor on
U-modules, then E/U is o-torsion-free.

PROPOSITION 2.3. Let S be a commutative ring extension of R.
(1) Every R-module in % is tgtorsion-free.
(2) If B is an R-module and 85: B — B ® S is the canonical map, then

ts(B) c Ker 6.

(3) Let T/R =ty (S/R); then T is a subring of S and is both ring and
R-isomorphic to a unique subring of U. If we identify T with its image in U, then
T/R = ts(E/R).

Proof. (1) Let A be an S-module and C an R-submodule of A. Let
x €tg(C) and I=(0:x); then SI =S and hence x € Sx = S(Ix) = 0.
Therefore, C is t¢-torsion-free.

(2) We have B/Ker 0, = Im 8, € %;. Thus B/Ker 0, is tg-torsion-free by
part (1), and so ¢g(B) C Ker 0.

(3) Itis obvious that T is a subring of S. Let 0 # x € T and I = (R: x);
then SI = S and so Sx = S(Ix). Therefore Ix is a non-zero ideal of R and
hence T is an essential extension of R. Therefore we can assume that T C E.
To complete the proof of (3) it is sufficient by Proposition 2.2 to prove that
ts(E/R) = T/R. Hence it is sufficient to prove that E/T is t¢torsion-free.

Let I be an ideal of R such that IS = S. Then it is sufficient to prove that
Hom x(R/I, E/T) = 0. We have the exact sequence

Homg(R/I, E) » Homz(R/I, E/T) - Ext%(R/I, T)

Since E is an essential extension of R, it is rg-torsion-free. But R/I is
ts-torsion and so Homg(R/I, E) = 0. Therefore it is sufficient to prove that

Extk(R/I,T) = 0.
We have an exact sequence
Homg(R/I),S/T) — Extk(R/I,T) - Ext4(R/I, S).
S/T is tgtorsion-free and R/I is tgtorsion, and thus
Homg(R/I,S/T) = 0.

Also ExtL(R/I, S) is tg-torsion and is an S-module. Hence by part (1),
Exth(R/I, S) = 0.

Thus we have ExtL.(R/I, T) = 0.
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Remarks. Let £ be the set of all ideals of R that contain a faithful finitely
generated ideal of R. By Proposition 2.1, f= #, is a faithful torsion family
of ideals of R. Let V/R = tz(E/R); then by Proposition 2.2, V is a com-
mutative subring of U. Let S be a commutative ring extension of R and
T/R = t4(S/R). By Proposition 2.3, T/R = tg(E/R). Since I3 C F= Sy,
we have

ts(E/R) C tz(E/R).
Thus in fact T is a commutative subring of V.

PROPOSITION 2.4. Let S be a commutative ring extension of R. Then the
following statements are equivalent:

(1) % is equal to the cateogry of all tstorsion-free R-modules.

(2) tg(B) = Ker 8y for all R-modules B.

(3) % is closed under essential extensions.

In this case if P is a prime ideal of R such that PS # S and J is a P-primary
ideal of R, then SJ N R = J.

Proof. (1) = (2) Let B be an R-module, B = B/ty(B), and II: B > B
the canonical map. Then we have a commutative diagram:

B-2B®, S

n MNe1

B-2.Bs,s .

Since B is tg-torsion-free, it follows from our assumption that B € %;. Hence
by Proposition 1.5 (1), 65 is one-to-one. It follows from the diagram that if
x € Ker 0, then x € KerII = ty(B); and so Ker 8y C t5(B). The reverse
inclusion is provided by Proposition 2.3 (2).

2)= Q) If B is a tgtorsion-free R-module, then Ker 8y = t3(B) = 0,
and hence B is isomorphic to an R-submodule of the S-module B ®; S, ie.,
B € %;. On the other hand if B € %, then B is t¢-torsion-free by Proposition
23 (1).

(1) = (3) It is obvious that essential extensions of ¢¢-torsion-free R-mod-
ules are again 7-torsion-free.

(3) = (1) Let A4 be a t¢torsion-free R-module. By Proposition 2.3 (1) it is
sufficient to prove that 4 is in % Let 0 # x € 4 and I = (0:x); since
tg(A) = 0 we have S/IS # 0. Let C, be the R-injective envelope of S/IS;
then by assumption C, € ;. We let C = IIC, (0 # x € 4); then C is an
injective R-module and C € %#;. We have an R-homomorphism f,: 4 = C,
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such that f, (x) = 1 + IS # 0; and we define an R-homomorphism f: 4 - C
by f(y) = {f,(»)) for all y € A. Then f is one-to-one, and hence 4 is in F.

Now assume that S satisfies the three equivalent conditions of the proposi-
tion; let P be a prime ideal of R such that PS # S, and J a P-primary ideal.
Since R/J is tg-torsion-free, Ker g ,; = t5(R/J) = 0. But Ker 8 ,; = (SJ N
R)/J,and so SJN R =J.

PROPOSITION 2.5. Let S be a flat commutative ring extension of R and B an
R-module. Then the following statements are true:

(1) % is equal to the category of all tgtorsion-free R-modules.

(2) tg(B) = Kerby = Tor}(B, S/R).

(3) B is tgtorsion-free if and only if TorR(B, S/R) = 0; and B is tg-torsion
ifand only if B®y S = 0.

Proof. (1) Let A € %5 and let C be an essential extension of 4. By
Proposition 2.4 it is sufficient to prove that C € %. Because S is flat we have
a commutative diagram with exact rows:

04— C
0, 0.

0>A®,S— C® S

Since 8, is one-to-one by Proposition 1.5, we have Ker - N 4 = 0, and hence
Ker 6. = 0; and thus C € %;.

(2) Since S is flat, Ker 8 = Torf(B, S/R); and we have t5(B) = Ker 0,
by Proposition 2.4,

(3) This follows immediately from part (2).

COROLLARY 2.6. Let S be a commutative ring extension of R. Then S is
R-flat if and only if Torf(B, S/R) is tgtorsion for all R-modules B.

Proof. 1f S is R-flat, then Tor(B, S/R) is tg-torsion by Proposition 2.5.
On the other hand if TorR(B, S/R) is tgtorsion, then the exact sequence

0 - Tor}(B, S) - TorX(B, S/R)
shows that TorR(B, S) is ts-torsion also. But Tor*(B, §) is an S-module and
hence tg-torsion-free by Proposition 2.3 (1). Thus Tor(B, S) = 0 for all
R-modules B, and so S is R-flat.

Remarks. (1) It is not true in general that if % is equal to the category of
ts-torsion-free R-modules, then S is flat. For let R be a Noetherian local ring
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with maximal ideal M and let S = IIR/M"; then S is a commutative ring,
and since NM" = 0, we have a canonical ring injection’ of R into S. Now
MS + S, and hence every R-module is t¢torsion-free. If A4 is a finitely
generated R-module, then NM"4 =0 and hence A Cc ITA4/M"4; and
ITA/M"4 is an S-module. Since % is closed under direct limits by Proposi-
tion 1.5, every R-module is in %#;. Moreover, if I is an ideal of R, then
ISNR=N,(I+ M")= I However, S is not R-flat.

A more general example is to let R be any commutative ring with 1 that has
an ideal J such that R/J is not R-flat. Welet S = R @ R/J and R — S the
canonical diagonal ring homomorphism. Then S/R = R/J; and if I is any
ideal of R we have ISNR=1. If A is any R-module, we define A :
A®gS—>Aby

A(x®(r,t+J))=rx

where x € 4 and r, ¢ € R. Then A ;0 8, is the identity on A4, and so 8, is 1-1.
Thus every R-module is in g, but S is not R-flat.

(2) Itis not true in general that if S is a commutative ring bijection of R,
then S is R-flat; or even that % is equal to the cateogry of all z¢-torsion-free
R-modules. For let R be a quasi-local integral domain with quotient field Q,
and let J be a non-zero ideal of R. Let S=Q ® R/J, and R - § the
canonical diagonal ring homomorphism. Then S/R = Q/J,and so S ® S/R
= 0. Thus by Corollary 1.3, S is a ring bijection of R. Clearly S is not R-flat.
If I is any ideal of R, then IS " R =1 + J # R, and so every R-module is
ts-torsion-free. However, since S is a non-flat ring bijection of R, % is not
equal to the category of all ri-torsion-free R-modules as we shall see in
Corollary 3.5.

(3) Itis not true in general that if S is a commutative ring extension of R
such that PS N R = P for every prime ideal of P of R, then % is equal to
the category of all z¢-torsion-free R-modules. For let R be a quasi-local ring
that has two non-zero principal ideals J; = Rx;, and J, = Rx, such that
JyNJ,=0.Let S=R/J, ® R/J,, and let R — S be the canonical diagonal
ring homomorphism. If I is an ideal of R, then

ISNR=(I+J)Nn(I+J)+#R.

Thus every R-module is ¢ ¢-torsion-free. If P is a prime ideal of R, then either
J € PorJ,C P andso PSNR=P. However, if I = R(x, + x,), then

ISNR=Rx, +Rx,+ 1.

Hence if A = R/I and 0,: A - A ®, S is the canonical map, then
Kerd,=(ISNR)/I+0,

and so 4 & % by Proposition 1.5(1).



COMMUTATIVE RING EXTENSIONS 387

A similar example is obtained if R is an integral domain that is not
integrally closed, and S is its integral closure, then PS N R = P for every
prime ideal P of R. But if a/b € S — R, where a,b € R, then a € bBS N R
and a & Rb.

In general if S is a commutative ring extension of R such that ISN R =1
for every ideal I of R, then every R-module is ¢¢-torsion-free; and every cyclic
R-module is in %. But it is an open question whether this implies that % is
equal to the category of all R-modules.

DEFINITION. R is said to be reduced if R has no non-zero nilpotent
elements. If R is reduced and E is the injective envelope of R, then E is a
commutative, von-Neumann regular ring extension of R; and if min R denotes
the minimal prime spectrum of R, then min R is compact if and only if E is
R-flat (see [6, Propositions 1.12 and 1.16]).

PROPOSITION 2.7. There exists a commutative ring extension S of R such that
TorR(A, B) is tgtorsion for all R-modules A and B and n > 0 if and only if R is
reduced and min R is compact. In this case E is such an extension.

Proof. Suppose that such a ring S exists. Let 4 be an S-module and B an
R-module. Then Tor}(4, B) is an S-module and hence fg-torsion-free by
Proposition 2.3 (1); but it is ¢g-torsion by assumption and so Tor}(4, B) = 0.
Therefore, every S-module is R-flat. Now E is tg-torsion-free and hence
E € % by Proposition 2.5 (1). Therefore, E is an R-direct summand of an
S-module. Thus E is R-flat.

Let I be an ideal of R; then I/I? = TorR(R/I, R/I) is tg-torsion. Hence,
since S is R-flat, SI/SI* = S ® z I/I* = 0 by Proposition 2.5 (3). Therefore,
SI = SI?, and it follows that R is a reduced ring. Since E is R-flat, min R is
compact.

Conversely, suppose that R is reduced and that min R is compact. Then F
is an R-flat, commutative, von Neumann regular ring extension of R. Let
and J be ideals of R. Then

E®y TorR(R/I,R/J)=E®,(INJ)/I] = E(INJ)/(EI)(EJ) = 0.

Hence TorR(R/I, R/J) is tg-torsion by Proposition 2.5 (3). It follows easily
that Tor( A4, B) is t-torsion for all R-modules 4 and B and n > 0.

3. Torsion envelopes

DErFINITION. We shall say that an R-module 4 is a torsion envelope of R if
A is a commutative ring extension of R such that 4 /R is ¢ -torsion.
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Remarks. (1) Let A be a torsion envelope of R and % a multiplicatively
closed subset of R. It is easy to see that A, is a torsion envelope of R,.
Furthermore, if I is a proper ideal of R such that J4 N R = I, then A/IAisa
torsion envelope of R/I.

(2) If & is a multiplicatively closed set of non-zero-divisors in R, then R,
is a torsion envelope of R. Hence if Q is the total ring of quotients of R, then
Q is a torsion envelope of R. It will follow from the next proposition that a
subring of Q containing R is a torsion envelope of R if and only if it is R-flat.

(3) Let E be the injective envelope of R and V/R = t (E/R). We recall
that ¥ is a commutative ring extension of R; and if S is a commutative ring
extension of R and T/R = t;(S/R), then T is a commutative subring of V'
and T/R = tg(E/R) (see the remarks following Proposition 2.3).

PROPOSITION 3.1. Let A be an R-module such that R C A. Then the follow-
ing statements are equivalent:

(1) A is a torsion-envelope of R.

(2) A is an R-flat subring of V.

(3) A is an R-flat commutative ring extension of R and there exists an
R-module B O A such that B®yz A/R = 0.

(4) A is an R-flat ring bijection of R.

(5) A isaflat R-module and A ® , A/R = 0.

(6) A is an essential extension of R and for all x € A we have A = (R x)A.

Proof. (1) = (2) A is a subring of V by the preceding Remark (3). Since
A/R is t ~torsion, so is Tor(B, A/R) for all R-modules B. Hence 4 is R-flat
by Corollary 2.6.

2=B3) Let x€E, yeA/R, and I=(0:y). Since y€ V/R=
tg,(E/R), we have E = IE; and hence x = X! ,a;x; where x, € E and
a; € I. Thus

n n
x®y=Yax,®y= 3 x,8a,y,=0,
i=1 i=1
and so E ®z A/R = 0.

(3) = (4) Since A4 is R-flat, Tor}(B/A, A/R) is t,torsion by Corollary
2.6. Hence the exact sequence

TorR(B/A, A/R) > A®y A/R >B®g A/R=0

shows that 4 ® ; A/R is t-torsion. But 4 ® ; A/R is an A-module and
hence is ¢ ,-torsion-free by Proposition 2.3(1). Thus 4 ® ; A/R = 0, and so 4
is a ring bijection of R by Corollary 1.3.

(4) « (5) This follows from Proposition 1.2 and Corollary 1.3.

4 =(1) A®z; A/R =0 by Corollary 1.3 and hence 4 /R is ¢ -torsion
by Proposition 2.5(3).



COMMUTATIVE RING EXTENSIONS 389

(1) = (6) Since A is a subring of ¥V C E by the preceding Remark (3), 4
is an essential extension of R. And 4 = (R: x)A for all x € 4 since A/R is
t ~-torsion.

(6) = (1) We can assume that 4 C E, and then 4/RC ¢t (E/R) = T/R.
T is a commutative ring extension of R by Proposition 2.2, and 4 C T. Let
y€T and I =(R:y); then I4A = A by definition. Hence we have 1 =
Y7 .a;x; where a; € I and x; € A. Let r;= a,y; then r, € R and

n n
y= Z(“iJ’)xi= ZrixiEA'
i=1 i=1

Hence 4 = T, and so A is a commutative ring extension of R and thus a
torsion envelope of R.

PROPOSITION 3.2. Let RC T C S be commutative ring extensions of R.
Then the following statements are true:

(1) If S is a torsion envelope of R, then T is a torsion envelope of R if and
only if T is R-flat.

(2) If S is a torsion envelope of T and T is a torsion envelope of R, then S is
also a torsion envelope of R.

(3) If S is a torsion envelope of R, then S is also a torsion envelope of T.

Proof. (1) This follows from Proposition 3.1.
(2) Let xe Sand J = {a € T|ax € T}. Then JS = S and hence

n
1= Y a,y, wherea,€Jand y, €S.

i=1

Since T/R is t -torsion, there exists an ideal I of R such that IT = T and
Ia;,c R and I(a;x)C R foralli=1,...,n. Let K= Ia; + --- +1a,; then
K is an ideal of R, Kx C R and KS = S. Thus S/R is tg-torsion, and so S is
a torsion envelope of R.

(3) Letx € Sand I = (R: x); then IS = §. Since (TI)x € T and S(TI)
= §, it follows that S is a torsion envelope of T.

A portion of the next Proposition was also proved by Lazard [3, Proposition
IV, 3.3] in a different form.

COROLLARY 3.3. There exists a unique maximal torsion envelope M of R

contained in V. M contains a unique copy of every torsion envelope of R; and
M itself has no torsion envelopes.

Proof. 1t is obvious that if S and T are torsion envelopes of R in V, then
ST is also a torsion envelope of R. The proposition now follows from Zorn’s
Lemma and Propositions 3.1 and 3.2.
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It is interesting to compare the next Proposition with the equivalence of
statements (1) and (4) in Corollary 1.3.

PROPOSITION 3.4. Let S be a commutative ring extension of R. Then S is a
torsion envelope of R if and only if Hom x(S/R, A) = 0 for every tstorsion-free
R-module A.

Proof. 1If S is a torsion envelope of R, then S/R is tg-torsion, and the
statement follows immediately. Conversely, suppose that Hom (S/R, 4) = 0
for every tg-torsion-free R-module A. Let T/R = t;(S/R); then S/T is
tg-torsion-free and S/R maps onto S/T. Hence S/T =0, and so S is a
torsion envelope of R.

COROLLARY 3.5. Let S be a commutative ring bijection of R. Then the
following statements are equivalent:

(1) S is a torsion envelope of R.

(2) Sis R-flat.

(3) % is equal to the category of all tg-torsion-free R-modules.

Proof. The corollary follows from Propositions 3.1, 2.5, 3.4 and Corollary
1.3.

In the following proposition we collect some facts that we have developed
separately.

PROPOSITION 3.6. Let S be a torsion envelope of R, Then the following
statements are true:

(1) If A € %, then the R-injective envelope of A is S-injective.

(2) An R-module has at most one S-structure that extends its R-module
Structure.

(3) If A and B are S-modules, then Homgz(A, B) = Homg(A4, B) and
A®, B=A® B.

(4) An S-module is R-flat (or R-injective) if and only if it is S-flat (or
S-injective).

(5) If A is an S-module and B is a tgtorsion R-module, then TorR(B, A) =
0 = Ext’}(B, A) for alln = 0.

(6) If R is Noetherian (or coherent) so is S.

Proof. (1) This follows from Proposition 2.2.

(2) and (3) follow from Proposition 1.4; and since S is R-flat so does (4).

(5) With the assumptions on 4 and B, Tor?(B, A) = 0 for all n > 0 for
any commutative ring S. By (4) we can compute Ext%(B, A) by taking an
S-injective resolution X of A. But then Homi(B, X) = 0, because B is
tg-torsion and X is f¢-torsion-free. Hence Extz(B, 4) = 0.
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(6) This follows from (4) and the fact that S is Noetherian if and only if a
direct sum of S-injective modules is S-injective (and S is coherent if and only
if a direct produce of S-flat modules is S-flat).

LeEMMA 3.7. Let S be a commutative ring extension of R and let I be an ideal
of R such that IS # S. Then there exists a prime ideal P of R such that I C P, P
is maximal with respect to the property PS # S, and PS " R = P.

Proof. By Zorn’s Lemma there exists an ideal P of R such that I € P and
P is maximal with respect to the property PS # S. Since P C PS N R and
PS N R has the same properties as P, we have P = PS N R. Now suppose
that a,b € R, a &€ P and ab € P. Then (P + Ra)S = S, and multiplying by
b, we see that b € PS N\ R = P. Hence P is a prime ideal of R.

The following Proposition has also been proved by Lazard [3, Proposition
IV, 24).

PROPOSITION 3.8. Let S be a commutative ring extension of R. Then S is a

torsion envelope of R if and only if for every prime ideal P of R either PS = S or
SP = R P

Proof. Assume that S is a torsion envelope of R and that P is a prime
ideal of R such that PS # S. Because S is R-flat, PS N R = P. Suppose that
Sp # Rp. Now S, is a torsion envelope of R, and hence PS, = S,. But then
PS N R + P; and this contradiction shows that S, = R .

Conversely, assume that for every prime ideal P of R either PS = § or
Sp = Rp. Suppose that S is not a torsion envelope of R. Then there exists
x € S such that if 7 = (R: x), then IS # S. By Lemma 3.7 there exists a
prime ideal P of R such that / C P and PS # S. Hence by assumption
Sp = R,. It follows that there exists ¥ € R — P such that ux € R. This
contradiction shows that S is a torsion envelope of R.

COROLLARY 3.9. Let S be a torsion envelope of R; let SpecgR be the set of
all prime ideas P of R such that PS + S; and let Spec S be the set of all prime
ideals of S. Then:

(1) There exists a one to one, order preserving correspondence between
SpecgR and Spec S given by P — PS for P € SpecgR and # - PN R for
P € Spec S.

(2) If P € SpecgR, then S/PS is a subring of Rp/PR , that contains R/P.

(3) P is maximal in SpecgR if and only if S/PS = Rp/PR,.

(4) SpecgR contains every minimal prime ideal of R.

(5) If P € SpecR, then P € SpecgR if and only if Sp = Rp.

Proof. (1) Let P € SpecgR; then PS N R = P because S is R-flat. Hence
S/PS is a torsion envelope of R/P. Since R,/PR is the injective envelope
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of R/P, it follows from Proposition 3.1 that S/PS is a subring of R,/PR,
that contains R/P. Hence S/PS is an integral domain, and thus PS € Spec S.

Let # € SpecS and P = # N R. Since S/PS is contained in the quotient
field of R/P by the preceding paragraph and (#/PS) N R/P = 0, we have
P = PS.

(2) This was proved in part (1).

(3) This follows directly from parts (1) and (2).

(4) Let P be a minimal prime ideal of R. Then every element of PR is
nilpotent, and hence P does not contain a faithful, finitely generated ideal of
R. Therefore PS # S.

(5) This follows from Proposition 3.8.

We have remarked earlier that if E is the injective envelope of R, then
E=U if and only if the canonical map ¢, Homy(E, E) —» E is an
isomorphism. The next corollary gives necessary and sufficient conditions in

the case where R is a reduced ring for E = V; ie., for E to be a torsion
envelope of R.

COROLLARY 3.10. Let R be a reduced ring. Then E is a torsion envelope of R
if and only if min R is compact and E, = R, for every minimal prime ideal P
of R.

Proof. This follows from Proposition 3.8 and the fact that E is R-flat if
and only if min R is compact, if and only if the only prime ideals P of R such
that PE # E are the minimal prime ideals of R (see [6, Proposition 1.6]).

Remarks. (1) Let R be a reduced ring such that the total ring of quotients
Q of R is a von Neumann regular ring. Then E is a torsion envelope of R if
and only if E = Q. For if E is a torsion envelope of R, then E is a torsion
envelope of Q by Proposition 3.2(3). In this case, since every prime ideal of Q
is minimal, we would have E, = Q, for every prime ideal P of Q by Corollary
3.10, and hence E = Q.

(2) If R is a reduced ring and P is a non-essential prime ideal of R, then
E, = R, by [6, Proposition 3.9]. Now there exists a reduced ring R with an
infinite number of minimal prime ideals and every one of them non-essential
(see [6, Example 3]). Hence in this case E, = R, for every minimal prime
ideal P of R. But min R is not compact [6, Proposition 3.15] and hence by
Corollary 3.10, E is not a torsion envelope of R.

(3) In general if R is any commutative ring, then it follows from Proposi-
tion 2.1 that E is a torsion envelope of R if and only if (R: x) contains a
faithful finitely generated ideal of R for every x € E.

DEFINITION. R is said to be a semi-regular ring if every R-module is a
submodule of a flat R-module. If R is a reduced ring, then it is semi-regular if
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and only if it is von-Neumann regular; and if R is Noetherian then it is
semi-regular if and only if it is quasi-Frobenius (see [7, Propositions 2.7 and
3.4)). The next proposition generalizes the preceding Remark (1).

PROPOSITION 3.11. Assume that the total ring of quotients Q of R is a
semi-regular ring. Then Q is the unique maximal torsion envelope of R. Moreover

an R-module is ty-torsion-free if and only if it is an R-submodule of a flat
R-module.

Proof. Let M be the unique maximal torsion envelope of R. Then Q ¢ M
and M is the unique maximal torsion envelope of Q. Thus without loss of
generality we can assume that R = Q. Then M/R is contained in a flat
R-module; and every flat R-module is an R-submodule of an M-module.
Hence M /R is both ¢, torsion and ¢,,torsion-free, and thus M = R. The last
statement of the Proposition follows from Proposition 2.5(1).

DEFINITION. Let I be a faithful ideal of R and define I * = {x € E|Ix C
R}. As in the case of an integral domain we have I * = Hom zx(/, R). We then
define S = U,(I™)*. By analogy with the integral domain case we call S the
ideal transform of I. If I contains a faithful, finitely generated ideal of R, then
I is a projective ideal of R if and only if II* = R in which case I itself is
finitely generated. For such an ideal we also have S = IS, and S is R-flat.

Akiba [0] has given an example of an integral domain R and a non-projec-
tive prime ideal P of R such that if S is the ideal transform of P, then PS = §
and S is R-flat.

PROPOSITION 3.12. Let I be a faithful ideal of R and S the ideal transform of
1. Then:

(1) S is a commutative subring of U that contains R.

(2) If I contains a faithful, finitely generated ideal of R, then S is a torsion
envelope of R if and only if S is R-flat.

(3) 1If S = IS, then I contains a faithful finitely generated ideal of R and S is
a torsion envelope of R. In this case Spec S is equal to the set of all ideals PS
such that P is a prime ideal of R that does not contain I.

Proof. (1) It is clear that S is an R-submodule of U. If x and y arein S,
then their product in U is again in S, and hence S is a subring of U that
contains R.

(2) 1If I contains a faithful, finitely generated ideal of R, then S C V; and
the proposition now follows from Proposition 3.1.

(3) Assume that S = IS: then clearly I contains a faithful, finitely gener-
ated ideal of R. Moreover, since I"S = S for all n > 0, S/R is a tg-torsion
R-module; ie., S is a torsion envelope of R.
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By Corollary 3.9 Spec S is equal to the set of all ideals of the form PS,
where P is a prime ideal of R such that PS # S. Now if PS # S, then ] ¢ P
because IS = S. On the other hand if P is a prime ideal of R such that
PS =S, then 1 =X*  px, where p,€ P and x,€ S for i =1,..., k. Now
there exists an integer n > 0 such that I"x,C R for all i =1,..., k. Thus
I"c P and so I c P. Thus Spec S is equal to the set of all ideals PS where P
is a prime ideal of R such that I & P.

The following example shows that the ideal transform S of an ideal I of R
is not necessarily a torsion envelope of R, even when I is a faithful, projective
ideal of R and S is R-flat.

Example. Let k be a field, K a countably infinite direct product of copies
of k, and let R be the set of sequences in K that are constant except for a
finite number of coordinates. Let e, be the element of R that is 0 everywhere
except for the nth-coordinate where it is equal to 1. Let J = ¥, + Re,; then J
is a faithful projective ideal of R. Now K is the injective envelope of R and
J* = K. Thus K is the ideal transform of J. Since R is a von Neumann
regular ring, it has no proper torsion envelopes by Proposition 3.11. Thus X is
R-flat, but is not a torsion envelope of R.

We note that if R is a Noetherian local domain of Krull dimension one with
quotient field Q, and if I is any non-zero ideal of R, then the ideal transform
of Iis Q, Q is flat, and of course IQ = Q.

4. Semi-Krull domains

Throughout this section R will be an integral domain with quotient field Q.
A subring of Q that contains R is called an over-ring of R. It follows from
Proposition 3.1 that a commutative ring is a torsion envelope of R if and only
if it is a flat over-ring of R. Richman has proved part of this result by a
different technique [8, Theorem 1]. He has also proved Proposition 4.1

[8, Corollary to Theorem 2], but we shall append a proof using our results for
the sake of completeness.

PROPOSITION 4.1. Let S be a commutative ring extension of R and let € be
the set of prime ideals P of R such that PS #+ S. Then S is a flat over-ring of R if
and only if S = NR (P € ¥).

Proof. 1f S =NRp(P € ¥), then S, =R, for all P € ¢. Hence S is a
flat over-ring of R by Proposition 3.8. Conversely, assume that S is a flat
over-ring of R. If P € ¥, then S, = R, by Proposition 3.8 and hence

SCNRy(P e ¥).
On the other hand let x € NRp(P € ¥) and J = (R: x). If JS # S, then by
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Lemma 3.7 there exists P € € such that J C P. But since x € Rp, we have
J ¢ P. This contradiction shows that JS = S, and so x + R € t;(Q/R). But
ts(Q/R) = S/R by Proposition 2.3(3), and hence x € S. Thus

S=NRp(P € ¥).

Remarks. We note that if P,,..., P, is a finite set of height 1 prime ideals
of R and =R — U, P, then Rg’ ﬂ;’_lRPi by Proposition 4.1.

DEFINITION. Let € be a non-empty set of prime ideals of R and let

={ICR|I¢PforanyP € ¥}.

Then £, is a torsion family of ideals of R and we denote its associated
torsion functor by t4. Let S = NRy(P € €), let I;= {I C R|IS = S}, and
let € be the set of prime ideals P of R such that S € R,. We call € the
closure of €. With this notation we have the following:

PROPOSITION 4.2. (1) t4,(Q/R)=S/R, S =NRy(P € ¥); and S, C S5
C S
(2) S is a flat over-ring of R if and only if F; = I7

Proof. (1) Let T/R = t4,(Q/R).Let x € S and P € ¥; then (R:x) ¢ P
and so (R: x) € #,. This S C T. On the other hand let x € T and P € ¥.
Since (R: x) € S, we have (R: x) ¢ P and so x € R,. Therefore, x € S
andso S =T.

It is obvious that S = NR,(P € ¥) and that ¥C . Hence 5 C S, Let
I€F; and P € &. Then S, = R,; and since S = IS we have IR, = R,.
Therefore, I ¢ P and so I € #3. Thus S, C S5

(2) Assume that S is a flat over-ring of R and let I € J,‘, Suppose that
I &5 ie., IS # S. Then by Lemma 3.7 there exists a prime ideal P of R
such that I ¢ P and PS # S. By Proposition 3.8 S, = R, and so P € €. But
then I ¢ P by the definition of fz. This contradiction proves that I € 4.
Hence 45 = 43. _

Conversely, assume that J; = S5; then tg = tg. Since S = NR,(P € €)
we have by part (1) that tz(Q/R) = S/R. Therefore S/R is t4-torsion; i.e., S
is a torsion envelope of R; i.e.,, S is a flat over-ring of R.

We remark that € not only contains every prime ideal of R that is
contained in some element of €, but may contain other prime ideals as well.

DErINITION. If J is an ideal of R, we let rad J denote the intersection of
the prime ideals of R that contain J.
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PROPOSITION 4.3. Let R be a Noetherian domain, I a proper, non-zero ideal
of R, S the ideal transform of I, and € the set of prime ideals of R that do not
contain 1. Then:

(1) S=NRy(P €< ¥), andsot,(Q/R) = S/R.

(2) If rad I is an intersection of prime ideals of R of height one, then S is a
flat over-ring of R if and only if S = IS.

Proof. (1) Let x € S and P € €. There exists ¢t > 0 such that I'’x C R.
Since I' ¢ P, we have x € Rp; and so

SCNR,(P €< ¥).

On the other hand let x e NR(P € ¥), x € R, and let J = (R: x). Then
J & P for any P € ¥, and so every prime ideal of R that contains J also
contains I. Thus I C rad J. Since R is Noetherian, there exists ¢ > 0 such that
I' c (rad J)' c J. Hence I'x C R, and so x € S. Thus

S=NRy(P € %).

By Proposition 4.2(1) we have t,(Q/R) = S/R.

(2) If S=1S, then § is a flat over-ring of R by Proposition 3.12(3).
Assume that rad I is an intersection of prime ideals of R of height one, and let
P be one of these prime ideals. Since R is Noetherian and P has height one,
there exist elements a, b € R such that (Rb: Ra) = P. Let x = a/b; then
(R:x)=P,andsox€ P 'cI!'c§ If Sis a flat over-ring of R; ie., a
torsion envelope of R, then PS = S. Hence (rad I)S = §; and since I
contains a power of rad I we have IS = S.

DEerINITION. We shall say that R is a semi-Krull domain if:
(1) Every non-zero, proper, principal ideal of R is a finite intersection of
height one primary ideals of R.

(2) Every height one primary ideal of R contains a power of its associated
prime ideal.

LEMMA 4.4. Let R be a semi-Krull domain and a, b non-zero elements of R
such that a & Rb. Let x =a/b€ Q and J = (R:x). Then J is a finite

intersection of height one primary ideals of R; and some power of rad J is
contained in J.

Proof. We have Rb=J, N --- NJ, where J; is a Prprimary ideal of R
and P, is a prime ideal of R of height one. Thus

J=(R:x)=(Rb:Ra)=(J;:Ra)N --- N(J,: Ra).
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Now (J;: Ra) is either a P-primary ideal of R, or is equal to R. Hence some
power of rad J is contained in J.

The following proposition will provide many examples of semi-Krull do-
mains.

PROPOSITION 4.5. R is a semi-Krull domain if and only if R satisfies the
following three conditions:

(1) If b is a non-zero, non-unit element of R, then the set of height one prime
ideals of R that contain b is finite and not empty.

(2) If P is a height one prime ideal of R, then every non-zero ideal of Rp
contains a power of PR p.

(3) NR, = R, where P ranges over the height one prime ideals of R.

Proof. Assume that R is a semi-Krull domain. Let b be a non-zero,
non-unit element of R. Then Rb = J, N -+ NJ,, where J; is P-primary and
P, is a prime ideal of R of height one. Then Rb contains a power of
PP, --- P, and thus P;, P,,..., P, are the only height one prime ideals of R
that contain b.

Let P be a height one prime ideal of R; then every non-zero, proper,
principal ideal of R, is of the form bR p, where b € P. With the notation of
the preceding paragraph we can assume that P = P, and hence bR, = J;R,
contains a power of PR p.

Let x = a/b € NRp, where P ranges over all height one prime ideals of R,
and a, b € R. Then (R: x) = (Rb: Ra) is not contained in any height one
prime ideal of R. Thus by Lemma 4.4, a € Rb; i.e., x € R.

Conversely, assume that the three conditions of the proposition are satisfied.
Let P be a height one prime ideal of R and J a P-primary ideal of R. Since
JR , contains a power of PR, J contains a power of P.

Let b be a non-zero, non-unit element of R, and let P,,..., P, be the set of
height one prime ideals of R that contain b. Since bR, is a PR pprimary
ideal of Rp, J;=bRp NRisa prnmary ideal of R that contains b. If P is
a height one prime ideal of R that is not equal to any of the P,’s, then
bR, = R,. Since R = NRp, where P ranges over all of the height one prime
ideals of R, it follows that Rb=J, N --- NJ,.

Examples of semi-Krull domains. (1) A Krull domain satisfies the three
conditions of Proposition 4.5.

(2) A Noetherian integrally closed domain is a Krull domain.

(3) A Noetherian domain with the property that every non-zero principal
ideal is unmixed of height one satisfies the axioms of a semi-Krull domain.

(4) A Cohen-Macaulay Noetherian domain satisfies the property of Exam-
ple (3).

PROPOSITION 4.6. Let R be a semi-Krull or a Noetherian domain. Let € be
a non-empty set of height one prime ideals of R and let S = \Rp(P € €). Then
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Sp =R, forall P € €; and Sp, = Q for every prime ideal P’ of R that does not
contain any P € €.

Proof. If P& €, then S C Ry, and so S, = R,. Let x be a non-zero
element of Q; then if R is Noetherian, or if R is a semi-Krull domain by
Lemma 4.4, there are only a finite number of height one prime ideals P of R
such that x &€ R,. Thus we have an exact sequence

0-Q/S—> ; ® Q/Rp(P <€ ¥).

Let P’ be a prime ideal of R that does not contain any P € €. We have a
derived exact sequence

0 Q/Sp — ; ® Q/(Rp)p (P € ¥).

Thus to prove that S} = Q it is sufficient to prove that (R;), = Q for every
Pe %. But if P€ ¥, then R — P’ contains an element of P; and hence
(R p)p: has no non-zero prime ideals. Thus (Rp)p = Q.

PROPOSITION 4.7. Let R be a semi-Krull domain, €, a non-empty set of
height one prime ideals of R, and S = NRp(P € €,). Then the following
statements are equivalent: '

(1) S is a flat over-ring of R.

(2) % is equal to the category of tgtorsion-free R-modules.

(3) If P is a prime ideal of R such that PS # S, then PS N\ R = P.

(4) If P is a height one prime ideal of R such that PS + S, then PS N R = P.

In this case €, is the set of height one prime ideals P of R such that PS # S.

Proof. (1) = (2) follows from Proposition 2.5; (2) = (3) follows from Pro-
position 2.4; and (3) = (4) is trivial. Hence assume that (4) is satisfied. To
prove that S is a flat over-ring of R we shall prove that S/R is tg-torsion. Let
x € 8, J = (R: x); and suppose that JS # S. By Lemma 4.4 rad J is a finite
intersection of height one prime ideals of R and some power of rad J is
contained in J. Thus there exists a height one prime ideal P of R such that
J C P and PS # S. By assumption we have PSN R = P.

If P ¥,, then SCR,, and so x € Rp. But then J & P, and this
contradiction shows that P & €,. Hence by Proposition 4.6 we have S, = Q.
But then PS N R # P, and this contradiction shows that JS = S. Thus S/R
is tg-torsion; i.e., S is a flat over-ring of R.

Now assume that S is a flat over-ring of R. If P € €, then S C R, and so
PS # S. On the other hand suppose that P is a height one prime ideal of R
such that PS # S. If P &€ €,, then S, = Q by Proposition 4.6. But since
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PS # S we have by Proposition 3.8 that S, = Rj. This contradiction shows
that P € ¥,.

PROPOSITION 4.8. Let R be a semi-Krull domain and S a commutative ring
extension of R. Let €, be the set of height one prime ideals P of R such that
PS + S. Then S is a flat over-ring of R if and only if S = NR (P € €,). In this
case S is also a semi-Krull domain.

Proof. 1f S=NRy(P € ¥,),then PSN R = P for all P € ¥,. Thus S is
a flat over-ring of R by Proposition 4.7. On the other hand assume that S is a
flat over-ring of R. By Proposition 4.1 we have S C NR(P € ¥,). On the
other hand let x € NR,(P € %,), x & R, and let J = (R: x). By Lemma 4.4

radJ=P N--- NP,
where the P;’s are height one prime ideals of R; and some power of rad J is
contained in J. Since J ¢ P for any P € ¥,, none of the P,’s are in ¥,. Thus
by definition of ¢,, P,S = S for all i =1,..., n. Therefore, JS = S and so
x + R is an element of ¢;(Q/R). But t;(Q/R) = S/R by Proposition 2.3(3),
and so x € S. Thus S = NR,(P € ¥,).

Assume that S is a flat over-ring of R. They by Corollary 3.9 the set

(PS|P € €,}

is the set of height one prime ideals of S. If P € &,, then S, =R, is a
quasi-local domain of Krull dimension one with maximal ideal PS, = PRp.
Thus S, has no proper localization other than Q and so Spg = Sp. Therefore

NSps(P € €,) =NR,(P € €,) =S.

Moreover, it follows that every non-zero ideal of Spg = R, contains a power
of PRp = (PS)Sps.

Let x = a/b be a non-zero, non-unit element of S, where a, b € R. Let
P,,..., P, be the set of height one prime ideals of R that contain Ra. Since
Sa € Sx and Ra contains a power of P,P, --- P,, it follows that the set of
height one prime ideals of S that contain Sx is a subset of P,S,..., P,S. Thus
all three conditions of Proposition 4.5 are satisfied by S, and so S is a
semi-Krull domain.

PROPOSITION 4.9. Let R be a semi-Krull domain, I a non-zero ideal
of R, and S the ideal transform of 1. Let € be the set of prime ideals of R that do
not contain I, and €, the set of prime ideals in € of height one. Then S =
NRy(P € €), and S=Rp(P € ¥,); and t,(Q/R)=S/R = t,(Q/R).
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Moreover, if I is a finite intersection of height 1 primary ideals of R, then S is
fat if and only if S = IS.

Proof. Let x € S and P € ¥. There exists ¢ > 0 such that I’x C R. Since
I' ¢ P, we have x € Rp; and so S CNR,(P € ¥). Since ¢, C ¥ we have

NR(P € €) CNRH(P € €)).

On the other hand let x € NRp(P € €,), x € R, and let J = (R: x). Then
J ¢ P for any P € €,, and so every height one prime ideal of R that contains
J also contains I. By Lemma 4.4, rad J is a finite intersection of height one
prime ideals of R and there exists ¢ > 0 such that (rad J)’ C J. Since
I c rad J, we have I' c J also. Thus I'x C R, and so x € S. Thus

S=NR,(P€¥)=NRy(PE¥).

By Proposition 4.2(1) we have t4,(Q/R) = S/R = t,(Q/R).

If § = IS, then § is a flat over-ring of R by Proposition 3.12(3). Conversely,
assume that S is a flat over-ring of R. Let P’ be a height one prime ideal of R
that contains I. Since S =NR,(P € ¥,) and P’ & ¥,, it follows from
Proposition 4.7 that P’S = §. If I is a finite intersection of height one primary
ideals of R, then I contains a power of rad I, and so we have S = IS.

Remarks. (1) With the notation of Proposition 4.9, we see that if I is not
contained in any height 1 prime ideal of R, then S = R.

(2) Let R be a semi-Krull domain and I a non-zero, proper, projective
ideal of R. Then I~! is finitely generated by elements x,,..., x,, of Q; and
hence

I= ﬁ (R:x;)
i=1

is a finite intersection of height one primary ideals of R by Lemma 4.4. Let S
be the ideal transform of I; then by Proposition 4.9, S = NRp, where P
ranges over the height one prime ideals of R that do not contain I; and S is a
flat over-ring of R because S = IS.

(3) Let S be a commutative ring extension of a semi-Krull domain R.
Then it follows from Proposition 4.9 that S is the ideal transform of an ideal
that is a finite intersection of height one primary ideals of R if and only if
S =NR,(P € ¥,), where €, is a set of height one prime ideals of R whose

complement in Spec R contains only a finite number of height one prime
ideals.
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5. Complemented extensions
Throughout this section R will be an integral domain with quotient field Q.

DEFINITION. Let 4 and A’ be R-submodules of Q. Then A and A4’ are
said to be complementary extensions of R if ANA’"=R and 4 + A4’ = Q;
i.e., if

Q/R=A/R® A’/R.

An over-ring S of R is said to be a complemented extension of R if S/R is a
direct summand of Q/R. We recall that SpecgR = { P € Spec R|PS # S}.

If S and T are over-rings of R, we let ST = {¥7_;s5,¢,|s; € S,t, € T}. Then
ST is the over-ring of R generated by S and T.

PROPOSITION 5.1. Let A and A’ be complementary extensions of R. Then:

(1) A and A’ are flat over-rings of R. _

(2) Let €= Spec,R and €' = Specy R. Then €= €,¢' =€, €U ¢’
= SpecR; and €N €’ = 0.

(3) A=NRp(P€ ¥) and A’ =NRp. (P’ € €’). Thus A’ is the unique
complement of A.

@4) IfPe€ ¥, thenAp= Rp and Ap = Q.

(5) IfIis a non-zero ideal of R then IA N R = I if and only if IA’ = A’.

Proof. Let x € A; then x = a/b where a, b € R. Since A/R is a direct
summand of Q/R, it is a divisible R-module; and hence 4 = b4 + R. Thus

xA =aA + xR C A,

and so A4 is an over-ring of R. Similarly A’ is an over-ring of R. We have the
exact sequence

(*) 0->R->A4064'>Q0-0.

This sequence shows that A and A4’ are flat over-rings of R.
Let P be a non-zero prime ideal of R. Then from the exact sequence (*) we
obtain the exact sequence

O0->Rp—> A, A4, - Q—0.

But R, is a quasi-local ring, and hence Q/R is an indecomposable R -mod-
ule (see [5, Proposition 1.2]). Thus either 4, = R, and 4} = Q, or vice versa.
Statements (2), (3) and (4) now follow from this and Proposition 4.1.

Let I be a non-zero ideal of R; then since 4 /R is a divisible R-module, we
have 4 = I4A + R. Thus A/IA = R/(IA N R). Hence from the exact se-
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quence (*) we have
R/I=A/IA® A’/IA =R/(IANR) & A’ /IA’.

Since any homomorphism from R/I onto itself is an isomorphism, it follows
from this that 4 N R = I if and only if 4’/I4’ = 0.

__PROPOSITION 5.2. Let € and €’ be two sets of prime ideals of R such that
€U¥’ =SpecR. Let S=NRp(P € ¥) and S’ = NRp. (P’ € €'). Then the
following statements are equivalent:

(1) S and S’ are complementary extensions of R.

2 €N E’=0andS and S’ are flat over-rings of R.

3) Ss'=0.

Proof. Without loss of generality we can assume that ¥= % and ¢’ = 7.
Since ¥ U ¥’ = Spec R, we have S N S’ = NR(P € SpecR) = R.

(1) = (2) This follows from Proposition 5.1.

(2) = (3) If SS’ # Q, then SS’ has a non-zero prime ideal & and we let
P =2N R. We can assume that P € ¥: and then since P & ¥’ we have
S # Rp. Because S’ is a flat over-ring of R we have PS’ = S’ by Proposition
3.8. Therefore, P(SS)’ = SS’. But P(SS’) C £, and this contradiction shows
that SS’ = Q.

(3) = (1) Let P be a prime ideal of R; then we can assume that P € €
and hence S, = R,. But then Q = Q, = SpSp = S}, and hence

(S+8)p=8S+Sp=0.

Since this is true for every prime ideal P of R, we have S + S’ = Q; ie, S
and S’ are complementary extensions of R.

PROPOSITION 5.3. Let I be a non-zero ideal of R, € the set of prime ideals of
R that do not contain I, €' the set of prime ideals of R that contain I,

S=NR,(P€¥) and ¥={1-alacI).

Then:

(1) Rs=NR,(P' € ¥’).

(2) IfradI= P, N --- NP, where every P, is a prime ideal of R of height
one, then R, = N]_ Rp if and only if every P, is a maximal ideal of R.

(3) S and R, are complementary extensions of R if and only if S,,= Q.

Proof. (1) Let x € Ry, and J = (R: x); then there exists a € I such that
1 —-ae€J. Hence J ¢ P’ for any P’ € ¢’ and so x € NRp. (P’ € €’). On
the other hand let x € NR,. (P’ € ¥’) and let J = (R: x). Suppose J N &
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= @; then I + J # R. Thus there exists a prime ideal P’ of R such that
I+ J c P’. Therefore P’ € ¢’, and so x € Rp.. But then J ¢ P’, and this
contradiction shows that J N ¥+ @, and hence x € R,.

(We note that in fact, since R, is a flat over-ring of R, we have R, = NR,
where P ranges over the prime ideals P of R such that PR, # R; i.e., the
prime ideals P such that I + P # R, and hence this is the set Z’)

(2) Assume that rad I = P, N --- NP, where every P, is a prime ideal of
R of height one. By part (1) we have R,C N/ Rp; and by the remark
following Proposition 4.1 we have /_;Rp = R, where 7= R — U, P,.

Assume that R,= R, and that one of the P,’s, say P, is not a maximal
ideal of R. Let P be a maximal ideal of R containing P,. Then P is not equal
to any of the P;’s, and hence P NI # &. Therefore PRy= Ry, and so
PR = R_. Hence there exists a € I such that 1 —a€ P. But I C P, C P;
and this contradiction shows that every P, is a maximal ideal of R.

Conversely, assume that every P, is a maximal ideal of R. Let u € J and
suppose that I + Ru #+ R. Then there exists a prime ideal P such that
I+ Ru c P.Butsince I C P, P is equal to one of the P,’s; and since u € P,
P is not equal to any of the P;’s. This contradiction shows that I + Ru = R.
Hence there exists » € R such that ru € . Thus 1/u = r/ru € R,. There-
fore R;C R, and so Ry= R.

(3) IS+ R,= Q, then clearly S,,= Q. Conversely, assume that S, = Q;
i.e. SR,= Q. Since S =NR,(P € ¥), and R,=NR,. (P’ € ¥’) by part
(1), and ¥U ¥’ = Spec R, we see that S and R, are complementary exten-
sions of R by Proposition 5.2.

PROPOSITION 5.4. Let I be an ideal of R, S the ideal transform of I, € the
set of prime ideals of R that do not contain I, and ¥= {1 — ala € I}.
(1) IfS =1IS, then S is a flat over-ring of R and S = NR(P € ¥).
(2) If S is a complemented extension of R, then the following statements are
equivalent:
(@) S =1IS.
®) S=NR,(P€¥)and S RpifICP.
(¢) R is the complement of S.

Proof. (1) Assume that S = IS. Then § is a flat over-ring of R by
Proposition 3.12(3). Hence by Proposition 4.1, S = NR (P € 2), where D is
the set of prime ideals of R such that PS # S. Let P € 9; then PS # S and
IS =S and so I ¢ P; ie, P € €. Conversely, let P € €. Let x € § and
J = (R: x); then there exists ¢ > 0 such that I‘ c J. Since I ¢ P, we have
J & P; thus x € Rp, and so S C R,. Therefore, PS + S, and so P € 2.
Hence = 2, and so S = NR(P € ¥).

(2) (a) = (b) Follows from part (1).

(b) = (¢) Let A’ be the complement of S. Let ¥’ be the set of prime
ideals of R that contain I; by Proposition 5.3(1) we have R,= NR,.(P’' €
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€’). Since S ¢ R, for P & ¥, we have A’ = NRp. (P’ € ¥’) by Proposition
5.1. Thus R = A4’.

(c) = (a) Since IR, N R = I, we have S = IS by Proposition 5.1.

PROPOSITION 5.5. Let R be a semi-Krull domain and I =1, N --- NI,
where I, is a P-primary ideal of R and P, is a height one prime ideal of R. Let S
be the ideal transform of I and S’ = [_\Rp. Then SN S’ = R; and if Sis a
flat over-ring of R we have SS’ = Q.

Proof. Let ¥, be the set of height one prime ideals of R that do not
contain I and let ¢{ = { P,,..., P,}. By Proposition 4.9, S = NR(P € &)).
Hence by Proposition 4.5(3), we have S N S’ = R. By Proposition 4.6, Sp, = Q;
and if P € €, then S} = Q. Thus (SS’)p, = Q for every height one prime
ideal P of R.

By the remarks following Proposition 4.1, we have S’ = R, wher 7= R —
U/, P; and so S’ is a flat over-ring of R. Thus if S is a flat over-ring of R,
then SS’ is also a flat over-ring of R. In this case, since SS’ & R, for any
height one prime ideal P of R, we have SS’ = Q by Proposition 4.8.

Remarks. With the preceding notation Proposition 5.5 seems to suggest
that if S is a flat over-ring of R, then S and S’ are complementary extensions
of R; but there are many examples to show that this is not true in general. For
example let R be a Noetherian regular local ring of Krull dimension > 1. Let
I = Rp, where p is a non-zero prime element of R, and let = { p"|n = 0}.
Then S = R, is flat and so is S'=Rp.WehaveSS’= Qand SN S’'=R,;
but if ¢ is a non-unit of R — R, then 1/gp & S + S’. Thus S + S’ # Q and
so S and S’ are not complementary extensions of R. However, if S is a
complemented extension of R, then by Propositions 4.9, 5.1, 5.3 and 5.4, R,
is the complement of S, R,= S’, and every P, is a maximal ideal of R. We
shall have an even sharper result in the next Proposition.

PROPOSITION 5.6. Let R be a semi-Krull or a Noetherian domain. Let I be a
non-zero, proper ideal of R, ¥= {1 — ala € I}, and S the ideal transform of I.
Then S and R, are complementary extensions of R if and only if I is a finite
intersection of primary ideals whose associated prime ideals have height one and
are maximal ideals of R. In this case if P is a prime ideal of R, then PS = S if
and only if P is one of the associated prime ideals of I.

Proof. Assume that S and R are complementary extensions of R. Let M
be a maximal ideal of R that contains I, and let P be a non-zero prime ideal
of R contained in M. Since MR, # R, we have PR, # R also. Thus by
Proposition 5.1(2) we have PS = S. Hence 1 = L., p;x;, where p;, € P and
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x; € S. Now there exists # > 0 such that I'x; C R forall j =1,..., m. Hence

m
I'c Y, pj(I'xj) cp,
j=1
and so I C P.

Now I is contained in at most a finite number of height one prime ideals of
R, and thus M contains only a finite number of height one prime ideals of R.
In either the Noetherian or semi-Krull case M is the union of the height one
prime ideals of R that it contains. Thus M has height one. Therefore, if
P,,..., P, are the height one prime ideals of R that contain I, then every P, is
a maximal ideal of R, and no other prime ideal of R contains I. Thus we have

n
I= n (IRP, N R)’
i=1
and IR, N R is a P-primary ideal of R. Now as we have seen in the
preceding paragraph, P,S = S forall i = 1,..., n; and if P is a prime ideal of
R that is not equal to any of the P,’s, then S C R by either Proposition 4.3 or
4.9, and so PS # S.

Conversely, assume that I = I, N ... N1,, where I, is a P-primary ideal of
R and P, is a maximal ideal of R of height one. By Proposition 4.3 or 4.9 we
have S = NR (P € ¥) where ¥ is the set of prime ideals of R that are not
equal to any of the P’s; and by Proposition 5.3(2), R,=MN].;Rp. Thus
S N Ry,= R; and it follows from Proposition 4.6 that (R,), = Q for every
P € %. Thus to prove that S and R, are complementary extensions of R it is
sufficient to prove that Sp =0 foralli=1,...,n.

If R is a semi-Krull domain, then S = NR (P € ¥,), where ¥, is the set
of height one prime ideals of R that are not equal to any of the P,’s, by
Proposition 4.9. Thus in this case Sp = Q for all i = 1,..., n by Proposition
4.6. Hence we can assume that R is a Noetherian domain.

Let P be one of the P’s,let x € Q,andlet J = {reR|rx € S}.If J ¢ P,
then x € S,, and hence we can assume that J C P. Since P has height one, P
is an associated prime ideal of J, and so J = J; N J, where J; is P-primary
and J, is a finite intersection of primary ideals of R whose associated prime
ideals of R are all different from P. Since P is a maximal ideal of height one,
we have J; + J, = R. Thus 1 = a, + a, where a, € J; and a, € J,; and so
x = a,x + a,x. We have Ja,x C S and J,a,x C S. Since J, & P, we have
a,x € Sp, and thus it is sufficient to show that a,x € S. Now there exists
t > 0 such that I‘ C J;, and hence I'a,x is a finitely generated R-submodule
of S. Thus there exists m > 0 such that I"™(I’a,x) C R. Therefore, a,x € S,
and hence x € Sp. Thus Sp = Q forall i =1,...,n.

COROLLARY 5.7. Let R be a semi-Krull (or a Noetherian domain); let €' be
a non-empty set of height one maximal ideals of R; let € be the complement of
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€’ in SpecR; andlet S = NRp(P € €). Then S is a flat over-ring of R and S
is a semi-Krull domain (or a Noetherian domain); and if P is a prime ideal of R,
then PS = S ifand only if P € €.

Proof. If P € €, then Sp = Rp; on the other hand let P € ¢’ and let
S(P) =NRp, where P’ ranges over all prime ideals of R different from P.
Then by Proposition 5.6, we have PS(P) = S(P). Since S(P) C S, we have
PS = § also. Thus § is a flat over-ring of R by Proposition 3.8. If R is a
semi-Krull domain, then § is a semi-Krull domain by Proposition 4.8; and if
R is a Noetherian domain, then S is a Noetherian domain by Proposition 3.6.

Remarks. With the notation of Corollary 5.7, we note that by Corollary 3.9
there is a one to one, order preserving correspondence between Spec .S and €
given by P — PS for P € €. Thus Corollary 5.7 shows that we can remove
any or all of the height one maximal ideals of R and no other prime ideals by
passing to a suitable flat over-ring of R.

DerFINITION. If A is an R-module, let E(A) denote the injective envelope
of 4.

LEMMA 5.8. Let R be an integral domain, I = I, N --- NI, where I, is a
P-primary ideal of R and P, is a non-zero prime ideal of R; and assume that
E(R/Iyc Q/I. Then:

(1) If Pis a prime ideal of R, then P + I + R if and only if there exists one
of the P;’s such that either P,C P or P C P,

(2) If R is a Noetherian domain, then every P; is a height one maximal ideal
of R.

(3) If R is a semi-Krull domain and every P; has height one, then every P, is
a maximal ideal of R.

Proof. (1) Let &= {1 — ala € I}; then by [5, Proposition 2.3],
inj.dimy I, = 1. Since Ry/I,C Q/I,, we can without loss of generality
assume that R = R, and that inj.dimz/ = 1. Thus [ is contained in the
Jacobson radical of R, and hence by [4, Corollary 2.5] we have E(R/I) = Q/I.

Let P be a prime ideal of R and assume that P ¢ P, forany i = 1,..., n.
Then there exists b € P such that b &€ U], P; andwelet x=1/b+ I € Q/I.
Now there exists a monomorphism: R/I = R/I, ® --- ® R/I, such that

1+I1-(01+1,...,1+1),).

Since Q/I is an essential extension of R/I, this monomorphism extends to a
monomorphism

Q/I - E(R/I,) ® --- ®E(R/I,).
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We identify Q/I with its image and we have x = (x,,..., x,) where x; €
E(R/I,). Then

(bxy,....,bx,)=bx=(01+1,...,1 + 1,)

andso (0: bx;) = I, foralli=1,..., n.Since b & P, it follows that (0: x,) = I,
also. Thus bI = (0: x) =N ,(0: x;,) =N}.,I; = I. Therefore I C P; and
since rad I = P, N --- NP, it follows that there exists P, such that P, C P.

(2) Assume that R is a Noetherian domain. We follow the argument of
part (1), except that we allow P to be any height one prime ideal of R and b
to be any non-zero element of P. Then as in (1) we have bI = N]_,(0: x;) and
x; is a non-zero element of E(R/I,). But since R is Noetherian and I; is a
P;-primary ideal of R, (0: x,) is also a P-primary ideal of R. Hence there
exists an integer k > 0 such that (P, N --- NP,)* c bl C P, and thus there
exists a P; such that P, C P. But since P has height one it follows that P, = P.
Thus R has only a finite number of height one prime ideals, and so R has
Krull dimension one. Thus every P; is a maximal ideal of R of height one.

(3) Assume that R is a semi-Krull domain and that every P; has height
one. We follow the proof in part (1) except that we assume that P is a height
one prime ideal of R different from any of the P,’s and that b is an element of
P not in any of the P’s. Then as in (1) we have I = bI C P; and since I
contains a power of P; N -+ NP,, there exists a P, such that P, C P. Since P
has height one, we have P = P; and this contradiction shows that the P,’s are
the only height one prime ideals of R. It follows that R has Krull dimension
one, and so every P, is a maximal ideal of R.

COROLLARY 5.9. Let I =1, N --- NI, where I, is a P-primary ideal of R
and P, is a non-zero prime ideal of R, Let S be the ideal transform of I and
&= {1 — ala € 1}. Assume that either R is a Noetherian domain, or that R is
a semi-Krull domain and every P, has height one. Then E(R/I) C Q/I if and
only if inj.dim g, I,= 1 and every P, is a maximal ideal of R of height one. In
this case S and R, are complementary extensions of R.

Proof. If R is any integral domain then by [5, Proposition 2.3}, E(R/I) C
Q/I if and only if inj.dimg I, =1 and R, is a complemented extension of
R. Corollary 5.9 now follows immediately from Proposition 5.6 and Lemma
5.8.

DEFINITION. We recall that a Noetherian domain of Krull dimension one
is called a Gorenstein ring if inj.dimzR = 1.

PROPOSITION 5.10. Let R be a semi-Krull or a Noetherian domain such that
inj.dim z R = 1. Then R is a Noetherian Gorenstein ring of Krull dimension one.
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Proof. Let b be a non-zero, non-unit element of R. Then Rb= I,
N --- NI, where I, is a P-primary ideal of R and P, is a prime ideal of R. If
R is a semi-Krull domain then we can assume that every P; has height one.
Now inj.dimzRb = 1, and so Q/Rb is R-injective. Therefore E(R/Rb) C
Q/Rb, and so by Corollary 5.9 every P, is a maximal ideal of R of height one.
It follows that R has Krull dimension one. Thus for the remainder of the
proof we can assume that R is a semi-Krull domain, and we shall prove that
R is Noetherian.

Let P be a non-zero prime ideal of R and b # 0 € P. Then with the
preceding notation P is one of the P,’s belonging to Rb. Since every I,
contains a power of P, it follows that there exists a € R such that (Rb: Ra)
= P. Thus if x = a/b + R, then (0: x) = P. Thus Q/R contains a copy of
R /P for every non-zero prime ideal P of R. Since Q/R is R-injective, Q/R is
what we have called in [4] a universal injective module for R. Hence it follows
from [4, Theorem 2.1] that P*/P**1 is a finite dimensional vector space over
R/P for every k > 0.

We can assume that the P;’s in the decomposition of Rb are all different,
and thus I, + I; = R for all i # j. Thus, if we let R, = R/I,, then by the
Chinese Remamder Theorem we have R = R/Rb = R1 - ®R,. Now R,
has only a single prime ideal P, = P,/I, and P*/P¥*!isa ﬁmte dimensional
vector space_over R,/P, Moreover, there exists ¢ > 0 such that P/ =0. It
follows that R, is an Artinian, and hence Noetherian, ring. Thus R = R/Rb is

a Noetherian ring for every nonzero, non-unit element b of R. Therefore, R is
a Noetherian domain.

COROLLARY 5.11. LetI =1, N --- NI, where I, is a Prprimary ideal of R.
Let S be the ideal transform of I and = {1 — ala € 1}. Assume that either R
is a Noetherian domain, or that R is a semi-Krull domain and every P; has height

one. Then inj.dimzl =1 if and only if the following three condttwns are
satisfied:

(1) Imjdimgg,l,=1.

(2) S and R are complementary extensions of R.

(3) S is a Noetherian Gorenstein ring of Krull dimension < 1.
In this case the following three conditions are also satisfied:

4) R has Knrull dimension one.

() Ry= (R,.

i=1

(6) If €, is any set of prime ideals of R, ¢, = SpecR — ¥,, S; = NRp(P
€ €,), and S, =NRy(P € ¥,), then S, and S, are complementary extensions
of R.

Proof. 1If (1), (2) and (3) are satisfied, then inj - dim 4/ = 1 by [5, Proposi-
tion 2.4]. Conversely, assume that inj - dim g/ = 1.
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By Corollary 5.9, S and R, are complemented extensions of R; and every
P, is a maximal ideal of R of height one. Thus R,= N{_,R, by Proposition
5.3. By [5, Proposition 2.4] we have inj.dim¢S < 1. If inj.dimgS = 0, then
S = Q and S is certainly a Noetherian Gorenstein ring of Krull dimension 0.
Hence we can assume that inj.dim¢S = 1. Now S is a flat over-ring of R.
Hence if R is Noetherian, then so is S by Proposition 3.6; and if R is a
semi-Krull domain, so is S by Proposition 4.8. Therefore, by Proposition 5.10,
S is a Noetherian Gorenstein ring of Krull dimension one. If P is a prime
ideal of R different from any of the P,’s, then height P = height PS < 1 by
Corollary 3.9. Thus R has Krull dimension one.

Let S; and S, be as described in the statement of this corollary. Then

S$;NS,=NR, (P € SpecR) =R.

By Proposition 4.6, (S;)p, = Q forall P € ¥, and (S,), = Q for all P € ¥,.
Thus

(S1+8,) =N(S; + ;) p (P € SpecR) = Q;
and so S; and S, are complementary extensions of R.

COROLLARY 5.12. Let R be a Krull domain. Then the following statements
are equivalent:

(1) Inj.dimzR =1.

(2) R is a Dedekind ring.

(3) R has Krull dimension one.

Proof. The equivalence of (1) and (2) is a consequence of Proposition 5.10;
and the equivalence of (2) and (3) is a fairly obvious and standard result.

6. Fg-cover of R-modules

Throughout this section R will be an arbitrary commutative ring and %
will be a category of R-modules that is closed under submodules.

DEFINITION. If A and B are R-modules, then the symbol \: 4 > B
will mean that A is an R-homomorphism from A to B. A pair (F, ¢) is said to
be an F-lifting of B if:

(1) FE% and ¢: F—> B.

(2) If (4,¢)is a pair such that 4 € # and y: A — B, then there exists
A: A — F such that ¢\ = ¢.

An #lifting (F, ¢) of B is said to be pure if the only R-submodule P of F
such that P C ker¢ and F/PE€ F is P = (.
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PROPOSITION 6.1. An #F-lifting (F, ¢) of B is pure if and only if f: F - F
and ¢f = ¢ implies that f is one to one.

Proof. Assume that (F, ¢) is a pure Flifting of B and that we have f:
F > F and ¢f = ¢. Then ker f C ker¢ and F/kerf C F. Thus F/kerf € F
and so ker f = 0. Conversely, assume that (F, ¢) is an Z-lifting of B such that
if f: F> % and ¢f = ¢, then f is one to one. Let P be an R-submodule of
ker ¢ and suppose that F/P € #. Then ¢ induces ¢: F/P — B and hence
there exists A: F/P — F such that ¢\ =¢. Let II: F— F/P be the
canonical map and f= AIl. Then f: F - F and ¢f = ¢, and so kerf = 0.
But P C ker f, and so P = 0. Hence (F, ¢) is pure.

DEFINITION. An %lifting (F, ¢) of B is said to be an F-cover of B if
f: F > F and ¢f = ¢ implies that f is an automorphism of F. It is obvious
that if F € &, then (F,1;) is an F-cover of F. Two F-liftings (F}, ¢,) and
(F,,¢,) of B are said to be isomorphic if there exists an isomorphism
A: F} — F, such that ¢,\ = ¢,. We will say that (F}, ¢,) is a sublifting in
(F,,¢,) if F, C F, and ¢, = ¢,|F}; and that it is a direct summand of (F,, ¢,)
if F, is a direct summand of F, and ¢, = ¢,|F,.

PROPOSITION 6.2. (1) Let (F,, ¢,) and (F,, ¢,) be two F-liftings of B. Then
(Fy, ¢,) is a direct summand of (F,, $,) if and only if F, = F, & C, where
C C ker ¢, and ¢, = ¢,|F;.

(2) Let (F, $) be a pure F-lifting of B. Then (F, $) has no proper direct
summands. Thus if f: F — F, ¢f = ¢, and Im f is a direct summand of F, then
f is an automorphism of F.

(3) If (F, ¢) is a pure F-lifting of B and F is R-injective, then (F, ¢) is an
F-cover of B.

Proof. (1) Suppose that (F;, ¢,) is a direct summand of (F,, ¢,). Then
there exists an R-submodule 4 of F, such that F, = F; ® 4 and ¢, = ¢,|F,.
By definition there exists A\: F, = F, such that ¢;A = ¢,. Thus ¢,A = ¢,. Let

C={x—-Ax)xe€4}.

‘Then it is easily verified that F, = F; ® C and C C ker ¢,.

(2) It follows immediately from part (1) that a pure S-lifting has no
proper direct summands. Suppose that f: F — F, ¢f = ¢, and that F; = Im f
is a direct summand of F. If we let ¢; = ¢|F,, then (Fy, ¢,) is an Flifting of
B and a direct summand of (F, ¢). Hence Im f = F and so f is onto. Since f
is one to one by Proposition 6.1, f is an automorphism of F.

(3) This follows immediately from part (2) and Proposition 6.1.
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PROPOSITION 6.3.  Let (Fy, ¢,) and (F,, ¢,) be two F-liftings of B. Then

Q1) If (F,, ¢,) is pure, then it is isomorphic to a sublifting in (F,, ¢,).

(2) If (F,, ¢,) is an F-cover of B, then it is isomorphic to a direct summand
Of (F 2 <1’2) )

(3) If (F,,¢) is an F-cover of B and (F,, ¢,) is pure, then (Fy, ¢,) is
isomorphic to (F,, ¢,).

Proof. There exist A;: F; = F, and A,: F, = F, such that ¢,\; = ¢; and
oA, = ¢,. Thus (AA)): F; = F, and ¢,(A,A,) = ¢. Parts (1) and (2) are
easily deduced from these equations; whereas (3) follows from (2) and
Proposition 6.2(2).

PROPOSITION 6.4. Assume that F is closed under essential extensions. Let C
be an injective R-module and (F, ¢) a pure F-lifting of C. Then F is an injective
R-module; and (F, ¢) is an F-cover of C.

Proof. By Proposition 6.2 it is sufficient to prove that F is an injective
R-module. Let G be the injective envelope of F; by assumption G € #. Since
C is R-injective, there exists y : G — C which extends ¢: F — C. It is obvious
that (G, ¢) is an F-lifting of C.

Now suppose that P C kery and G/P € #. Let P’ = PN F, then P’ C
ker¢ and F/P’ c G/P. Thus F/P’ € #, and since (F, ¢) is pure, we have
P’ = 0. But G is an essential extension of F, and so P = 0. Thus (G, ) is a
pure F-lifting of C. Hence by Proposition 6.2(3), (G, ¢) is an H#-cover of C.
Therefore, by Proposition 6.3(3), (G, ¢) is isomorphic to (F, ¢), and hence
G = F. Thus F is an injective R-module (i.e., F = G).

DErFINITION. Let B € C be R-modules, and let (G, ¢) be an F-lifting of
C. Let F=¢y YB) and ¢: F > B the restriction of ¢ to F. Then clearly
(F, ¢) is an F-lifting of B. (F, ¢) is called the restriction of (G, {) to B.

Remarks. If C is an essential extension of B, then G is an essential
extension of F. For ker ¢ C F; and if x € G — ker ¢, then there exists r € R
such that 0 # ry(x) € B. Thus 0 # rx € F, proving that G is an essential
extension of F.

PROPOSITION 6.5. Let C be the R-injective envelope of B, (G, y) an F-lift-
ing of C, and (F, ¢) the restriction of (G, {) to B. Then:

Q) If (F,¢) is a pure F-liting of B, then (G, ¥) is a pure F-lifting of C.

(2) If G is R-injective, then both (F, ) and (G, y) are F-covers if and only
if either one of them is a pure F-lifting.

Proof. (1) Assume that (F, ¢) is a pure F-lifting of B. Let P C kery =
ker ¢ and suppose that G/P € #. Then F/P C G/P, and so F/P € #.
Since (F, ¢) is pure, P = 0; and thus (G, ) is pure.
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(2) Assume that G is an injective R-module. If (F, ¢) is pure, then (G, ¢)
is pure by part (1); and hence (G, ¥ ) is an F-cover of C by Proposition 6.2(3).
On the other hand assume that (G, ¢) is a pure Z-lifting. Then (G, ¢) is an
F-cover of C by Proposition 6.2(3). We must show that (F, ¢) is an F-cover
of B. Let f: F — F be a map such that ¢f = ¢. Since G is R-injective we can
extend f to g: G — G. The problem we have to overcome is that we don’t
necessarily have yg = ¢.

We shall prove first that g~}(F) C F. Let y € g~!(F). Since ¢f = ¢, we
have F = Im f + ker ¢; and so g(y) = f(x) + z, where x € F and z € ker ¢.
Hence without loss of generality we can assume that g(y) = z. Suppose
y & F; then y & kery C F, and hence there exists r € R such that 0 # rj(y)
€ B. But then ry € y"(B) = F and so r¢(y) = ¢(ry) = ¢f(ry) = yg(ry)
= Y (rz) = 0. This contradiction proves that g~(F) C F.

We next define &: (F+ Img) - C by &(x + g(»)) = ¢(x +y) for all
x € F and y € G. Now & is well-defined; for if x + g(y) =0, then y €
g (F)C F, and hence ¢(x +y)=y(x +y)=o(x)+ ¢f(») = ¢(x +
g(»)) = 0. Since C is R-injective, we can extend & to all of G; and we call the
extension & as well. We then have that &= ¢ on F and &g = .

Since (G, ¥) is an F-lifting of C, there exists A: G — G such that YA = 8.
But then ¢ (Ag) = &g = ¢; and since (G, ¢) is an Fcover of C it follows that
Ag is an automorphism of G. Thus A is onto and g is one to one. Therefore, f
is one to one also, and this proves that (F, ¢) is a pure F-lifting of B by
Proposition 6.1.

Now A(F) C F; for if x € F, then yA(x) = &(x) = ¢(x) € B, and so
A(x) € Yy~Y(B) = F. Thus on F we have ¢\ = ¢; and hence A is one to one
on F because (F, ¢) is pure. But since G is an essential extension of F by the
remarks preceding this proposition, it follows that A is one to one on G. Thus
A is an automorphism, and hence so is g = A"1(Ag). Since g"(F) C F and
g = f on F, it follows that f is an automorphism of F. Thus (F, ¢) is an
F-cover of B.

PROPOSITION 6.6. Assume that & is closed under direct limits, and let

(F, ¢) be an F-lifting of B. Then (F, ¢) contains a direct summand that is an
F-cover of B.

Proof. Let {P,} be a linearly ordered family of R-submodules of ker ¢
such that F/P, € # for all a. Let P=U_P,; then P C ker¢ and F/P
= LimF/P, € #. Thus by Zorn’s Lemma we can assume that P is maximal

with-;espect to these properties. We let Eﬁ: F/P — B be the map induced by
¢; then it is fairly obvious that (F/P, ¢) is a pure F-lifting of B. It now
follows from Proposition 6.3(2) that we can assume without loss of generality

that (F, ¢) is a pure F-lifting of B. We shall prove that (F, ¢) is an SF-cover
of B.
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Let f: F —» F be a map such that ¢f = ¢. Then f is one-to-one and we
shall prove that it is onto. Let 8 be a non-limit ordinal such that card F <
card 8. For each a < §, let F, = F. We shall define by transfinite induction
fB: F, > F; for all @ < <8 such that the following four properties are
satisfied:

(1) fa<ysp<?, then fBf) =[5

Q2 off=9¢
B fetr=f
@ fr=1g.

We assume that £ has been defined for all @ < vy < B to satisfy these four
properties, and we shall define f5: F, - Fy to satisfy them. If B is not a limit
ordinal then we can define f# = /8~ forall « < B — 1and ff = 1.. Thenit
is easy to verify that the four properties are satisfied. Hence assume that Bisa
limit ordinal. Since the maps { fY} for @ < y < B are a directed family we can
use them to form L = LimF,. Then by the properties of direct limits there

exists j,: F, = L such that j, =j, fY for all @ <y < B; and since ¢f) = ¢,
there exists y: L — B such that yj, = ¢. Since L € # by assumption, there
exists A\: L — F such that ¢\ = §. We now define f?: F, - F, by f8 =\,
for « < B and f‘f =1, Then it is easily verified that ff-satisfies the four
listed properties.

By transfinite induction we have defined f2: F, > F; for all a < § to
satisfy the four properties. Since ¢f = ¢, and (F, ¢) is pure, f? is one to one
by Proposition 6.1. If a < 8, we have f8 = f3 ,f; and so Im f% c Im f2, .
Since card F < card 8, there exists @ < & such that Im f2 = Im f2, . Thus if
x € F, there exists y € F such that

faa(x) = £2() = £2:1(F(»)).

But f2,, is one to one, and hence x = f(y). Therefore, f is onto, and so
(F, ¢) is an F-cover of B.

Remarks. The proof of Proposition 6.6 was modeled closely after the proof
of Lemma 2.3 in [2].

DErFINITION. Let S be a commutative ring extension of R, B an R-mod-
ule, and C the R-injective envelope of B. For the remainder of this section we
shall let

¥: Homg(S,C) » C

denote the canonical map defined by ¢(f) = f(1) for all f € Homg(S,C).
We shall let (F, ¢) denote the restriction of (Hom z(S, C), ¥) to B. Thus

F = {f € Homg(S,C)|f(R) c B).
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PROPOSITION 6.7. Let S be a commutative ring extension of R. Then:

(1) Every R-module B has an F¢cover.

(2) If C is the R-injective envelope of B, then (Homg(S,C),¢) is an
Flifting of C; and (F, ¢), the restriction of (Homg(S,C),y) to B, is an
F-lifting of B. Thus the Fg-cover of B is a direct summand of (F, ¢).

Proof. We shall first prove that (Hom (S, C), §) is an Flifting of C.
Hence suppose that 4 € #; and f: 4 > C. Let ,: A > A4 ®,S be the
canonical map. Then 6, is one to one by Proposition 1.5; and so, since C is
R-injective, there exists g: 4 ® S = C such that gd, = f. Define \: 4 -
Hom (S, C) by A(x)(s) = g(x ® 5) for all x € 4 and s € S. Then clearly
YA = f, and so (Homx(S, C), ) is an Flifting of C. It follows immediately
that the restriction (F, ¢) is an Flifting of B.

Now % is closed under direct limits by Proposition 1.5. Hence by
Proposition 6.6, (F, ¢) contains a direct summand that is an %g-cover of B.

DEFINITION. Let § be a commutative ring extension of R and B an
R-module. The F-cover of B that exists by Proposition 6.7 is unique up to
isomorphism by Proposition 6.3(3); and we shall denote it by (F(B), ¢3).

PROPOSITION 6.8. Let S be a commutative ring extension of R. Then the
following statements are equivalent:

(1) % is equal to the category of all ttorsion-free R-modules.

(2) %5(C) is an injective R-module for every injective R-module C.

Proof. (1) = (2) % is closed under essential extensions by Proposition
2.4. Hence %(C) is R-injective for every injective R-module C by Proposi-
tion 6.4.

(2) = (1) Let B€ % and let C be the R-injective envelope of B. By
Proposition 2.4 it is sufficient to prove that C € %. By assumption Z(C) is
R-injective. Let (F, ¢) be the restriction of (F(C),$S) to B. Then by
Proposition 6.5(2), (F, ¢) is an Fg-cover of B. But (B,1,) is an F-cover of
B, and hence (B, 1;) is isomorphic to (F, ¢) by Proposition 6.3(3). Therefore
ker ¢2 = ker ¢ = 0, and so ¢¢ is one to one. Since an Flifting map is always
onto, ¢2 is an isomorphism. Therefore, C = % (C) € Z.

Remarks. The equivalence of Proposition 6.8 is not too surprising in the
sense that the condition that % is equal to the cateogry of tg-torsion-free
R-modules is a generalization of the condition that S is flat; and S is flat if
and only if Hom 4(S, C) is R-injective for every injective R-module C. Since
F4(C) € Homg(S, C), this raises the question of when the two are equal.
More light will be shed on this in the next proposition and its corollary. The
next proposition also generalizes Banaschewski’s results for torsion-free covers
over an integral domain [1, Proposition 1 and its corollary].
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PROPOSITION 6.9. Let S be a commutatitive ring extension of R, B an
R-module, and C the R-injective envelope of B. Let (F, ¢) be the restriction of
(Hom x(S, C), ¥) to B. Then the following statements are equivalent:

(1) S is a torsion envelope of R.

(2) (F, ¢) is an Fgcover of B for every R-module B.

Proof. (1) = (2) By Proposition 3.1, S is R-flat; and so Homg(S, C) is
R-injective. Thus by Propositions 6.5(2) and 6.7 it is sufficient to prove that
(Hom 4(S, C), ¢) is pure, for then (F, ¢) will be an F-cover of B. Hence
suppose that 0 # P C ker {, and let 0 # f € P. Then there exists s € S such
that f(s) # 0. Since Hom ¢x(S, C) is an S-module, g = sf is also an element of
Hom (S, C). We have ¢(g) = (sf)(1)=f(s) #0, and thus g & kery.
Therefore, g + P is a non-zero element of Hom (S, C)/P.

Let I = (R:s); then I € S because S is a torsion envelope of R. Now

Ig=(Is)fc Rfc P,

and so g+ P is a tg-torsion element of Hom 4(S, C)/P. Therefore, since
every element of % is tg-torsion-free by Proposition 2.3(1), we have

Hom,(S,C)/P ¢ Z.

Thus (Hom 4(S, C), ) is pure.

(2) = (1) Suppose that S is not a torsion envelope of R. Then there exists
s € S such that if I = (R:s), then S # IS. Let B = S/IS and let C be the
R-injective envelope of B. Let x =s + R in S/R; then (0: x) = I, and so
there exists f: S/R — C such that f(x) = 1 + IS. Thus Hom x(S/R, C) # 0.

Let (F, ¢) be the restriction of (Hom z(S, C), ¢') to B. By assumption (F, ¢)
is an Fg-cover of B. But B is an S-module and so (B, 1;) is an Fg-cover of B.
Thus (F, ¢) is isomorphic to (B,15) by Proposition 6.3(3). Hence ker ¢ = 0.
But ker ¢ = ker y = Hom g(S/R, C) # 0. This contradiction proves that S is
a torsion envelope of R.

COROLLARY 6.10. Let S be a commutative ring extension of R and assume
that % is equal to the category of all tgtorsion-free R-modules. Then the
following statements are equivalent:

(1) S is a torsion envelope of R.

(2) (Homg(S, C), ¥) is an Fgcover of C for every injective R-module C.

Proof. That (1) = (2) follows from Proposition 6.9. Hence assume (2). Let
B be an R-module. C the R-injective envelope of B, and (F, ¢) the restriction
of (Homg(S,C),¢) to B. By Proposition 6.8, Hom 4(S, C) is an injective
R-module. Hence (F, ¢) is an F¢-cover of B by Proposition 6.5(2). Thus S is
a torsion envelope of R by Proposition 6.9.
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DEFINITION. Let &, be the class of all R-modules that are submodules of
flat R-modules. Then %, is closed under direct limits. Hence by Proposition
6.6 any Zlifting of an R-module B contains a direct summand that is an
Zy-cover of B. It would be interesting to know which rings have the property
that every one of its modules has an % -cover. The next Proposition will
provide some examples. We note first that if S is any commutative ring
extension of R, then %, C %;.

PROPOSITION 6.11. Let S be a commutative ring extension of R and assume
that S is R-flat and is a semi-regular ring. Then %, = %, and hence every
R-module has an % ycover. Moreover, if C is an injective R-module, then the
Fy-cover of C is a flat, injective R-module.

Proof. Since S is semi-regular, every S-module is an S-submodule of a flat
S-module. Since § is R-flat, every flat S-module is a flat R-module. Thus
Fs C Fy; and F, C F; for any commutative ring extension S. Let C be an
injective R-module. Then % (C) is a direct summand of Hom (S, C) by
Proposition 6.7. Hom g(S, C) is an injective S-module, and hence is a direct
summand of a flat S-module. Thus Hom (S, C) is R-flat; and it is R-injective
since S is R-flat.

Examples. Next we exhibit two general types of rings that have the
property that every one its modules has an #j-cover.

(1) Let R be a reduced ring such that min R is compact. Then E, the
injective envelope of R, is a flat, von-Neumann regular, commutative ring
extension of R, and hence Proposition 6.11 applies.

(2) Let R be a Noetherian Gorenstein ring. Then Q, the total ring of
quotients of R, is a flat, quasi-Frobenius, commutative ring extension of R.
Hence Q is semi-regular and Proposition 6.11 applies.

PROPOSITION 6.12. Let R be a Noetherian ring and S a commutative ring
extension of R such that S/R has finite length. Then every finitely generated
R-module has a finitely generated F¢cover.

Proof. Let B be a finitely generated R-module and let C be the R-injective

envelope of B. Now (%(B), ¢3) is contained in (Hom g(S, C), §) by Proposi-
tion 6.7. Thus

Ker ¢3, C ker ¢ = Hom4(S/R,C).

But Hom ,(S/R, C) has finite length since both S/R and the socle of C have
finite length. Thus ker ¢ has finite length. There exists a finitely generated
R-submodule 4 of % (B) such that F;(B) = A + ker ¢3. Hence F(B) is a
finitely generated R-module.
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Remarks. With the notation of Proposition 6.12 we observe that if socle
B =0, then B € %. For in that case Homg(S/R, C) = 0, and hence ker ¢5,
= 0. Since ¢3 is onto, we have B = #((B) € %;.

DEFINITION. Let S be a commutative ring extension of R. An R-module
B will be said to be S-cotorsion if Hom g(S, B) = 0 and Extk(S, B) = 0. B
will be said to have S-bounded order if (0: B) € £ (ie., S = (0: B)S).
Clearly if B has S-bounded order, then it is S-cotorsion. Thus if I € S (i.e.,
IS = §), then R/I is S-cotorsion.

PROPOSITION 6.13. Let S be a torsion envelope of R and B an S-cotorsion
R-module. Let C be the injective envelope of B. Then %¢(B) =
Hom 4(S/R, C/B).

Proof. Let (F, ) be the restriction of (Homg(S, C),¢) to B. Then by
Proposition 6.9, F = %;(B). We have a natural injection

0 — Homx(S/R, C/B) - Hom(S, C/B),

and since B is S-cotorsion, the natural map n: Hom (S, C) = Homg(S, C/B)
is an isomorphism. Hence if we let » = n~l¢, then »: Hom4x(S/R,C/B) -
Hom ¢x(S, C) is one to one. It is easy to verify that

Imy = { f € Homg(S,C)|f(1) € B} = F.

COROLLARY 6.14. Let S be a torsion envelope of R; and suppose that I is an
ideal of R such that IS = S, and E /I is the injective envelope of R/I, where E is
the injective envelope of R. Then #3(R/I) = Homg(S/R, S/R).

Proof. Let B=R/I and C = E/I; then C/B = E/R. Thus

Fs(R/I) = Homg(S/R, E/R)

by Proposition 6.13. Since S/R is tg-torsion by assumption, E/S is tg-tor-
sion-free by Proposition 2.3. Thus Hom z(S/R, E/S) = 0, and so

Homz(S/R, E/R) = Homy(S/R, S/R).
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