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A BACKWARD HARNACK INEQUALITY AND FATOU
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PARABOLIC EQUATIONS

BY

EUGENE B. FABES1, NICOLA GAROFALO2 AND SANDRO SALSA2

Introduction

It is not an uncommon happening in the development of elliptic and
parabolic p.d.e, that resolution of a problem first appears in the elliptic case
and shortly after there is an attempt totdapt the techniques to the corre-
sponding parabolic problem. In the majority of cases the adaptation succeeds
with relative ease; but when it does not succeed so readily, or even not at all, a
new and hopefully interesting insight into solutions of the parabolic problem
is needed.

Such is the case in the study of the classical Fatou theorem for solutions,
u(x, t), of a parabolic partial differential equation of the form

 u(x, t) Dx, (aij(x, t)Dxju(x, t)) Dtu(x, t) O.
i,j=l

In particular, we consider solutions, u, defined in the cylinder D / Dx(0, ),
D c Rn, which are nonnegative there and we want to study their pointwise
boundary behavior, especially at points on the lateral boundary, S/
ODx(O,
The assumptions on the operator L and domain D c Rn are as follows:
(i) The matrix (aij(x, t)) is bounded, measurable, symmetric, and uni-

formly positive definite, i.e., there exists , > 0 such that for all x R", } R
and > 0,

,112 aij(x, t)ij <-- (1/X)II 2.
i,j=l

(ii) D is a bounded Lipschitz domain in R.
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In [2] the question of boundary values for nonnegative solutions of elliptic
equations in a Lipschitz domain was studied. It was shown that if

i,j=l

and u > 0 there, then at points P D which belong to the complement of a
"small" exceptional set the pointwise limit of u(x) exists provided x con-
verges to P within a truncated cone contained in the domain and with vertex
at P, i.e., limx_. eu(x) exists provided x P nontangentially. The assump-
tions on the matrix, (aij(x)) were, as above, the boundedness, measurability
symmetry, and uniform positive definiteness. The "small" exceptional set, E,
of boundary points at which the nontangential limits fail to exist is a set of
L-harmonic measure zero; i.e., for each x D, 0X(E) 0 where ox(dP) is
the unique finite Borel measure on D such that for all q C(D) the
potential

is the solution to the Dirichlet problem Lu 0 in D, Ul0D .
When we attempted to adapt the techniques in [2] to the parabolic problem

an interesting difficulty occurred. Essential to the proof of the Fatou theorem
in the elliptic case was the "doubling" property of L-harmonic measure, 00,
with xo fixed inside D. This means that the measure of a surface ball, Ar(P),
of radius r and center P and the measure of its concentric double, A2r(P), are
equivalent, or, more precisely,

_<

with C independent of r and P. The corresponding doubling property for the
L-caloric measure, 00’ r0 in the parabolic case (see Section 0) seems difficult
to establish and it is, in fact, equivalent to the existence of a "backward"
Harnack inequality for nonnegative solutions of parabolic equations which
vanish on the entire lateral surface, S/ Dx(O, c). (See Theorem 2.4 and
the remark following it.)
The normal Hamack inequality for nonnegative solutions, u(x, t), of Lu 0

in D+ states that values of u inside D and at time are controlled or
bounded by the value of u at any fixed point inside D and at a later time
t_ > 1. This bound can be taken to be independent of u. (See Theorem 0.2. It
is also assumed that stays at some positive distance from the initial time,

0.) We point out in Section 1 that when the nonnegative solution, u,
vanishes on the entire lateral boundary of D/ then this forward Harnack
inequality can be reversed, i.e., values of u inside D and at time t2 are
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controlled or bounded by the value of u at any fixed point inside D and at an
earlier time t1. Once again the bound does not depend on u, and is assumed
to stay at a positive distance from 0. Another way of expressing this
interior backward Harnack inequality is the statement

sup u < cKinf U
K K

where K is any compact subset of D+. We emphasize that this Harnack is
valid uniformly in u only when u belongs to the class of nonnegative solutions
which vanish on S/ ODx(O, o). It is not true for arbitrary nonnegative
solutions and, interestingly, it requires also the boundedness of the domain, D.
(See Theorem 1.3 and the remark following it.)
As we have already indicated, a backward Harnack inequality is closely

related to the doubting property of L-caloric measure. However, for the
doubling property a form of the backward Harnack inequality stronger than
the interior one described above is required; namely, one must be able to
compare values of a solution at points near the boundary. Specifically one
needs to prove that in the class of solutions, u > 0, which vanish on the lateral
boundary, S /,

sup u < c inf u

where K ((x, t): Ix x01 < r, It- t0l < r 2} is contained in D
Dx(8, ), 8 > 0, and dist((I x x01 < r }, OD) is equivalent to r. Here c
must be found independent of u and Kr. This "backward Harnack at the
boundary" and the ensuing Fatou Theorem for general nonnegative solutions
of Lu 0 in D/ are shown in Section 2 to hold in the special case of
parabolic operators with time independent coefficients. These results in the
general case remain an open problem.

O. Definitions and known results

In this section we set up the notation and recall some known results that
will be used throughout the paper.
Our basic domain is a cylinder Dr Dx(O, T) with Lipschitzian cross-sec-

tion D. We call a bounded domain D c R a Lipschitz domain if for each
Q OD there exists a ball, Bro, centered at Q and a coordinate system of R
such that in these coordinates,

"ro n "ro n {(X’,X.)Ix’ Rn-I, xn > (x’)where IIx7wll, = < m}
and

Bro n ao Bro I’ ((X’, )(Xt))lX . Rn-1 }.



A BACKWARD HARNACK INEQUALITY 539

We will assume the radius of the ball, Bro, and the constant rn independent of
Q D. These two numbers, ro and m, determine what is called the Lipschitz
character of D.
With Sr we indicate the lateral surface of the cylinder Dr, i.e., Sr D

(0, T). The parabolic boundary of Dr is 3,Dr Sr (Dx{0)). Analogously
we set D+=D(0,+o), S+= 3D(O,+o) and 3pD+=S+(D
(0)).
For (Q, s) DpDr and r positive we define

xIs( Q,s)= ((x,t)10<t< T, Ix-QI <r,lt-sl <r2),
A,(Q, s) OpDr C r(Q, s),

and call A,(Q, s) a parabolic surface box with radius r and center at (Q, s).
If Q OD is represented by (xo, (Xo)) in the above mentioned local

coordinates we set

A(Q, s)= (x, (x) + r, s + 2r2),
d,(Q, s)= (x’o, (x’o) + r, s- 2r2).

THEOREM 0.1 (Energy estimate, see [1]). Let u be a nonnegative sub-solution

of L in the cylinder BEr(Xo) (to 4r 2, o + 4r2). Then

max
It-tol<r flx rU2(X, t) + f,o+,’-f )v u(x, t)l d dt

Xol < to- , 1-ol<

C fto+4r=f u2(x, t)dxdt.,to_4r alX-Xol<2r

where C depends only on ., n.

THEOREM 0.2 (Harnack Principle [1]). Let u be a nonnegative solution of
Lu 0 in Dr, and let D’ be a convex sub-domain of D such that dist(D’, OD)

> 0. Then for all x, y D and O < s < < T we have

u(y,s) < ,t)exp[c(lX-yl2t_s + R +1

where C C(X n) and R min(1, s, 8 2).

THEOREM 0.3 (Carleson Estimate [5]). Let (Q, s) OpDT, s < T, and u be
a nonnegative solution ofLu 0 in DT which continuously vanishes on A 2,(Q, s).
Then there exists a constant C C(X, n, m, ro) such that for r < ro and
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(x, t) (Q, s),

<

For a p C(OpDr) we can uniquely solve the boundary value problem

(DP) Lu O in Dr ulopD= cp.

For each (x, t) Dr the L-caloric measure 0(x’t) is the unique probability
Borel measure on OpDr with the property that the function

U(X, t) f qo(Q, s) do(x,t)(Q, s)
pD

is the unique solution of (DP). Observe that Theorem 0.2 implies that for
x, y D and 0 < s < < T, 0(y’s) << (x,t).
By the results in [1] there exists a unique Green’s function G(x, t; , ) for

the problem

(0.1) Lu f in DT, Ulo,Dr O.

Thus for f Lq(O, T; LP(D)), and suitable q, p,

(0.2) u(x, t) fOTfDG(X, t; , ’r)f(’, "r) d’ d’r

represents the unique solution of (0.1). Moreover Aronson’s estimates (see [1])
imply that if F(x, t; , ) is the fundamental solution of Lu 0 in the whole
space, then there are constants a1, a2, C1, C2 depending only on 3,, n such that
for allx,R and t>,

(0.3) ClV (x <_ r(x, t; _<

where 3’i is the fundamental solution of Li D aA. The same estimates
hold for the Green’s function G(x, t; I, ) for a bounded cylinder Dr; what is
different in this case, however, is that a, C depend in general on the distances
of x, from OD and on T while a2, C2 do not contain such dependencies.

1. Estimates for the L-caloric measure and comparison theorems for
nonnegative solutions

It is known that to get information on the boundary behavior of nonnega-
tive solutions of second-order elliptic equations which vanish on a part of the
boundary one is led to study the corresponding elliptic measure and its
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regularity properties in a neighborhood of such a boundary zone. In this
context it turns out that the fact that "all nonnegative solutions which are zero
on a part of the boundary actually vanish at the same rate" is equivalent to the
so-called doubling condition. This is a regularity property satisfied by the
elliptic measure and can be stated as follows: "The elliptic measure of a
surface box of radius 2r is equivalent to the elliptic measure of a box of radius
r". To prove this property one has to make explicit the relation between
elliptic measure and Green’s function, and the main tools to get this are a
boundary form of the Hamack Principle and estimates on the Green’s
function.
For parabolic equations the situation is much more complicated, essentially

due to the evolution nature of the latter which is reflected in a time-lag in the
Harnack Principle and non self-adjointness of the operator. As a consequence
the relation between caloric measure and Green’s function is weaker than the
elliptic analogue and presents a backward time-lag.

In this section we establish this relation together with comparison results for
nonnegative solutions vanishing on a part of the parabolic boundary. In
Section 2, when dealing with time-independent operators, we will be able to
overcome the above mentioned difficulties establishing the doubling condition.
This turns out to be equivalent to an elliptic-type form of the Harnack
Principle at the boundary for the Green’s function.
We begin with stating a useful consequence of Theorem 0.3.

THEOREM 1.1. Let (Q, s) OpDT and let u be a nonnegative solution of
Lu 0 in Dr that continuously vanishes on 3pDT\ Ar/2(Q,s ). Then there
exists a constant C C(X, n, m, ro) such that for r sufficiently small, depending
on T s and for each (x, t) Dr\ err(Q, s) we have

(1.1) u(x,

Proof We provide the proof only for the case s > 0. The case s 0 is
treated in the same way and we leave the details to the reader. By the
maximum principle it suffices to prove (1.1) when (x, t) Ogr(Q, S) and
> s 1/4r 2. Fix 8 (0,1) small enough depending on the Lipschitz character

of D so that for each (O, g) O gr(Q, s) St, 9.,(Q, g) XItr/2(Q, s)
and g + 282r 2 < s + 2r 2. By Theorem 0.3, for each such (, g) we have

t)

for each (x, t) xI,,(Q, g), where c depends only on ,, n, m, r0. Harnack’s
Principle provides a constant C depending on and n such that for

(, g) O q(Q, s) OpDr,
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we have

(1.3) _<

(1.2), (1.3) and a covering argument imply that (1.1) holds on

op(Q,s) t {(x, t). dist(x, OD) < cr)

where c > 0 and depends only on the Lipschitz character of D. We use again
the Harnack inequality to get (1.1) on the remaining part of Oqrr(Q, s) which
lies strictly inside Dr Q.E.D.

COROLLARY 1.2. With the hypothesis of Theorem 1.1 there is a constant C
depending on )t, n, m, ro such that for r small enough (say r < 1/2x/T- s and
r < ro) and (x, t) Dr\ r(Q, s),

(1.4) U(X, t) CU(Xr(Q, s))o(x’t)(A2r(Q, s)).

Proof As in the proof of Theorem 1.1 it is enough to get the bound

o(x")(A2r(Q, s)) > C

for each (x, t) O qg(Q, s), with C having the above dependence. (1.5) is a
consequence of uniform HSlder continuity at the boundary of nonnegative
solutions of Lu 0 vanishing at the boundary and the fact that

o(x’t)(A2r(Q, s)) 1 on A2(Q, s). Q.E.D.

Theorem 1.1 implies an elliptic-type Harnack inequality which holds inside
D7. and that we may formulate in the following way.

THEOREM 1.3. Let u be a nonnegative solution of Lu 0 in D+ which
continuously vanishes on S+, and for (0,min(1/2ro, 1/2f-f)) set

Dn (x Dldist(x, OD) > }, Dn, T= Dn (82, T).

There exists a positive constant C C(X, n, m, r0, 8, diam D, T) such that

(1.6) maxu_ < Cminu._
D,T D,T

Proof Since u C(Ds, T) there exist (Xo, To) and (X1, T1) belonging to
Ds, r such that u(Xo,.To) min Tu, u(X1, T1) max Tu. Let D*n.T denote
the cylinder D (i z, T]. It is clear that Ds, r c D,r’. If (Q, s) ST and
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s 1/23 2 then Dr /2(Q, s) c D/2, r\ D,-- r, and also s + 1/48 1/48 2. By
the Carleson estimate (Theorem 0.3), applied to the box Dr cq e/2(Q, s), we
get for all (x, t) Dr /4(Q, s),

U(X, t) <_ ClU(A--/4(Q, s)),

where C depends on ,, n, m, .and ro. The Harnack inequality provides a
constant C2 C2(, n, 8, diam D, T) such that for all (Q, s) Sr with

U(B/4(Q, S)) C2u( gO, To).

By (1.7), (1.8) we get

(1.9) u(x, <_ C,u{ Xo,

for all x D such that dist(x, OD) < 8/4. Again by the Harnack inequality
we find a constant C4 C4(X, n, 8, diam D, T) such that

(1.10) max u < C4u ( X0, To).
98/4 X 2//2}

Since u =- 0 on Sr by (1.9), (1.10) and the maximum principle we get

(1.11) maxu < Cu( Xo, To)
DT

with C max(C3, C4). To conclude the proof observe that
max D*, TU.

Remark. Theorem 1.3 may fail to hold if one drops either the boundedness
of the base D of D/, or the fact that u vanishes identically on S /. In fact, in
the first case if D R for example, and

u(x, t)
e-lx+x12/4t
(4rt) n/2

then u is a solution of Lu Au- u 0 in R (0, T), T > 1. If x
(xl,...,xn) is fixed so that x > 0 for each i= 1,..., n, taking x0
(xm, x,..., xn) we get

u(0, 1)
u(x, 1) e Ixlz/4 e (x’x)/2 O,

as xm -. This shows that the boundedness of D is necessary.
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To see that the "cooling" condition u 0 on S/ is necessary too, one can
consider, in the case n 1, the situation typified in the diagram, where D, r is
as in the statement of Theorem 1.3.

D
$,T

For each e > 0, we let u, be the solution of Lu 0 in Dr corresponding to
the boundary values assigned as in the diagram. Since the maximum of u over
D,, r is strictly bigger than a positive constant independent of e while the
minimum there is less than or equal to e, (1.6) cannot hold uniformly in e.
We now establish the main relation between the L-caloric measure and the

Green’s function.

THEOREM 1.4. Let (Q, s) Sr, then for r sufficiently small, say

r < min(1/2ro, 1/2Vt-, 1/2v/T- s ),

and each (x, t) Dr with s + 4r 2 < < Twe have

(1.12) C-lrnG(x, t; (Q, s)) < o(x’t)(Ar(Q, s)) < CrnG(x, t; A_r(Q, s))

where C & a constant which depends solely on X, n, ro, rn and T.

Proof Pick q0 C(Rn+ 1) such that tp > 0 and

1 in,I,r(Q, s )
qo=

0 outside6r/5(Q,s).
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For (x, t) Dr with >_ s + 4r 2 we have

(1.13) (,o(a,(e, ))

-< fop Dr(p (’ 2) daTM t)(, 2) (p (x, t)

ffD [ai(’ r)D,G(x’t; ’ )D(’
+6(x, t; , )D#(, )

Observing that IOe.l c/r, IO#l c/r 2, by Schwarz’s inequality we get

(1.14)

(ff.6 )1/260(x’t)( Ar(Q, s)) <_ Cr "/2 [VtG(x, t; , r)l 2 d dr
r/s(Q,s)nDr

+cr-2 f f G(x, t; [d, r) d dr
.,.,%r/s(Q, s)

with C depending only on X, n. Theorem 0.1 gives

(1.15) /,(Q,,)IViG(x, t; li, r)l 2 d dr

< a(x, t; gz, )" d d,
r r/4(Q, s)

after having extended G(x, t;-, .) to be zero outside Dr, which makes it a
sub-solution of L* Y’."i,j=lDtj(aijDtdi) + D Using the analogue of Theorem
0.3 for nonnegative solutions of L*v 0, for each (x, t) Dr with > s + 4r 2

and ( I, r) Xsr/4(O s) we get

(1.16) G(x, t; li, r) < CG(x, t; A(Q, s)),

where C C(X, n, ro, m, T). (1.14), (1.15) and (1.16) give the right-hand side
of (1.12).
For the left-hand side of (1.12) we first note that

a(x, t; , ) <_ cv(x ; ),

where C2 and 3’2 are defined in Section 0. Now choose depending on m (the
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Lipschitz constant) such that if (Q,, Sr) represents the point At(Q, s), then the
cylinder

,=

is contained in Dr and s / 82r 2 < s 4r 2. Using the above estimate on G,
for(x,t) Oand t>sweget

(1.17) r"G(x, t; 7(Q,s)) N C.

On the other hand (see Lena 4.2 in [5] for example) for all such points we
get

(1.18) (x,O((Q, s)) C.

By the maximum principle, obseing that G(x, t; A(Q, s)) 0 if s and
x Q, and (1.17), (1.18) we get the left-hand side of (1.12). Q.E.D.

Before stating the next result we need to introduce some notation. For a
point (Q, s) Sr and r small enough let at(Q, s) and fir(Q, s) be the sets

ar(Q, s) Op(qr(Q, s) (3 Dr) \ OpDT,
fir(Q, s) {(y, t) (y’, y,, t) opxI,r(Q, s)ly > q(y’) + br }

where b (0, 1) is fixed and tp is the function which describes OD around Q.
Observe that dist(flr(Q, s), St) is equivalent to br.
With to and G we indicate the L-caloric measure and the Green’s function

relative to the domain xI’r(Q, s) c Dr. -x/ - x/T s ). Then thereLEMMA 1.5. Let (Q, s) Sr and r < min(1/2r0, 2

exists a positive constant C C(X, n, ro, m) such that

(1.19) 03x’ ’) ( Or ) "( C)x’ ’) ( [r )

for each ( x, t) qr/8(Q, s) N Dr.

Proof Set U (qr/2(Q, s) \ gr/a(Q, s)) 0 Dr and pick tp C(R"+1)
such that q 1 outside qr/2(Q, s) and tp 0 inside err/4(Q, s). As in
Theorem 1.4, for (x, t) Xt’r/8( Q, S) Dr we have
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Following the same argument as in Theorem 1.4, for (x, t) t’r/8(Q, s) we
get

(1.21) ox’t)(Otr) <_ CGr((X,/); A___r/2(Q, s))r n.

Now, for each (x, t) qS/8(Q, s)N Dr, a maximum principle argument
similar to that used for proving (1.12) gives

(1.22) rnGr(x, t; Ar/2(Q,s)) < C@X’t)(flr).

(1.21) and (1.22) imply (1.19). Q.E.D.

THEOREM 1.6 (Local comparison theorem). Let (Q, s) Sr and u, o be
two positive solutions of Lu 0 in ql2r(Q, s) N Dr vanishing continuously on
A 2r(Q, s). Then there exists a constant C C(X, n, ro, m) such that for r
sufficiently small, say r < min(1/2r0,-v/7, 1/2v/T- s ), and (x, t) qr/8(Q, s)
Dr we have

(1.23) u(x, t) u((o. ))
(x t) <- c O(dr(Q,s))

Proof

(1.24)

By Theorem 0.3,

(x, ,)_< Cu((O, ))

for each (x, t) qS(Q, s) q DT; hence, by the maximum principle for each
such (x, t)

(1.25) U(X, t) CU(Yr(Q,

where oar, %, fir have the same meaning as in Lemma 1.5. If (x, t) fir,
Harnack’s inequality implies

(1.26) o(x, t) >_ Co(dr(Q, s)),

and using the maximum principle again we have

(1.27) O(X, t) >_ Co(A_r(Q S))o0x’t)(flr)

for each (x, t) %(Q, s) :q DT. From (1.25), (1.27) and Lemma 1.5 we get
(1.23). Q.E.D.

Exchanging the roles of u and o in 1.23, we obtain

1 u(a(o,,))(1.28)
O(Xr(Q,s))

u(x, t) u((o. ))
<_ (;;,) <_c

O O(dr(Q,s))
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for (x, t) r/8(Q, s) N DT. (1.28) gives a precise control on the quotient of
two positive solutions vanishing on a portion of the lateral boundary. Informa-
tion of this kind cannot be obtained for positive solutions which vanish on a
portion of the base of Dr. As the following counterexample shows, one cannot
hope to decide that two nonnegative solutions vanishing on a part of the base
actually go to zero at an equivalent rate as 0 /. Let D BI(0), the unit
ball in Rn, and assume aij C(Rn+I); then the solution of the problem

(1.29) Lu 0 in D+, vls g, v(x,O) O, x D,

is represented by the potential

u(xt) fotfo:(x, t; Q, s)g(a, s) dQds

where K 0G/0No_, the conormal derivative of the Green’s function, i.e.,

Ne A(Q)ne and ne is the inward pointing normal to OD at Q. Let u and

ut denote the solutions of (1.29) corresponding to the lateral data g s and
g st respectively. Assume a < r; then

(1.30) Ua(X, t)-- fot:(X, ’ Q,s)sdQds

I fotf:tO_ (x, t; Q, s)s" dQds

for each (x, t) D/. (1.30) implies

t)(1.31) uatx,, > a------g -’ + as --, 0

for each fixed x in D, which proves the remark.
As a by-product of Theorems 1.3 and 1.6 we get the following:

THEOREM 1.7 (Global comparison theorem). Let u, v be two nonnegative
solutions of Lu 0 in D+ which continuously vanish on S+, and for

8 (O, min(1/2ro, 1/2V/))
define

D’, =DX (282 T-82)T
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Then there exists a positive constant C C(,, n, m, ro, iS, diam D, T) such that

o(Xo, r)u(, t) <_ Cu(Xo, r)o(, t)

for all (x, t) D, 7", where Xo D is fixed.

Proof It is dear that for each (Q, s) OD (2 2, T 82),

Pn/2(Q, s) N DT c D x (82 T- 82).

We now use a coveting argument similar to that of the proof of Theorem 1.3.
There is a finite number of points (Qj, sj) OD (282, T 82), j=
1,..., p, such that the family of boxes q2(Qj, sj) Dr covers 3D (282, T

iS 2). Apply Theorem 1.6 to each of these boxes to get

(1.33) v(as/4(aj sj))u(x, t) < Clll(a-8/4(Oj sj))v(x, t)

for all (x,t) x8/32(Qj, sj) DT, j--1,..., p, where C depends on
2, n, m, ro. The Harnack Principle provides constants C2 and C3, depending
on , n, iS, diam D and T, such that

(1.34) u(a-/4(aj sj)) C2u(go, Z), o(as/4(aj sj)) C3u(So, 2)

for each j 1,..., p. By (1.33) and (1.34) we get

(1.35) o(x0, )(, t) _< c4(x0, r)(, t
for all (x, t) D, r such that dist(x, OD)_< 8/32. Using a Harnack in-
equality again we obtain

(1.36) u(, t) <_ Cu(Xo, r), (, t) >_ c6o(x0, ),
for all (x, t) D,r with dist(x, OD) > 8/32. To complete the proof observe
that by Theorem 1.3 there exists C7 C7(),, n, m, r0, 6, diam D, T) such that

v(Xo 2) C7o(Xo T). Q.E.D.

2. Time-independent operators: Boundary backward Hamack principle
and non-tangential limits

In this section we specialize the results of Section 1 to the study of
time-independent operators. Using a simple time-shifting argument and the
results previously achieved we are able to get what we call a boundary
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backward Harnack Principle (Corollary 2.2) for nonnegative solutions which
vanish on the lateral boundary. This in turn implies the doubling condition
(Theorem 2.4), and is actually equivalent to it. Afterwards we establish an
estimate (Theorem 2.5), which is suitable to control the Radon-Nikodym
derivative of an L-caloric measure with respect to another, i.e. to control the
kernel function, which is introduced at this point. As observed by Kemper [4]
the notion of kernel function in intimately linked to the principle of positive
singularities stated by Emile Picard" "Given a differential operator L, a domain
f c_ R and a point Qo Of], there is a non-trivial nonnegative solution u of
Lu O, continuously vanishing on O f] \ ( Qo ). Such u is uniquely determined up
to a constant multiple". In our case the existence and uniqueness of the
solution called for in the above principle amounts to an equivalent statement
for the kernel function, Theorem 2.7. This theorem can also be viewed as an
answer to the problem of determining the Martin boundary of a Lipschitz
cylinder Dr with respect to the class of parabolic operators L we deal with.
We can then say: "The Martin boundary ofDr with respect to L is (homeomor-
phic to) the Euclidean parabolic boundary OpDr of Dr".

Finally we establish the representation result Theorem 2.11, and use it to
study non-tangential limits along the lines of the classical theorem of Fatou.

THEOREM 2.1 (Backward Harnack Principle). Let u be a nonnegative solu-
tion of Lu 0 in D+ continuously vanishing on S +, and for

8 (0, min(1/2ro, 1/2f-))

let D* be defined as in Theorem 1.7. Then there exists a positive constant8, T
C= C(, n m r0 8, diamD T) suchthatforO<r<landall(x,t)D*8, T
we haoe

(2.1) u(x, + 4r 2) < Cu(x, t).

Proof By Theorem 1.7, for all (x, t) in D*8, T we get

(2.2) u(Xo, T)v(x, t) < Cv(Xo, T)u(x, t),

where u, v are two nonnegative solutions satisfying the hypothesis of the
theorem. Now, let u ,be the function in the statement of Theorem 2.1 and
define v(x t) u(x, + 4r2). For (x, t) D* (2.2) implies8, T

(2.3) u( Xo, T)u(x, + 4r 2) < Cu( Xo, T + 4r)u(x, t).

Without loss of generality we may assume u(X0, T), u(X0, T + 4r 2) 4= 0. By
Theorem 1.3 we find a constant C depending on the above mentioned
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parameters such that for r < 1,

1 u( Xo, T + 4r 2)(2.4) - < < C..(Xo, r)

Then (2.3) and (2.4) give (2.1). Q.E.D.

COROLLARY 2.2 (Boundary Backward Harnack Principle). Let u be a
nonnegative solution of Lu 0 in D + continuously vanishing on S +. Choose as
in Theorem 2.1, and let (Q, s) S+ with 262. < s < T 82. Then there exists
C C(X, n, m, ro, 8, diam D, T) such that for r <_ /4,

<_ Cu(A,(O.,

Proof Immediate consequence of Theorem 2.1. Q.E.D.

Theorem 2.1 and Corollary 2.2 have, of course, an adjoint companion if one
considers L* --,i,j=lDj(aij(li)D,)n + D instead of L. From the adjoint
version of Corollary 2.2 we get the following result for the Green’s function G
for L and Dr.

COROLLARY 2.3. There exists a constant C C(X, n, m, ro, diam D, T)
such that for all (Q, s) S+ with 0 < s < T- 2, and all r < /4,

1 G(Xo, T; hr(Q S))
< C.(2.6) _<

G( Xo, Ti Y,(Q, s))

Corollary 2.3 together with Theorem 1.4 have as a consequence the so-called
doubling condition for the L-caloric measure which we may state as follows.

THEOREM 2.4 (Doubting Condition). Let i (0, min(1/2r0, 1/2VC)). There
exists a positioe constant C C(, n, m, ro, , diam D, T) such that for all
(Q, s) 01Dr with 0 < s < T- 2 and for all r < /4,

(2.7) o(x,r)(A2r(Q, s)) < c(Xo,r)(Ar(Q, s)).

Proof For points (Q, s) ST with 0 < s < T- 2, the proof is an im-
mediate consequence of (1.12) and (2.6). For points (Q, 0) D {0}, the
proof requires some technical adjustment, but essentially goes through in
the same way. We give only an outline lea.ving the details to the reader. Let G
be the Green’s function for the cylinder Dr D (-1, T). Reasoning as in
the proof of Theorem 1.4 one can bound o(x’r)(Ar(Q, 0)) from above by an
integral on a horse-shoe shaped domain involving G(X0, T; , ), the Green’s
function with pole at (X0, T) for L and Dr. By the maximum principle
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(applied to the adjoint variables (, z)), G(Xo, T; , ) coincides with
G(Xo, T; , ) in Dr, therefore we may substitute G with in the above
mentioned integral. By using the Carleson estimate or the Harnack Principle,
depending on the distance of Q from OD, we get, as for (1.12),

to(x’r)( A,(Q, O)) < Cr’( Xo, T; A(Q, O))

where C is independent of r and At(Q, 0) lies below At(Q, 0). By (2.6) or (1.6),
again depending on dist(Q, OD), we get

ofxo’r)(A,(Q,O)) < Cr"(Xo, T; ,(Q,O))
Cr"G(XoT; .,(Q, 0)).

Now, as in the proof of Theorem 1.4, using the estimates on G, we get the
bound from below,

o:(X’T)(A,(Q,O)) > -rnG(Xo, T; r(Q,O)),

and this completes the proof. Q.E.D.

Remark. Observe that, by virtue of (1.12), (2.7) is actually equivalent to
(2.6) for points (Q, s) ST. (2.6), in turn, implies (2.5) if one uses the
representation of a solution vanishing on ST as the integral over a cross-sec-
tion of its values against the Green’s function. Precisely, for r < i/4,

u(Y (o, foa(Y (o,

Therefore we can conlude that: "The doubting condition on the lateral
boundary is equivalent to the backward Harnack Principle at the boundary
(2.5)".

THEOREM 2.5. Let i (0,min(1/2r0, 1/2V/-)), (Q, s) Ot,DT, with 0 < s <
T- 2, and u, v be two nonnegative solutions of Lu 0 in D/ continuously
vanishing on OeD+ \ A,/_(Q, s). Then there exists a positive constant

C C(), n, m, r0, i, diam D, T)
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such that for all r < /4,

(2.9) u( Xo, T)o(L(Q, s)) < Co( Xo, T)u(.r(Q, s)),

where Xo D is fixed.

Proof Since by the maximum principle, u(x, t) v(x, t) 0 for 0 < <
s 1/4r 2, we may fix the initial time at s + 1/4r 2. Therefore, without loss of
generality, we only consider the case of (Q, s) OpDr with either s 1/4r 2 or
s 0. In both cases, by Corollary 1.2 there is C C(k, n, m, r0) such that for
r < /4,

(2.10) t) _< cu(Y (o,
for each (x, t) DT\ rG(Q, s). Now let G(x, t) o(x, + 4r2). o is a
nonnegative solution of Lu 0 in DT_ar2 which is continuous in DT_ar2. We
consider the case s 1/4r2; the case s 0 is easier and we leave the details to
the reader. If Q (Q’, Q,), let Br (Q’, Q. + r, 0), and choose a > 0 de-
pending on rn such that if

,,.(B) (x D[ Ix- Br[ < ar }
then

and dist(,,r, OD) =- r.

Then we have

(2.11) Or(X t) fopo
T_4r

21")r(’ ) d(’(x’t)(’ )

>_ inf o (x, t)( 7,r( B)).

By the Harnack inequality there exists C such that

(2.12) inf v > Cv (.);

therefore for each (x, t) DT_4r, (2.11) and (2.12) give

(2.13) Vr(X It)
__
Cv(r(Q, s))bo(x’t)(r(Br)).

By (1.12), (2.6) and the maximum principle we get

(2.14) (x0.r)(A(Q, s)) < Cr"G(Xo, T; A(Q, s))
< Cr"G(Xo, T; Y,(Q, s))
<_ c.(Xo’)(7,,.(B,.)).



554 E.B. FABES, N. GAROFALO AND S. SALSA

If we take (x, t) (Xo, T) in (2.10) and (2.13), and use (2.14), we obtain

(2.15) u( Xo, T)V(r(Q, s)) < Cv( Xo, T + 4r2)u((Q, s)).

(2.9) now follows from (2.4) and (2.15). Q.E.D.

Remark. As a particular case of Theorem 2.5, we have the doubling
condition (2.7). To see this, take

u(x, t) to(x’t)(A2,(Q, s)) and v(x, t) to(x,t)(Ar(Q, s)),

and use Lemma 4.2 in [5].

We now introduce the notion of kernel function associated to a parabolic
operator L E.,,j=xDxi(aij(X)Dxj). D and a Lipschitz cylinder D+. Let
(X0, T) D/ be fixed.

DEFINITION 2.6. We say that a function K: D/ X O,D / R/ U ( + c }
is a kernel function at (Q, s) OpD + (for L and D+) normalized at (X0, T) if
the following conditions are fulfilled:

(i) K(x, t; Q, s) >_ 0 for each (x, t) D + and K(X0, T; Q, s) 1;
(ii) K(-,-; Q, s) is a (weak) solution of Lu 0 in D/;
(iii) K(., .; Q, s) C(D+ \((Q, s)}) and

lim K(x, t; Q, s) 0 if (Qo, So) OpD+ \( Q, s }.
(x,t)-*(Qo,so)

If s >_ T, K(x, t; Q, s) will be taken identically equal to zero.
For domains in Rn+l whose boundary is locally given by the graph of a

function that is Lipschitz continuous in space and 1/2-HNder in time, and
L A- Dt, the kernel function has been introduced by Kemper [3], who
established its existence and uniqueness. The next theorem extends this result
to our setting. We emphasize that our proof of existence and uniqueness of the
kernel function is applicable to time-dependent operators, once the doubling
condition is available. Before stating the main theorem we need to introduce
some notation. If (Q, s) OpDr and r > 0 we define

dpr(Q, s) ((x, t)l Ix QI < r, s r 2 < < s + 4r 2 }.

We set D. ((x, t) Drl > s } \ (I)r(Q, s). Notice that the last definition
makes sense even if s 0. Now for points (Q, s) Sr fix b > 0, depending
on the Lipschitz constant m, and define

(2.16) fir(Q, s) O@r(Q, s) {(x, t) OD(rl if x (x’, Xn)
then x,, >_ q)(x’) + br },
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where q is the Lipschitz function that locally describes OD around Q. Observe
that dist(fl,(Q, s), St) br. If, instead, (Q, 0) D (0}, then for r suffi-
ciently small we define fl,(Q, 0) be the top face of 0(Q, 0), i.e.,

(2.17) (Q,O) Odp,(Q,O) q {(x, t) aD.lt 4r2}.

We wish to emphasize that the set fl is suitably defined for applications of
Harnack inequality. The reader should be aware that in the proof below we
have sometimes preferred, for the sake of readability, to avoid writing
cumbersome, but straightforward, details.

THEOREM 2.7. There exists a unique kernel function (for L and D+) at
(Q, s) O,D+,O < s < T- 2, normalized at (Xo, T).

Proof The existence part is standard and similar to that given in [3]. The
geometry, however, is different. For r > 0 we let (.o be the L-caloric measure
for the domain D. For each n N we set: D. D-", 0 02-,, fin(Q, s)

f12-- (Q, s), and we define for (x, t) D

(2.18) Kn(x,t ) O)(nX’t)(n(Q, s))

We clearly have K > 0, LK 0 in D. and Kn(X0, T) 1, for each n large
enough. Since D , Dr as n z, the Harnack Principle implies that the
sequence { K } is uniformly bounded and equicontinuous on compact subsets
of D +. Thus we can find a subsequence, still denoted .by { K }, that c.onverges
on compact subsets of D + to a nonnegative solution K of Lu O. K(Xo, T)

1. Now, let an(Q, s) be the set OD rq Ocb2-..(Q, s), and An(Q, s)
A-,(Q, s). By Theorem 1.1 and the maximum principle, for each (x, t) Dr
and for n sufficiently large, say n > no, we get

(2.19) K.(x, t) <_ CK.(Y.(e,

Now, if (Qo, So) ff A2-,o+I(Q, s) and.(x, t) is near (Qo, So), letting n --, oo in
(2.19) we get (iii). This proves that K is a kernel function.
We now proceed to prove uniqueness. The strategy is to show that if v is

another kernel function at (Q, s) normalized at (Xo, T), then there is a
positive constant C C()t, n, m, ro, 3, dim D, T) such that for all (x, t) D +,

(2.20) v(x, t) > CI(x, t; Q, s).

From (2.20), the uniqueness of/ follows along the lines of Kemper [3].



556 E.B. FABES, N. GAROFALO AND S. SALSA

To prove (2.20), let Vr(X, t) v(x, + 8r2). For each r > O, vr C(Dr) so
we get

(2.21) or(x t) fOpD r( ’ g) s)

>- >_ inf v ox,t)(flr(Q, s)).
fir(Q, s)

Harnack’s inequality provides a constant C such that for r sufficiently
small,

(2.22) inf o

__
C l) (X ( Q, S ) ).

fir(Q, s)

On the other hand, by Theorem 1.1 and the maximum principle, for all
(x, t) D, we have

(2.23) v(x, t) < C2v(r(Q, S))o)x’t)(Olr(Q, S))

where, as before, Otr(Q, s) ODOr ( Or(Q, s). From (2.23) we obtain

(2.24) 1 v(Xo, T) < C2o(.r(Q, S))O)X’T)(Olr(Q, S)),

which gives

(2.25) 1 1V(Xr(Q, S)) OXo,T)(Or(Q

To complete the proof of (2.20) we need the doubling condition for the
L-caloric measures r- Suitably modifying the geometrical details of the proofs
of Theorems 1.4 and 2.4 we get the existence of a constant C3, depending on,, n, m, ro, i, diam D and T, but not on r, such that for r sufficiently small,

(2.26) o(rX’T)(otr(Q, S)) <_ C3oX’T)(r( Q, S)).

Putting together (2.21), (2.22), (2.23), (2.25) and (2.26), for all (x, t) D,, we
get

(2.27) Vr(X, t) > C

Letting r 0 / in (2.27), we obtain (2.20).
By (2.20), the proof of uniqueness follows along the lines of the analogous

proof for the case of the heat operator; see [3]. Q.E.D.
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Remark. In the proof of Theorem 2.7 we used the function

/(x, t; Q, s) lim K.(x, t)

where K, is defined, as in (2.18), as a kernel function at (Q, s) with normaliza-
tion at (Xo, T). We now define

K(x,t;Q,s) oo(x,t)(lk(Q, s))
lim
-o (x’r)(An(Q, s))

It is easy to check that K is a kernel function at (Q, s) normalized at (Xo, T).
By Theorem 2.7, K =/ in D /; therefore from now on we will use K instead
of K. Also, to avoid cumbersome details, when dealing with the cylinder Dr
we will always assume K to be normalized at the point (Xo, T1) (X0, T + 1).
In this way we avoid the limitation 0 < s < T- i 2 in Theorem 2.7.

COROLLARY 2.8. Forfixed (x, t) Dr, the function (Q, s) -o K(x, t; Q, s)
is continuous on O,Dr.

Proof Let (Q., s.) OpDr with (Q., s.) (Q, s) as n o, and set

o.(x,t)=K(x,t;Q.,s.).

The sequence { v, } is equicontinuous and equibounded in each compact subset
of D/; therefore it has a subsequence converging uniformly to a function v on
compact subdomains of D/. Since v is a kernel function at (Q, s) normalized
at (Xo, T1) we deduce v(x, t) K(x, t; Q, s). Q.E.D.

LEMM 2.9. Let (Qo, So) OpOT" For r sufficiently small we have

(2.28) lim sup{ K(x, t; Q, s)l(Q, s) OpOT\ Ar(Qo, So) } 0.
(x, t)-*(Qo, so)
(x,t)Dr

Proof We confine ourselves to the case where the point (Q0, So) belongs to
the lateral boundary Sr, leaving to the reader the easier consideration of the
case (Qo, 0) D (0}. Let I" be a cone in R" with vertex at Q0 OD and
exterior to D, and set Fr F (0, T). Define

Y., {(x, t)l Ix- Qol < r/2, It- sol < r2/4} \

and let h be the L-caloric measure for Y’r of the set Dr N 0,Y, r. By Theorem
0.3, the maximum principle and a Hamack inequality, we have

(2.29) sup{ r(x, t; Q, s)l(Q, s) O,DT\ A,(Q0, So) ) < Ch(x, t).
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for (x, t) Y,, N Dr. Now, (2.28) follows from the HSlder continuity of h
and the fact that hr(Qo s0) 0. Q.E.D.

Our next result is a theorem of representation for nonnegative solutions of
Lu 0 in Dr, where the basic domain D is assumed to be starlike with
respect to a point X0 D.

THEOREM 2.10. Let Dr be a Lipschitz cylinder and suppose that D is starlike
with respect to Xo. If u is a nonnegative solution of Lu 0 in D/, there exists a
Borel measure , on OpDr (depending on u) such that for each (x, t) Dr,

(2.30) u(x, t) fOpDrK(x’ t; Q, s) d,(Q, s)

where K is the kernel function for L and D /, normalized at (X0, T1).

Proof Set

where

Ur(X,t ) U(Xr, tr)

and

X =Xo+(1-r)(x-Xo)

t, (2r r 2) T1 + (1 r)t
for 0 < r < 1. Then u, is in C(Dr) and is a solution of Zrur-- 0, where

gr-- D,(aj(x,)Dx)- Dt.

i,j=l

Therefore if o is the Lr-caloric measure for D/ and K is the kernel function
for L and D/, normalized at (Xo, T1), we have

(2.31) Ur(X t) foporK’(x’ t; Q, s)u(Qr, Sr) doX’T1)(Q, S).

Notice that, since

(2.32) fap ur(Q, s) doXo,rl)(Q, s) u( Xo, T),
D+

the family of measures dv, urdtoX’T), 0 < r < 1, has finite total mass
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equal to u(X0, T1). Therefore there exists a sequence ) 1 such that
u dtoxo’rl) converges weakly to a measure d,. Now consider Kj. Krj. For
fixed (Q, s) OpDr, there is a subsequence, which we still call Kj, converging
uniformly on compact subdomains of D/ to a function which is easily seen to
be the kernel function K for L and D/ at (Q, s). Therefore for each
(Q, s) i)pDr and (x, t) Dr we have

rj(x, t; Q, s) r(x, t; Q, s).

We now claim that if c c Dr, then

(2.33) sup [K(x, t; Q, s) K(x, t; Q, s)l 0
(x,t)

(Q,s)gpDr

Suppose (2.33) holds; then for (x, t) Dr fixed we have

Kg(x, t; Q, s) K(x, t; Q, s) as j

uniformly in (Q, s) OpDT, and hence

lim Urn. (x, t)u(x t)=
J- joe pD

which would complete the proof. We are therefore left with proving (2.33).
Assume it is false; then we can find f Dr, e0 > 0 and two sequences
(Xm,tm) , (Qm, Sm) " OpDT, such that

(Xm, tin) (X, t) (-a, (Qm, sm) (Q, s) OeDT as m oe,

and

(2.34) Igjm(Xm, tm; Om, Sm) g(Xm, tm’ Ore, Sm)l > eO

for all m N. On the other hand we have
(i) gj,.(Xm, tin; Ore, Sin) gj(x, t; Om, Sin) 0 as rn o by the equi-

HOlder continuity on f of the family of solutions (Kj(.,-; Qm, Sm));
(ii) K(x, t; Qm, Sin) K(X, t; Q, s) 0 as rn o since the sequence

of solutions (Kj.(., .; Qm, Sin)} is equibounded and equicontinuous on com-
pact subdomains of D +, hence converges to the kernel function at (Q, s) for L
and D+;

(iii) g(xm, tin; Qm, Sin) K(x, t; Q, s)
( g(xm, tin; am, Sm) K(x, t; Om, Sm)}

( K(x, t; Q, s) K(x, t; Qm, Sin)}
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and each addend in the last sum goes to zero as m- o because of the
equi-HSlder continuity of the family of solutions (K(., .; Qm, Sm)) and the
continuity of K(x, t; .,.) on OvDr.

(i), (ii), and (iii) contradict (2.34), hence (2.33) is true. Q.E.D.

The next result is an estimate of the kernel function. Its consequence,
Theorem 2.13, constitutes a basic tool when one searches a bound for the
non-tangential maximal function in terms of the Hardy-Littlewood maximal
function with respect to L-caloric measure.

THEOREM 2.11. Let (Q, s) OpDr. Then there exists a constant

C C(X, n, m, ro, diam D, T)

such that for r < r(X, n, m, ro, diam D, T),

(2.35) sup
(y, ,r).A,.(Q,s)

K(a(Q,s); y,’) <
oXo,rl)(Ar(Q, s))

Proof For r small, (y, z) At(Q, s) and e > 0 define

U(X, t) to(x’t)(Ar(Q, S)), O(X, t) o(x’t)(Ae(y, "r)).

By Theorem 2.5, for e sufficiently small we have

(2.36) to(Xo’ra)(A(Q, S))Oa2r(O’s)(A(y, z)) < c(X’rl)(k(y, r)).

Therefore

,oA2r(Q’ s) ( Ae( y, T ) )(2.37) lim
--,o o(Xo’ r’)(A (y, z)) K(-2(Q, s); y, )

o(X’T)(h(Q, s))"
Then (2.35) follows, since (y, ) A(Q, s) is arbitrary. Q.E.D.

Now, for (Q, s) OpDT and r small we set Aj.(Q, s) A2J’r(O, s), j N
tO (0}, and Ro(Q, s) A0(Q, s), Rj(Q, s) Aj(Q, s) \ Aj_I(Q, s). By The-
orem 2.11, we have the following result.

THEOREM 2.12. Let (Qo, So) OpDT and let r, depending on T- s, be
sufficiently small. There exists a sequence (C } ofpositive numbers, independent
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of r and (Qo, So), such that Y’TC < + oo and

(2.38) sup K(2r(Q0, So); Q, s) <
(Q,s)Rj(Qo,so)

_Proof Fix (Q,s)Rj(Qo, so) and for each jNU (0} set Aj=
A2J+lr(Qo, So). For j 0,1,2,..., 8, say, a Hamack inequality and Theorem
2.11 give

(2.39) sup
(Q,s)Rj(Qo,so)

K(X2r(Qo, So) Q, s) So))

Now, let j > 8. Using Theorem 2.11 again we obtain

(2.40) sup K(@+; Q, s) <
(Q,s)Rj(Qo,so)

C

Now observe that for (Q, s) R(Q0, So), K(-, .; Q, s) is a nonnegative
solution which vanishes on OpDr\ A2.-Sr(Q, s); then by Theorem 1.1 we have

(2.41) g(x, t; Q, s) < cg(2J-4r(Q, s))
fol each (x, t) Dr\ xlt2J-4r(Q, s).

Now for (Q, s) Rj(Qo, So) let (Qr, Sr) A2J-4r(Q, s), and

( QOr’ SOr) A-’+ A’-2J+Ir(Qo, So).

We have [Qor- arl 2Jr, while

SOr- S 22(j+l)r2- 22(j-1)r 2 22(j-4)r2

22Jr2(22 2-2_ 2-8)
> 22J+ lr2"

Then by the Harnack Principle we get

(2.42) K(Y2J-4r(Q, s); Q, s) c/(+l; Q, S).

For each (x, t) Dr\ xIt2J-,r(Q, s), (2.41), (2.42) imply

(2.43) K(x, t; Q, s) <_ CK(z+; Q, s).
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Taking (x, t) Ao A2r(Q0, So) in (2.43) and using (2.40) we obtain

(2.44) sup
(Q,s)-Rj(Qo,so)

So); C

To get (2.38) from (2.44) we argue as follows. Let F be a fixed closed cone
in Rn exterior to D, having vertex at Qo and axis along the x,-direction in the
local coordinates around Qo. Set Fr F (0, T) and let

Yj. ((x, t)l Ix Q0l < 2J-lr, s01 < 4-1r- } \ Fr.
If hj is the L-caloric measure of the set DT f) Opj with respect to j, the
maximum principle gives

(2.45) sup
(Q,s)Rj(Qo,so)

So);

for (x, t) DT ,j. To complete the proof we need to show that

(2.46) hj(2r(Q0, So) < + o.
j=8

A rescaling argument and the Htilder continuity of hj in DT 0 ,j give (2.46).
Q.E.D.

At this point we have all the tools we need to study non-tangential limits.
Since the theory is by now standard we will not give the details of the proofs,
but we will limit ourselves to stating the theorems and giving an outline of
their proofs (see also [3] for the case of the heat equation).
For (Q, s) O,Dr we introduce the definition of parabolic non-tangential

cone with vertex at (Q, s). If (Q, s) sr set

r(o, s) {(x, t)lC1 > x,- Q, > C21x’ O’l + C31t- sl /).
The constants C1, C2 and C are chosen in dependence of the Lipschitz

constant m. For u defined in DT the non-tangential maximal function u*
defined on OpDr is

u*(O,s) sup(lu(x, t)l I(x, t) r(a, s)}.

Finally we define the Hardy-Littlewood maximal function of a measure , on

OpDT with respect to the L-caloric measure 0xo’ rl) as

Mo,(v)(Q, s) sup
,(A(o, s))

r>o co(Xo,T1)(Ar(Q, s))
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THEOREM 2.13. If V is a finite Borel measure on 01Dr, with D starfike with
respect to Xo, and u(x, t) foporK(x, t; Q, s) dr(Q, s), then

(2.47) u*(O, <

for each (Q, s) OpDT. C depends only on h, m, ro, diam D, T, C1, C2, C and
to(So, Tx).

Proof By a Harnack inequality, if C1, C2, C are fixed suitably, we get

(2.48) u*(O, s) <_ c sup u(X2r(O
0<r<a

where a depends on C1, C2, C3. Theorems 2.10, 2.12 give

N

E e) d.(O, e)
j=0 j(Q,s)

j=0

< CMo(v)(Q, s).

Notice that N depends on IDI, T and r, and that we have used the same
notation introduced for Theorem 2.12. Q.E.D.

THEOREM 2.14. Let u be a nonnegative solution of Lu 0 in DT; then u has
non-tangential limit along the parabolic cone F(Q,s) for almost every
(dtoXo’r’))(Q, s) OOr.

Proof. Since D is locally Lipschitz we may assume D starlike with respect
to Xo. In this case we write dv fdto(xo,rl) + du where dus +/- dto(xo’rl) and
f L(OpDr, dto(Xo’r). If F supp v, Theorem 2.10 gives

u(x, t) f f(Q, s)K(x, t; Q, s) dto(Xo,rx)(Q, s)
"0pOT

+ fFK(X, t; Q, s) dv(Q, s)

=Ua(X,t) +Us(X,t ).

Notice that (Xo’r’)(F)= 0. A standard strategy based on Theorem 2.13
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implies Ua(X,t) -f(Q,s) for a.e. (do(Xo’rl))(Q,s) OpDT and (x,t)
I’(Q, s), while for (Q, s) F, Lemma 2.9 implies us(x, t) - 0 as (x, t)
(Q, s) along F(Q, s). Q.E.D.

THEOREM 2.15. If U is a bounded solution of Lu 0 in Dr, then

(2.49) u(x, t) fop:orK(x’ t; Q, s)f(Q, s) do(X’T)(Q, s)

with f L(OpDT, do(x’r)).

Proof We may assume 0 < u < M in DT. There exists a Borel measure
on OpDr such that

u(x, t) fopzrK(x’ t; Q, s) du(Q, s).

Write dv dG + fdto(xo’rx), where

dv _!_ do(xo,r:) and f Ll( OpDr, do(Xo’r)),
and let

Ua fopDTKfd(x’rl) u ] Kdgs.
Dr

We have 0 < Ua M, 0 < u < M. Theorem 2.15 implies Ua(X t) f(Q, s)
non-tangentially for a.e. (do(Xo’rx))(Q, s) OpDr. Then

f L( OpDr, do(Xo’r)).
We want to show d, O. If not, there exists (Qo, So) OpDr such that

(2.50) lim
’(A(Q’ so)) + oo.

On the other hand we have

(2.51) M > us(2r(Qo, So)) > fa K(2r(Q’ so); Q’ s) des( Q, s).
r(Qo,so)

For (Q, s) A(Qo, So), Corollary 1.2 gives

C

o(Xo’T1)( Ar(Q, s))
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It is clear that

to(Xo’T1)(A,(Q, s)) < o:(x’rl)(A2r(Qo, So) ) < CooX’Ta)(Ar(Qo, So));

therefore, using Hamack inequality,

C
toX’T)(Ar(Qo, So))

for each (Q, s) At(Q0, So). This leads to a contradiction since by (2.51),

M >_ u(2r(Qo, So)) >_ c
o0(X’T1)(Ar(Qo, So))

Q.E.D.
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