Abstract
Let $S$ be a commutative semitopological semigroup with identity and involution, $\Gamma$ a compact subset in the topology of pointwise convergence of the set of semicharacters on $S$. Let $f$ be a function which admits a (necessarily unique) integral representation of the form $$f(s)=\int_{\Gamma}{\rho(s)d\mu_{f}(\rho)}\quad (\rho \in \Gamma,s \in S$$ with respect to a complex regular Borel measure $\mu_{f}$ on $\Gamma$. The function $|f|(\cdot)$ defined by $|f|(s)=\int_{\Gamma}{\rho(s)d|\mu_{f}|}$ is called the variation of $f$. It is shown that the variation $|f|$ is bounded and continuous if and only if $f$ is also bounded and continuous. This, coupled with the author's previous characterization of functions of bounded variation, gives a new description of the Fourier transforms of bounded measures on locally compact commutative groups.
Citation
P. H. Maserick. "On continuity of the variation and the Fourier transform." Illinois J. Math. 29 (2) 302 - 310, Summer 1985. https://doi.org/10.1215/ijm/1256045731
Information