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RATIONAL COATES-WILES SERIES

BY

ROBERT GOLD

1. This section will be formal and elementary. Let p be a fixed odd prime
and " a primitive p-th root of unity. Call f(T) Zv[[T-I] a Coates-Wiles
(CW) series if it satisfies

(i) f(0)= 1 (mod p)
(ii) f((1 + T)v 1)= I-If2o f(’(1 + T)- 1).

We will call f(T) rational if it is a quotient of elements of Z[T]. Define a
sequence of p-th power roots of unity {}a o by o and ,+ . Then
x. - is a prime element in Q() and f(x,) is a unit in Q() for each
n. We will say f(r) is global iff(x,) S Q() for each n.

THEOREM 1. (a) Iff(T) is a rational CW-series then

f(T) e 1-I (1 + r 0,)’,
i=l

si Z and is zero or a root of unity of order prime to p, Qv
(b) Iff(T) is a rational and tlobal CW-series then

f(T) (1 + T)" fi ((1 + T)a’ 1)b’ for a,, b, Z;
i=1

(ai, p)= l for > l, g +_1.

Proof. If f(T) is rational we may write it in terms of the parameter
x 1 + T; i.e. let h(x) = f(x 1). Then condition (ii) for f(T) gives

p-1 p-1

(,) h(xv) =f(xv- 1)=f((1 + T)v- 1)= YI f(’x- 1)= I-I h(’x).
i=0 i=0

Let {rl, rs} be the roots and poles of h(x) counted with signed multiplic-
ities. Then the roots-poles of h(xp) are ((i. r)/p}, i= O, 1,..., p- 1;j 1,

s; while the roots-poles of I-I h((ix) are {(i.rj}, i= 0, p- 1;j 1,
s. These sets with multiplicities must agree. Raising every element of both

sets to the p-th power, we see that {rj} and {r} must agree. If we continue in
this manner we see that {rj} and {rn} must agree for every n. Hence, for
every j, the sequence rj, r], Pr,. is finite, so for some m> 1, rJ"=r.
We have then that each rg is zero or a root of unity of order prime to p and
the assertion of (a) is a restatement of this fact.
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By part (a), h(x) is of the form a 1-I7’-- (x as)s’ and by (,) satisfies

ai

Since {a} {a’} it follows that a ap and therefore (by (i)) that a is a
(p- 1)-st root of unity. Thus, the coefficients of h(x) all lie in some cyclo-
tomic field

g Q(e2’ei/m), (m, p)= 1.

Assume now that in addition to being rational f(T) is also global. This
means that h((,) Q((.) for all n. Let Q((oo)= [.). Q((,) so that g
Q((oo) Q. Let s be any automorphism of Km((oo which is the identity on
Q((oo). Then h((.)= [h((.)]s h(()= h((.) for all n and it follows that
h(x) h(x). If the coefficients of h(x) are fixed by every such s they must lie
in Q. Since they are by assumption also in Zp, they are rational integers.
By the characterization of the roots-poles of h(x) already given, we see that

h(x) must be of the form a. xa I-I= D(x, m) +/- where D(x, ms) is the ms-th
cyclotomic polynomial over Z and (p, ms) 1. By using the M6bius product

D(x, m)= H xa- 1)’"/a)’

we may write h(x)= a. xa H (Xai- 1)a’ with (as, p)= for i> 0. Since
h(x) Q(x), it must be that a Q. Then in order for h(x) to satisfy (,), a must
equal __+ 1. Rewriting in terms of T, we obtain (b).

2. We will be interested in Q(()/, the maximal real subfield of the field of
p-th roots of unity and in its Iwasawa invariant 2 +, the 2-invariant of the
cyclotomic Zp-extension of Q(()/. It would be a consequence of either Vandi-
ver’s conjecture or of Greenberg’s conjecture that 2 + 0.
We begin with a lemma. Let Q((.)+ be the maximal real subfield of the

field of p"+ -st roots of unity. Let E. be the group of units of Q(.) + and C.
the subgroup of real cyclotomic or circular units. Denote by Nm,. the norm
map from Q((,.) + to Q((.)+. Then, C. N,,,,.(C,,,) and E.

_
N,n,.(E,.). Let

E’. (’ Nm,n(Em)

the universal global unit norms.

LEMM 1. 2 + =,0 iffp X [E’o" Co] /ff, for all n, p X [E’." C.].

Proof Consider the exact sequence (e.g., see [4])

H’(G, Em) -(IP.)p
On,m

En/N(Em) [Q(m) +] x/N([Q(m) +] )
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where G is the Galois group of the cyclic extension Q(m)+/Q(.)+; I, P, A
denote the groups of ideals, principal ideals, and ideal classes of the appro-
priate field; and (["l)v denotes the p-primary part. The map g.,., is induced by
the natural projection Ira-’ Im/Pm Am.

Since the extension is cyclic with a unique ramified prime,

E N([Q(m) +] ).

This implies that / 0 and also enables us to calculate, by the classical
genus formula, that Aml---IAI. Greenberg showed in [2] that 2+= 0 iff
g0,m 0 for sufficiently large m iff for all n the map e.,m 0 for sufficiently
large m. Now, on the other hand e..m 0 precisely when

[E,," N(Em)] (Ama)v I(= (A.)v I)

while on the other hand

by Dirichlet’s class number formula. Since N(Em)-N(Cm)__ C., we see that
%,m 0 for large m iff (N(Em)/Co)v 0 for large m iff (E’o/Co)v O. Similarly,
.,m 0 for sufficiently large m iff (E’./C.)v O.
Our next goal is to give in terms of CW-series a criterion for the vanishing

of 2 +

Let R be the set of global and rational CW-series and / its closure in
Z[i-T]-I with respect to the (p, T)-topology. Let be the set of CW-series
corresponding to li_m C and c its closure. By Theorem 1, R

_ .
LEMMA2. =R.

Proof. Let f(T) be an element of q so that for each n we have f(x) C,.
It is clear that we can find a #(T) 6 R such that #(x) =f(x). Since both f
and / are CW-series, it follows that /.(xi)=f(xi) for all i< n. But if
(f- 9)(T) has roots Xo, xl, x, then (f- g)(T) is divisible by

1
W.(T)

1- - {(1 + T)v"+t- 1}

in Zv[[T]]. Therefore, (f- a.)(T) is in (p, T)" and, since a,(T) z R, f(T) R.
We finally have g

_ _
R so that g q.

We must now invoke the fundamental relation between CW-series and
units [1], [5]. Let U. denote the gr,oup of principal units in Qv" Q(.)+ and
U, the projective limit of the U, with respect to the norm map (notation as
in [5]). Recall that x. .- 1. Coates and Wiles have shown in [1] that for
every u lim u, U there is a unique f(T) Zv[I-T]] such that fu(X.) u..
The properties of this correspondence imply that u--,f(T) is a homo-
morphism of U onto the multiplieative group of CW-series.
The x,-adie topology on U. coincides with the profinite topology; U. is a

pro-p-group. So U li,___m U. is a profinite group. With respect to the (p, T)-
adie topology on Zv[[T]], the isomorphism u--,f(T) is bieontinuous.
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Let E lim E. projective limit with respect to the norm map and No,."
EE the projection to the n-th factor. Since Nm,(Em) C which is of
finite index in E., the sequence {Nm,.(E,)}., stabilizes. Thus, the projective
system {E.} satisfies the Mittag-Leffler condition (see [3]). It follows that

No,.(E) E’. N.,.(E.).
mn

Let C lim C. so that C, E
___

U. We may take closures C,/ in U and we
may take closures C,, E. in U.. It is not hard to see that C lim C,,/
lim E-’,. If we denote by (resp. ) the CW-series corresponding to E (resp.
C)*-, then (resp. c) corresponds (p, T)-adically to / (resp. C). Finally, note
that (E’/C.), 0 iff E-’.
THEOREM 2. The following are equivalent

(a) 2 + 0.
(b) If f(T) is a CW-series and, for all n, f(x.) is a unit in Q((.), then

f(T) .
() If f(T) is a CW-series and, for all n, f(x.) is a unit in Q((.), then

f(T) R.

Proof. In view of Lemma 2, it suffices to show that (a) and (b) are equiva-
lent.

First assume that 2 / 0. Then by Lemma 1, for all n, the index [E’" C]
is not divisible by p. Therefore, E’ C and v c. Now if f(T) is a CW-
series such that, for all n,f(x.) is a global unit, thenf(x) e E’. Hence, f(T) is
in d’ and is necessarily an element of .

Conversely, assume condition (b) and let eo E. Then eo No(e) for some
e e E. The CW-series f(T), which corresponds to 5, is therefore in and f(x)
is a global unit for every n. By the assumption, f(T) c and hence e C.
Thus, So e Co. We conclude that E c Co so that E Co which in turn
implies that 2 / 0.
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