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LP ESTIMATES FOR THE X-RAY TRANSFORM

BY

S. W. DRURY

Introduction

Let Mn denote the manifold of lines (1-dimensional affine subspaces) of
n-dimensional Euclidean space En. In view of [5, Chapter 7, 2, Theorme
3], one may construct on Mn a positive measure/ invariant under Euclidean
motions. Aside from renormalizations,/ is unique with this property. We
denote by h the Lebesgue measure on En and for Mn, we denote by
hi the Lebesgue measure on the line 1. For a function f Cc(E,,), the X-
ray transform Tf L=(Mn) is defined by

Tf(1) J f(x)dhl(X).

The reader may consult [6] for a discussion of this transform and its practical
applications.
The goal of this article is the following result.

THEOREM. Let p and q satisfy 1 < q < n + 1, np-1 (n 1)q-1
1 (so that 1 < p < 1/2(n + 1)). Then T extends to a bounded operator

T" LP(En, )k) "-> Lq(Mn,

In an analogous way one can define the k-plane transform of f on the
manifold of all k-dimensional affine subspaces of En. The reader may consult
[3] for details. In [2], Stein and Oberlin establish L and mixed norm es-
timates in the case k n 1 of the so called Radon transform. When
n 2, the Radon transform (k n 1) coincides with the X-ray transform
(k 1) and their results contain ours. In fact they prove the above theorem
in case n 2, p 3/2 and q 3. The result is open for p 1/2(n + 1),
q n + 1, n > 3. Neither our methods nor those of Stein and Oberlin
seem to yield a good answer to the behaviour of the k-plane transform in
case 1 < k < n 1.

Note added in proof. The optimal Lp to Lq estimates for the k-plane
transform have now been established in case n < 2k + and will be
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presented in a forthcoming article in this journal. In particular the case
n 3, p 2, q 4 for the X-ray transform has been settled affirmatively.

The k-plane transform is trivially bounded from L to L’ and can be
bounded from Lp to tq only if np- (n k)q- k and q < n + 1.
To see this, say in the case k 1, we need a better description of/z. We
may realize M, as an affine space bundle in which each fibre is a collection
of parallel lines. The base of the bundle is essentially projective space
which carries a rotation invariant probability measure. It is easy to see that
integrating out the ((n 1)-dimensional) Lebesgue measure on each fibre
with this probability yields a constant multiple of/z. Now let f be the
indicator function of a ball of radius r and let A be the subset of M, of
all lines passing within 1/2r of the centre. Then Ilfll < C rnp- and Tf > r on
the subset A. Our description of/z shows that/z(A) rn-. Then IlTfllq
< cIIfllp yields rl+(n-1)q- Crnp- for all r > 0. Hence np- (n 1)q-1. To obtain the other condition, let now f be the indicator function of
a box having one side of unit length and the remaining sides of a shorter
length 5. Let B be the set of lines meeting both "ends" of the box. Then
Ilf lip (n- 1)p -1, Tf > on B and /x(B) 2(n- 1) (0 < 1). Together
with [[Tf[[q < C[[f[[p this yields q < 2p which is equivalent to the stated
condition.

Methods and Proofs

We denote by /z the probability measure on Mn carried by the set of
lines passing through the point x and invariant under the stabilizer of x in
the Euclidean motion group. One easily verifies the relation

(1) dlzx(l)dh(x) dhl(X)dtz(l)

(as measures on En M) for a particular normalization of the measure

Our strategy is to write, in case q > 2,

f (Tf(l))qdlx(1) ff(xl)f(x2)(rf(l))q-2dht(Xl)dh(x2)dtx(l).
Using (1) this expression can further be rewritten as

Cn J f(x)f(x2)(Tf(l(Xl, x2)))q-2lXl x21-n- )dh(xl)dX(x2)
where l(x, x2) denotes the line joining x and x2. Roughly speaking the idea
is now to consider the function

(Tf(l(x, X2)))q-2lXl X2[ -(n- 1)

as a kernel. We shall need the following weak-type estimate. Let us define

Sag(X) Tg(1) dtzx(l)
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LEMMA 1. Let 1 < a < n and let g La(En). Then

h-meas{x; Sag(X) > "r} Cn,a(’t’-lllglla)b

where b- a- n-.
Proof. For g O, Sg T*Tg and Solmon [3] has shown that T*T is

the Riesz potential of order 1. It is therefore natural to adopt the usual
method for controlling Riesz potentials. Clearly

(2) Sg(x)
o
g(x + )dr d(y)

where is the rotation invariant probability measure on the unit sphere.
For R > 0 let us define two quantities S<1) and S<2) to be the right hand side
of (2) with the range of integration of the inner integral replaced by [O, R)
and [R, ) respectively. Clearly

(3) Sag(X) s(l) + S(2).

Both Sl) and S<) are dominated by applying HOlder’s inequality to the inner
integral. Then for x E fixed,

{ }l/a’ ; }l/a{l/aS) dr Ig(x + )ldr d(y) R1/a’ Igl OR(X)

where On(z) CnlZ] -(n-) if Izl < R and On(z) 0 if Izl R;

S r-(n- a’/adr Ig(x + )lar dr d(y)

R-n-aVallglla.

We choose R such that R-n-a/allglla is a small multiple of ,. Then, by (3),

Sag(X) > r S(1) > .
We now use the estimate tile[ IIg[lll0[l CnRllgll and Tche-
bychev’s inequality to verify the statement of the lemma.

POOSlTION. Let 0 < < 1 and let K be a symmetric kernel on a
measure space (X, v) such that

IK(x, x2)ldv(x2) A -/-) (t > O)(4) ess sup
IK(x ,2)l>

and

(5) ess sup fx IK(xI’ x2)lSdv(x2)
X1 Ig(x, 2)l<t

< csA s-/-) (t>0,(1 a)s> 1)
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Then K is the kernel of a smoothing operator of order tz. That is, K is
bounded as an operator

K" Lb(X, v) ----> Lc(X, v) (b- Ol C -1, b > 1, c < oo)

and the operator norm of K is bounded by CbA-.
The proof of the proposition again follows the usual strategy for Riesz

potentials---see [4]. Note that (5) asserts that the "lower part of K" is
bounded from Ls’ to L whereas (4) together with the symmetry condition
asserts that the ’upper part of K’ is bounded both from L to L and from
L to L and hence by convexity from U’ to L’’. We leave the details of
the proof of the proposition to the reader.

LEMMA 2. Let 2 < q < n + 1. Let Y C E, be a set offinite measure
m. Then there is a subset X of Y of measure at least 1/2m such that IlTlxllq

Cn,qm(q+n 1)/nq.

Proof. Let g lr and let us define

L(x, x2) (Tg(l(Xl, x2)))q-2lXl x2l --l),
a symmetric kernel. Routine calculations show that

(6) I- L(x, x2)dX(x2) cnA(x)t--- (t > 0),
L>t

(7) (L(x, x2))dX(x2 Cn. A(Xl)t--- (t > 0, (1 a)S > 1)
L<t

for a n- and where

A(x) (Tg(l))dtxx(l) for a (q 2)n/(n 1).

Since q < n + 1, a < n and we may apply Lemma withz c,ml/

where Cn, is sufficiently large to ensure that the measure of the exceptional
set

Z {x; Sag(X) > 7"}

is less than 1/2m. Let X Y,Z. Then we have

A(x) < Cn,ama/n a.a.x X.

Let v be the restriction of Lebesgue measure h to X and let K be the
restriction of L to X X. Then (4) and (5) follow from (6) and (7) re-
spectively with A Cn,ama/n. The proposition now yields

f (T lx(l))2(T l r(l))q-2dtx(1) (K lx, Ix) < Cn,qm(q+n-l)/n.

The conclusion of the lemma follows since T Ix < T lr.

Proof of the theorem. For the range 2 < q < n + we show that T*
is weak type (q’, p’). Let h Lq’(Mn) be an element of unit norm. Let
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> 0 and let Y1 {x; T*[h[(x) > t}. Let Y be an arbitrary subset of Y of
finite measure m. Let X be as in Lemma 2. Then we have

1/2mt < (lx, Z*lhl> <T , Ihl> liT lxllq Cn,qm
(q+n-l)/nq

so that m < Cn,qt -nq/(n-l)(q-l). Since IT*hi < T*lh we have the required
weak type estimate with p’ nq/(n 1)(q 1). Now T* is clearly a
bounded operator from L(Mn) to L(En). (It suffices to observe that x is
a bounded measure for each x.) The general statement of the theorem now
follows from the Marcinkiewicz Interpolation Theorem and a duality
argument.

I should like to thank D. M. Oberlin for bringing this question to my
notice and for stimulating discussions.
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