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INEQUALITIES FOR REPRODUCING KERNEL SPACES

BY
JacoB BURBEA

1. Introduction

In this paper we establish a general result giving a sharp relationship
between the reproducing kernel spaces of holomorphic functions in the disk
or the entire complex plane and the reproducing kernel space determined
by the product of their reproducing kernels. We give several applications
of this general result notably in the generalized Hardy and Fischer spaces
(cf. [1], [2], [4] and [5]). The latter will constitute an improvement and an
extension of a recent result of Saitoh [5] which he obtained by using different
methods. The proof given here uses elementary means and the result ob-
tained may be applied to various other situations such as those described
in our previous paper [1]. The present result can be also extended to cover
the case of several complex variables but we shall not pursue this here
(see, however, Burbea [3]).

2. An Inequality

In this paper A,, p = 1, », stands for the unit disk A when p = 1 and
the complex plane C when p = «. The class of all holomorphic functions
in A, is denoted by H(A,) while do(z) = dx dy is the area Lebesque measure
of C. By P(A,) we denote the subclass of H(A,) consisting of all ¢ € H(A,)
of the form

@.1) $@) = 2 6,25 ¢, >0,n=0,2 €A,
n=0
and where A, is the domain of convergence of the expansion (2.1) of ¢.
Associated with ¢ € P(4A,) is the space

Hy = {f € HQ,): |fls < =}

where

2.2) f@) =2 a7 (f € HQ,), zEA,),
n=0

@3) 1£16 = 2 enlanf”
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Of course, H, is a Hilbert space with norm | f]|,. Also, for { € A,

© ©

a,c,{"

Q) = nzo a,l" = ,,Zo_c—— = (fz), pzD)s
and
IFOFF < oIS (f € Hy, L € A,)

which means that
ko(z, D) = (D)

is the reproducing kernel of H, and that {e,},-o With e,(z) = V¢,Z" is an
orthonormal basis for H,.

We note that ¢, y € P(A,) implies ¢ € P(A,). With this observation
we state our basic theorem:

THEOREM 1. Let ¢, ¢ € P(A,) and f € Hy, g € Hy. Then fg € Hy, and

I/8lloy < 1£ s lglly-
Equality holds if and only if either fg = 0 or f and g are of the forms

f2) = Cio(zD), gz) = CA(); z € A,

for some { € A, and some nonzero constants C, and C,.

Proof. We assume that ¢, f and |f||, are as in (2.1)-(2.3). The
corresponding quantities for H, will be given by

U(z) = nzodnz"; d,>0,n=0,z€E€A,,

lglly = Zo d; b, g(2) = go b2,z € A,.

Under these circumstances

W

Cidn_i,

dW(z) = go B.Z", B, =

~
1]
=

D=

f(Z)g(Z) = ZOAnzn, An = akbn—k

b
1

0

and

I felles = ;0 B Al

The theorem, therefore, is completely equivalent to the following sharp
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inequality:

2.4 > BAP < (2 c;‘lanP)(Z d;‘lan)
n=0 0 n=0

with equality if and only if either (i) a, = 0 or b, = 0 for all n = 0, or
(i) a, = Cic,{" and b, = Cyd, (" for all n = 0, for some { € A, and for

some nonzero constants C; and C,. In order to prove this inequality we
let r € [0, 1] and introduce

3

B(r) = >, By A, Cr) = D cillafr, D) = 2, dy'|br.
n=0 n=0 n=0
Applying the Cauchy-Schwarz inequality we have

2 " ab 12
kYn—-k
kzo (cxdp—+ )1/2(den_k>

2

and so

n

2 2
(2.5) B AL <D '—“ﬂ—lb—"il, n=0.
=0 o d,_y

This shows that
2.6) B(r) < C(r)D(r), re€]0,1).

Letting r — 1 — 01in (2.6), inequality (2.4) is obtained. In view of (2.5)—(2.6)
and the fact that B(0) = C(0)D(0), equality in (2.4) holds if and only if B(r)
= C(r)D(r) for each r € [0, 1) which is equivalent to having equality in
(2.5) for every n = 0. This is, obviously, equivalent to an existence of A,
€ C so that

(27) akb,,_k = )\,,de,,_k; k= 0,1,...n,n=0.
Putting k = 0 and k = n in (2.7) results in
2.8) AiCod, = aob,, MNc.d, =a,b,; n=0.

On the other hand summing up (2.7) from k = 0 through £ = n yields
2.9 A, =MNB,, n=0.

If a,b, = 0, then by (2.8), A\, = 0 for all n = 0. Therefore, by (2.9), A,
= 0 for all n = 0 which means a, = 0 or b, = 0 for all n = 0. This covers
item (i) of the equality statement. We now assume that a,b, # 0. Define

(210) CI = aoco_] ’ CZ = bodo_19 ZE coal(clao)-l = dobl(dlbo)--l
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where (2.8) with n = 1 has been used. Clearly, C,, C, # 0. From (2.8)-(2.10)
we have

Q.11) b, = C,Cy! %d,,, n=0,
n—1 anbo n
ayb, + Z acb,_ + ab, = 2 cdy_x, n=1,
= c.d, o

and, therefore,

n—1 n
(2.12) ayb,(c,d, + c.d,) + c.d, kE awb,_, = ayb, kzo cidyi, n=1.
=1 =

We use induction on n to show that
(2.13) a, = Cic,l", b, = Cod, ", n=0.

Clearly, by (2.10), (2.13) is true for n = 0 and n = 1. Assuming (2.13) is
true for k < n — 1, n = 2, we find by (2.12) that

-1 n

anbo(cndo + codn) + cndoCICZZn Z den—k = anbo 2 den—k

k=1 k=0
and so, by (2.10),

1 =1

n n
anbo Z ckdn-—k = Clan"bo 2 Cidui, n=2.
k=1 k

=1

This shows that a, = Cic,L", and also, by (2.11), b, = C,d,{" and (2.13)
is proved. Finally, { must be in A, because, for example, the value of the
first factor on the right side of (2.4) for the solution in (2.13) is |Ci|*d(|¢»)

and, since the domain of convergence of ¢ is A,, { € A,. This concludes
the proof.

An immediate consequence of this theorem is the following result.

CoroLLARY 1. Let ¢; € P(A) and ;€ Hy,,j = 1, ..., m. Then

m
H [ EHy, .,
Jj=1
and
m m
ITT Hllorom =< TT AN,
Jj=1 Jj=1

with equality if and only if either IIj., f; = 0 or each f; (1 < j < m) is of
the form

fi@) = Ci#i(zT) z€4,j=1...m

for some { € A, and some nonzero constants C; (1 < j < m).
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This general, but simple, result admits many interesting applications by
using a suitable choice of the ¢; (cf. Burbea [1]). We shall describe several
applications for the generalized Hardy and Fischer spaces.

3. Generalized Hardy Spaces

Here we consider holomorphic functions in the unit disk A, = A. For
any g > 0 we consider ¢, € P(A) given by
d,z) = (1 —2)7% z€A.

The Hilbert space H, = H,, determined by this function is called the gen-
eralized q-Hardy space, and we note that H, is the ordinary Hardy space.

In this case,
Hq = {fe H(A): ”f"q < °°}

where

oo

n! d
3.1) 117 = 2 ol (f@) = 3 a2, z€A).
n=0 (q)n n=0
Here (q), = 1 and (@), = q(g + 1) - (@ + n — 1) for n = 1. The
reproducing kernel for H, is, of course, k,(z, {) = ¢,z0) = (1 — z{)7°
For g = 1 the norm of H, can be realized as

I£17 = l—;—l L If@QP (A = |z %do(z), q>1,

and

1
IFIE = 52 ), F@P Izl

where in the last integral, f stands for the nontangential boundary values
of the holomorphic function f(z) in A. For 0 < g < 1, the norm of H, does
not admit such a simple integral representation, a fact which is not crucial
for we shall only use (3.1) as the norm of f € H,, g > 0.

Under these circumstances, the following corollary is an immediate con-
sequence of Corollary 1:

CoroLLARY 2. Let q; > 0and € H,,,j = 1, ..., m. Then

—;

£ € vy

Jj=1

and

m

m
(TR —— T
Jj=1 J

=1
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with equality if and only if either II]. f; = 0 or each f; (1 < j < m) is of
the form

[@=C(-2zD)"% (z€Aj=1,..,m)

for some { € A and some nonzero constants C; (1 < j < m).

4. Generalized Fischer Spaces

We now consider holomorphic (entire) functions in the plane A, = C.
For any «, B > 0 we consider ¢, 4 € P(C) given by

¢a,/3(2) = Fi(1; a; ,BZ)
where F(1; a; Bz) is a confluent hypergeometric function:

|
Fi(l; o; Bz) = .,Zo (a)n(ﬁz)”.
In particular,
@.1 $1,6(2) = 1Fi(1;1; Bz) = €

and

b26(x) = 1Fi(15 2; Bz) = (B2)7'(e® — ).

The Hilbert space %, z = Hy, , determined by ¢, is called the generalized
(a, B)-Fischer space. The space %, is known as the ordinary Fischer space
(cf. Newman and Shapiro [4]). In the present case

ga,ﬁ = {fe H(C):"f”a,ﬂ < Oo}

where
o o n oo .
les = 3 D2 laf. )= 5 as zeC
This norm can be realized as
2 _ B* j 2], [2a—1 - Blzf .
42 Ifles = op ) V@M e do@); o, 8> 0.

The reproducing kernel for &, ; is, of course,
ka,B(Z9 Z) = ¢a,B(ZZ) = F(1; o BZZ)~
For o;, B; > 0,j = 1, ..., m, we write
a = (a, ..., &), B = (B, ..es Bm)
and consider ¢, 3 € P(C) defined by
Dap2) = Gy p(2) .- Doy pa(2)
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This function determines the Hilbert space

9ELB = {g € E“(D:“g“mﬁ < w}
where

lelzg = > {eue, B} '[b (ez) = 2, bt", z€E€ O
n=0 n=0
with
ki Kom

= _.1—...._.'"_ ?
oB= 2 wn o "T0

the sum being over all m-tuples (ky, ..., k,,) of non-negative integers. The
reproducing kernel for %, g is

m

ke, gz, 0 = d’aﬁ(ZZ) = H Fi(1; a3 BjZZ)‘

Jj=1

We note that fora =1 = (1, ..., 1),

(4.3) .,0/71’3 == g"ﬁl.',...*.pm
and
@4 ¢1»B(Z) = ¢1,ﬁx+~~+pm(2) = Bt Fhmz

Again, under the above circumstances, the following is an immediate
corollary of Corollary 1:

CoRrOLLARY 3. Let a;, B; > 0 and € Fu, 5, = 1, ..., m. Then
II7L, f; belongs to F,p5, a = (o, ..., ), B = (B, ..., Bn), and

m

m
ITT flles < TT 1l
Jj=1 Jj=1

with equality if and only if IIJL, f; = 0 or each f; (1 < j < m) is of the form
f(@) = CyFi(1; oy; Bizl), z€C
for some { € C and some nonzero constants C; (1 < j < n).

An interesting special case of this corollary is obtained by specifying «
to be 1 and noting (4.1)-(4.4). This gives:

CoroLLARY 4. Let B; > 0 and ;€ F,4,j = 1, ..., m. Then II}_, f;
belongs to F, g, +...+, and

Bl+"'+ij
(o]

2
e Bt "'+/3m)|z|2 do(z)
w

L[] £@)

<II {% fc f@f? e‘ﬁf'Z'zda(z)}
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with equality if and only if either II[.\f; = 0 or each f; (1 < j < m) is of
the form

fz) = CeP%, zeC,

for some point { € C and some nonzero constants C; (1 < j < m).

The last two corollaries constitute an improvement and an extension of
a recent result of Saitoh [5]. More specifically, when in the special case
result of Corollary 4 we put 8; = -+ = B,, = 1, Saitoh’s result is obtained.
The proof in Saitoh [S5] is rather difficult and is based on the theory of
tensor products of reproducing kernel spaces of entire functions. Also, it
appears that the equality statement in [5] contains an error or a misprint,
although the core of the proof is correct. Indeed, according to [5], equality
in the above inequality with 8, = -+ = B, = 1 holds if and only if
I, fi(z) is of the form Ce™ for some { € C and some constant C. A
counter example for this statement is as follows: We take m = 2, fi(z)
= " and f3(z) = €*¥ for some { € C and any complex numbers A and
p with A + u = 2. Then

f@)fz) = &%
and
"fle"%,z = ezmz, ||f1||%,1 = eNlelz’ ||f2|ﬁ,1 = e
However, in general, [|fifalli2 < Ifilli1 If2ll11, just take & = 1/2 and p =
3/2.
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