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ON THE p-ADIC ANALYTICITY OF SOLUTIONS OF
LINEAR DIFFERENTIAL EQUATIONS

BY

E. BOMBIERI AND S. SPERBER

I. Introduction

Over the complex numbers a linear differential equation with analytic
coefficients has a full set of solutions at an ordinary point, which converge up to
the nearest singularity. The equation y’- y--0 with solution

oo zm
m-’0

shows that this principle fails p-adically; indeed, the p-adic radius of conver-
gence of the exponential series is p-/(’-. In this paper we investigate this
phenomenon and relate it to the singularity structure of the differential equa-
tion; for example, solutions to equations with irregular singularities behave in
this respect like e, for almost all p.
Our notation is as follows"
K is a number field;
K is an algebraic closure of K;
fl K()[D], where D d/d (ring of linear differential operators with

coefficients in K(z));
D n D

L Gj(z) an element of "rt! 0 --’’
Sing (L) is the set of singularities of L 6 ;
v is the non-archimedean valuation of K, with residue field of characteristic

P;
[ is an algebraically closed, complete extension ofK with valuation extend-

ing v, containing a unit t whose image in the residue class field is transcenden-
tal over the residue class field of

[ is the absolute value in
D(t, r- {x " Ix t] < r}, the disk of center and radius r.

The purpose of introducing a generic unit t is to exploit the following
property. Iff(z)= =o am zm /[z], then

(1) [f(to)[o= sup lam[=sup{lf(z)[,,[ [z[o_< 1}.
m
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ON THE p-ADIC ANALYTICITY OF SOLUTIONS 11

We also define r(t) to be the v-adic radius of convergence of ker (L) at
t e fv, t sing (L), and we let rv rv(to), the generic radius of convergence. We
may note that, by (1), to(to) is independent of the generic center to, thus justify-
ing our notation to. Moreover, we shall write to(t; L), to(L) for to(t), ro if we
want to emphasize their dependence on the operator L.

It follows from [4] and [7] that

(2) rv _> ]pl/tp- 1)

for all v for which the coefficients of L (supposed monic)are bounded by I in
the disk Do(to, 1- ). This is the case for all v except for an effectively comput-
able finite set, say So. It was discovered by N. Katz [3] that the global nil-
potence of the p-curvature for the connection defined by L (for definitions, see
[3]) imposes restrictions on the analytic behavior of L. In particular, in the
course of his proof of the main theorem in [3], he proves that in this case the
differential operator L has only regular singular points and rational exponents.
This condition (of global nilpotence of the p-curvature) can be rephrased in our
terminology as

for almost all v. We have been informed by Dwork that another proof of this
result appeared in some seminar notes [2] by Honda in 1974.
The object of this paper is to give a third proof of this result, based on the

idea of blowing up the differential operator in a neighborhood of a singular
point. Our techniques will be p-adic, rather than char p techniques as in
previous proofs. More precisely, we will give new proofs of the following
results:

Theorem 1. There is an effectively computable finite set S (depending on L)
such that if L has at least one irregular singular point then

for v q S.

Theorem 2. If L has only regular singularities and at least one irrational
exponent, then ro P !/t- 1) for infinitely many v. More precisely, the set of
prime numbers p for which there is such a v has positive density.

We thank B. Dwork and N. Katz for helpful discussions and Y. Sibuya for
his help in extending the results of Theorems 1 and 2 to the case of systems
treated in Section V.

II. Formal theory

The object of this section is the study of the differential operator

Dn D
L= Gn! j=o
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with G G(z) K(z), in the neighborhood of the origin. Let us write

G 2 + higher order terms

with 2 0, and let us define with Poincar6 [5] the rank p of L at 0 to be

p max 1
o_<j<, -J

The well-known criterion of Fuchs says that 0 is an irregular singular point if
and only if p > 1; we may think ofp as giving a measure of the complication of
the singularity of L at 0. We also define J to be the set

{0 <

J is non-empty if p > 1.
Let L, m 0, be the unique differential operator defined by the two

conditions

(a)

{b) deg L- <n;

we have L. L and Lm 0 if rn < n. We write

Dm n- Dj

Lm Gm ,mt j=o

so that G.,j Gj for allj and Gm,m 1, Gm, 0 ifj m, in the case rn < n. It is
immediate that the Gma satisfy the recurrence

Gin+ 1,j
1

rn + 1 {DGm. + jGm,- + nGm.,- G}.

The recursion implies by induction on m that 6m, p(m-j), hence we may
write

Gm,j zp(mzj) + higher order terms,

where of course m,j 0 if p(m- j) is not an integer and y., 2 if j 6 J;
moreover for m < n we have Ym,m 1 and Ym, 0 ifj 4: m.
We define the blowing up of L at z 0 to be the constant coefficient differen-

tial operator

D" Dj

E s2jn! -.
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in the case p > 1, and the differential operator of Euler type

D" 2 D

in the case p 1.

L. 1. The formal power series

+v(z) z + .,z" + ,+, +...

satisfy Ev O, for j O, 1, n 1.

Proof A simple-minded argument consists in noting that the statement of
Lemma 1 is an assertion that certain recurrences for the Vm, hold and deducing
them from the recurrences for the Gm,.
We present instead another proof, which will justify our terminology for E.
t t be an indeterminate and let us consider a set of formal solutions u,
j O, 1, n- 1 of Lu O, with the initial conditions at z

u t)=
if h ],

for h 0, 1,..., n- 1. Now Lu 0, hence

(Dm)n-luj(t) hoGm,h(’)[)(’) Gm,j(t)’

and Taylor’s formula yields the formal series expansion

+ E
m=O

to_ + higher order terms .
If we set t we obtain

t-ou(t + to)= v() + t’/O(t’/, )
where the natural integer b is such that bp is an integer and where 0(, ) is a
formal power seri in and . Now we see that v() is obtained from
t-u(t + t) by specializing to 0. Since Lu 0, the change of variables

t + N yields

where
D" Dh

t =--[ =o
G(t + tPz)tCn-h)p ..

The lemma follows by noting that Et specializes to E when specializes to O.
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We conclude this section with the remark that we may interpret the above
proof as performing a blowing up transformation

(z’ u) ( t )t-Mu
tp

for t - O, on the graph of the mapping z - u(z) and obtaining the differential
operator associated to the blown up graph.

III. Local theory

We work here over the field fo. Our aim is to obtain information on the
generic radius r of L, in terms of the simpler operator r. defined in the previous
section.

If Sing (L), 4: oo, we define

{: I1 -< 1, and It/- ely > 1 for Sing (L),
while if oo e Sing (L), we define

V() {v" Ir 1 < 1 for all r/e Sing (L),
In either case we define the finite ser S 1() to be the complement of VI(). Our
purpose in making these definitions is the following. Letf/(z) be a rational
function with poles contained in Sing (L) and let the Laurent expansion offat
be

f(z)

Let v S(). Then we have

Z a=(z-)m if4=
-N

am z-m if oo.
-N

(3) f(to)lo -> sup

which we explain as follows. If we factor out the pole from f, then

1
f(z) (z )N h(z)

with h(z) analytic in Do(, 1-). Since [to 1 1, we have for all r, 0 < r < 1,

(3’) If(to) lo Ih(to) lv >- sup ]h(z) lv sup {la, lvrm+N}.
Iz-lo=r m> -N

The inequality in (3’) follows from (1) and the maximum principle applied to
the numerator of h(z); the absolute values of the denominator of h(z) arc the
same on both sides of the inequality by virtue of the assumption v $ (). The
inequality (3) then follows from the continuity ofth right side of (3) as r 1-.
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If we apply the results of the previous section we obtain information about
the behavior of L at z O, and we want to do so for every z , Sing (L).
We denote by L the differential operator obtained from L after the change of
variable z’ z if 4: oo, z’ 1/z if oo. We recall that by our notation
rv(L) is the generic radius of convergence of L and rv(O;/7) is the radius of
convergence of Ker (E)at the origin.

LEMMA 2. If Sing (L) and v q $1() then

r (0;

Proof For notational convenience, we may and shall assume that 0
and hence L L. By the hypothesis v $1(), inequality (3) yields

Gm,(to)I >- Tm,

for every m, j. Now Lemma 2 follows from Lemma 1 and Hadamard’s formula.

LEUUA 3. Let us assume v q S(). If Sing (L), 4= , then

r(L) r.
If o 6 Sing (L), then

min (1, r(Loo))-- min (1, r).

Proof. The first assertion is a consequence of the fact that is algebraic and
I I < 1, hence / t rmains a generic unit. In order to prove the second
assertion we note that t is a generic unit if and only if t is a generic unit. It
follows that z t I-- r < 1 if and only if

1 1
=r<l.

This shows that to(L(R)) > min (1, r). Since th change of variables z’ 1/z is
involutory, this inquality proves Lemma 3.

COROLLARY. Let , , L, L, be as before. Then

min (1, r) < min (1, r(0;/
for all Sing (L).

IV. Proof of theorems

Let us assume Sing (L) is an irregular singular point. If so, /7 is a
constant coefficient differential operator and a basis ofKer (E)is {e"z} where
e runs over the roots of the characteristic polynomial

P(x)
xn

jj
xJ

n!
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and k 0, 1,..., k 1 with k the multiplicity of g. We remarked earlier that,
since p > 1, the set J is non-empty, thus P(x) has at least one non-zero root g.

Now e has radius of convergence exactly ] [ ] p [/t- ), while g is a unit for
all v outside an effectively computable finite set $2(). This shows that

If we combine this last inequality with the corollary to Lemma 3 and inequality
(2), we obtain Theorem 1.
The proof of Theorem 2 is along similar lines. We assume that is a regular

singular point, hence p 1. Now the differential operator E is of Euler type
and a basis of Ker (E)is

{(1 + z)(log (1 + z))},
where runs over the roots of the indicial polynomial ofE at z 1 (which is
identical with the indicial polynomial ofL at ) and k 0, 1, k, 1, with k,
the multiplicity of g. In order to compute the radius of convergence of

(1 + z)(log (1 + z))k,
we note that log (1 + z) has radius of convergence equal to 1 for all v, which
reduces the question to the study of the binomial series for (1 + z). If

(4) ]g-llv=l for everyleZ

then (1 + z) has radius of convergence exactly ]p ]*o/t- ) and, exactly as before,
the proof of Theorem 2 will be complete, provided the set ofsuch v has positive
density whenever g is irrational. In that case Q()4: Q and v will satisfy (4)
whenever the reduction of g mod v will not be in the prime field Fv. Ifp does
not split completely in Q(), at least one v over p will verify (4) and the set of
such p has density

1 1

[E: Q]
> 1

[Q(a)" Q]’
where E is the smallest Galois extension of Q containing Q(a).

V. First-order systems

Let A(z) be an n x n matrix with entries in K(z) and consider the differential
system

(5) DY A(z)Y
where Y denotes an n-vector. The existence of a "cyclic vector" [1, Chapter II,
Lemma 1.3] implies that the system may be reduced to a scalar equation by a
change of variables W B(z)Y where W is an n-vector and B(2) GL(n, K(z)).
The drawback of this procedure is that determination of B(2) is not presently
effective.
One may also proceed by means of elementary divisors (cf. [6, Chapter III,
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Section 11 ]) determining effectively n x n matrices G and H each having entries
in the ring and determinant in K(z) not identically zero, such that

C G.(D A(z)). H
is a diagonal matrix with entries in . In fact, since the kernel of D A(z) is a
vector space of dimension n over K, we may conclude that the sum of the
degrees (in D) of the diagonal entries of C is n. The next two theorems follow
immediately.

THEOREM 1A. There is an effectively computable finite set ofprimes S such
that ifthe system (5) has an irregular singular point, then rv Ip I /tv- x)fr v q S.

THEOREM 2A. If the system (5) has only regular singularities and at least one
irrational exponent, then rv p [/t- Xfor infinitely many v. More precisely, the
set ofprime numbers p for which there is such a v has positive density.

One may also proceed effectively by the results of Hukuhara and Turittin. By
their work, there exists a positive integer b and an n x n matrix P(z) with
entries in F[z] (where F is a finite extension of K) satisfying:

(i) det P(z/) is not identically zero.
(ii) The transformation Y P(z/)X takes the given system (5)into

(6) zPDX B(z/b)X
where p > 1, bp is an integer, and B(z) is an n x n matrix with entries in F(z)
and analytic at z 0.

(iii) If p > 1, then B(0) is a non-nilpotent matrix.

The singularity at z 0 is irregular if and only if p > 1.
We may perform our blowing-up transformation on the system (6); in parti-

cular sending z + tPz and letting 0, we obtain

(I+z)DX=B(0)X ifp=l;

if instead p > 1 then DX B(O)X and B(0) is non-nilpotent.
The main purpose in working with the transformed system (6) rather than

the given system (5) is to ensure that in the case p > 1 the constant matrix B(0)
has a non-zero eigenvalue. Now the proof of Theorems 1A and 2A for system
(6) can be carried out exactly as in the scalar ease. The proof of these results for
system (5) will follow from the fact that the integer b, the finite extension F and
the matrix P(z) are all effectively computable.
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