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INEQUALITIES ON BERGMAN SPACES

BY

DANIEL H. LUECKING

I. Introduction

Let U denote the open unit disk. If p > 0, Ap denotes the Bergman space of
functionsfwhich are analytic in U and for which If ]P is integrable on U. If q is
a bounded measurable function on U let T denote the operator

To f= P(dpf), f6 A2,

where P is the orthogonal projection from L2 onto A2 (the Bergman projec-
tion). These operators were considered in McDonald and Sundberg [2] where
their compactness properties were studied. Let G be any measurable subset of
U. Consider the following problems:

(A) What properties must G have in order that the operationf v-. f ]o from
Ap to LP(G) have closed range? i.e. If G has positive measure, when is

ff Ifl" am _  onst ff Ill’am,
u G

Here dm is two-dimensional Lebesgue measure.
(B) For which bounded analytic functions p is the operator To bounded

below on the unit sphere of A2?
(C) Define HP(w) to be the closure of the polynomials in the E’(w dm)

norm, where w is a non-negative integrable function on U. What is H’(w)?
(D) For which 4) is To invertible?

In this paper problems A and B are solved completely in the sense that
necessary and sufficient conditions on G and b are found. In problem A the
condition on G describes how G "spreads out" at the boundary. The condition
on b in problem B describes the set where [b[ stays away from zero.
With regard to problem C, a sufficient condition on w is obtained that yields

Ap HP(w). Problem D is solved for non-negative functions b.
I would like to take this opportunity to thank Carl Sundberg and Gerard

McDonald for illuminating discussions.
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II. Statement of results
The main result is the following solution of Problem A.

MAIN THEOREM. Let G be a measurable subset of U and p > O. Then the
followino two conditions are equivalent.

(1) There is a constant C > 0 such that

ff ISl"clm<_cff ISl" dm,

(2) There is a constant 6 > 0 such that m(G D) > 6m(U c D)for all disks
D whose centers lie on [z] 1.

The results on problems B, C, and D are now easy to obtain as corollaries.

COROLLARY 1. Let dp be a bounded measurablefunction on U. Then there is a
constant e > 0 such that

ff 14,S1" dm>- If ISI" dm,
U U

if and only if there exists r > 0 such that the set {z U: I,(z) > r} satisfies
condition (2).

This gives the promised solution of problem B since, when t# is analytic,
T, f 2 rkf 12 din. This should be compared with Proposition 22 in [2]

which solves problem B for inner functions, and which can be shown to follow
from Corollary 1.

COROLLARY 2. Suppose w is a non-negative inte#rable function on U and
suppose the following hold.

(a)
(b)
o v w dm < const m(D U)for all disks D with centers on z 1.
There exists r > 0 such that the set {z U: w(z) > r} satisfies (2).

Then HP(w) A". In fact (a) implies A"
_

HV(w) and (b) implies HV(w)

The implication (a) Av
_

HV(w) is a special case of the main result in
Hastings [1] and the other implication, (b) nP(w)

_
A, is a consequence of

the "if" half of Corollary 1.

COROLLARY 3. Let dp be a bounded positive measurablefunction on U. Then
T, is invertible if and only if there exists r > 0 such that {z U: ok(z)> r}
satisfies (2).
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Proof.

(3)

If Te is invertible then there exists e > 0 such that

ff 12 dm > T f 2 >/311 f 2.

If b did not satisfy the condition given, then there is a sequence rn 0 such that
{z" b(z)> r} does not satisfy (2). This means (1) is not satisfied so that a
sequence {fn} in A 2 exists such that f 12 dm 1 and

ck>rn

This violates (3) because (assuming 0 < 1)

0 F, ff ICfnl 2 dm <<_ Yn ff 2 dm ff ]fn[ 2 d
Orn O>rn

and both term on the right tend to zero. Conversely, suppo {z" 0(z)> r}
tisfies (2). Then it also satisfies (1) so

2ff 21f 12 dm2 r2 ff Ifl 2 dm2 lfl[ 2.
>r

Without loss of generality we may suppo 1. Then

[l(z Z)fll IIZ- fll

ff(1-O)2[f]2dm- II/11 .
Thus II1 T, < which implies T, is invertible. QED.

III. Geometry of disks

The proof of the main theorem is considerably simplified if condition (2) is
replaced by either of two conditions equivalent to it. This section is devoted to
establishing these equivalences.

Suppose we have a set G satisfying condition (2). Then we may regard c5 > 0
as given and unchanging throughout this argument. There exist constants
C > 0 and 0 < /< 1, depending only on i, with the following properties. Asso-
ciated with each disk D {z: z b < r} with center b on z 1, there is a
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disk which will be denoted

D(a, r/)= {z" [z a[ < r/(1 [a[)}
whose center a lies on the radius from 0 to b such that

1- [a[ < Cr and m(n u- n(a, q)) < 1/26m(O U).

(Note that the radius of D(a, q) is r/(1 }a ), not q, so that D(a, ) U.) The
constant C may bc taken to be 4/fin and q may be 1 6/(8C). Then one
condition equivalent to (2) is"

(2’) There exist 6o > 0 and q with 0 < q < 1 such that

m(G D(a, )) > om(D(a, )) fo art a U.

Proof Let D and D(a, q) be associated with one another as above. If G
tisfies (2) then

6m(D U) > m(D U) > m(D(a, q))m(G D(a, )) m(G D)-
so G satisfies (2’)with 6o 6/(8C).
Convcrly if G satisfies (2’), let D bc a disk centered on [z] 1 that just

contains D(a, ). Then D has radius (1 + q)(1 [a[), so

m(G D)> m(G D(a, ))
> 6om(D(a,
o"2(1 al 2)
6o2

2 (1 + )2 m(D U).

Therefore (2) holds with 6o qz/(1 + q)z. QED.

In Lcmmas 2 and 3 wc will have to pass from the disks D(a, ) to disks
defined in terms of the pscudohyperbolic metric. For this wc need the follow-
ing. Define

A(a, r) z U:
i1 az

Then"
(4) If z D(a, rl)and 2r//(1 + r/z) < r < 1 then

D(a, rl)- A(z, r);
There exist constants C, dependin9 only on r such that

(- lal)z < m(A(a, r)) < C,(1 a I)’.C,
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To prove (4) simply estimate I:- z’l/ll  z’l <_ 2r//(1 + r/2) for z,
z’ D(a, r/). This estimate is simplified by the fact that the maximum occurs at
z a + r/(1 a) and z’ a r/(1 a) when 0 < a < 1.

Proving (5) is an easy estimate of the diameter of A(a, r). Estimates like those
used in the proof of (2’) (using (4) in one direction) show that (2’) is equivalent
to:

(2") There exist 6a > 0 and r/x with 0 < r/a < 1 such that

m(G A(a, r/a)) > 6a m(A(a, r/a ), a 6 U.

IV. Proof of the main theorem

The proof that (1) (2) is relatively simple. We actually prove (1) (2").
Take 0 < r/a < 1 so that

1 ;; 1
ldm>l

n 2C

Using the change of variables z (z a)/(1 hz) we get

1 ff (1- ]a]2)2 1
n I1 fiz 1’

dm <
2C

U A(a,

We have used the fact that the Jacobian is just

d z-al2dz 1 z
Applying (1) to the function f(z)= (1 lal2)2/p/(1 tz)4/p we get

1 fy (1-[al2)2 1 (!j" (1-la12)2 ) 1

I-ftzl" dm>_ I-fizl4
dm =-G

whence
1 (( (1- lal2)2 1 1 1

3J(6)
n [1 z[4

dm>
C 2C 2C

G A(a, /

It is easy to verify that

(1- lal2)2 4

[1-z[4 <(1- [a[)2"

Combining this with (6) we get

1
m(G A(a, r/)_> -(! lal):

which, because of (5), gives (2").
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The implication (2’) (1) is the difficult one to prove. It requires three
lemmas, Throughout we assume that 3o and r/are given by (2’) and fixed. All
constants used depend only on r/and p unless explicitly stated otherwise. In
particular they do not depend on the functionf. We use the convention that the
letter C denotes a constant which may differ from one occurrence to the next.
Since r/is fixed we abbreviate D(a, rl) by D(a). If the analytic functionfis given
and 0 < 2 < 1 we define the set

E;<(a) E;<(f, a)= {z D(a)" f(z)[ > 21 f(a)[
and the operator

1
iv17;< S(a) m(E;<(a)) ff iS dm.

E (a)

Note that

B;< f(a) > m(D(a)) ff is dm 2 If(a)
D(a)

because If Iv is subharmonic. Henceforth it will be assumed p 1, the proof of
the general case can be obtained with only minor modifications on replacing
Ifl by Ifl.
LEMMA 1. Let f be analytic in U and a U. Then

1
log

m(E;<(a)) >(7) m(D(a)) log
B;< f(a) 1

f(a)l + log ]

Proof. For this lemma the size and placement of the disk are immaterial so
we assume a 0 and D D(a) has area re(D) 1. Applying Jensen’s inequality
and elementary estimates we have

log If(o) _< ff log Ill dm
D

ff + ff
D Ea (0) Ea(O)

1 ff_< [1 m(E;<(O))] log x f(o) + m(E;<(O)) m(E;<(O))
<o)

< [1 m(E;<(O))] log ;t f(o) + m(E;<(O)) log B;< f(O)

log fl dm
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The last inequality is due to the concavity of log. If we subtract log If(0)[ from
both sides we get

[1 m(Ex(0))] log 2 + m(Ex(O))log
!|Bx f(0) 10
x f(0) I"

Notice that

log2<0 and log(Baf(0))if(0)l
> 0.

Solving for m(Ea(O)) we get

m(E(O)) >

as required. QED.

1
log

B, f(O) 1
log

f(0) + log

The purpose of this lemma is to show eventually that Ea(a) takes up a large
enough fraction of D(a) to include some of G D(a). This will not be true for
all a 6 U since Bx f(a)/If(a)l may be very large. Therefore we use Lemmas 2
and 3 to show that the set of a’s where nxf(a)/]f(a)] is not too large is
sufficient.

LEMMA 2. Let e > 0 andf A1. Define the set

A a U" If(a)[ <
m(D(a)) If[ dm.

D(a)

There is a constant C dependin!7 only on r such that

Proof. For a A we have

1If(a) < ff If(z) m(D(a)) Zo,,,,(z) dm(z).
u

Integrate over a A and use Fubini’s Theorem on the right to obtain

ff If(a) din(a)<e ff If(z) m(D(a}} D(a)(g) dm(a) dm(z).
A U

The proof will be done if it can be shown that the bracketed expression is
suitably bounded. Using (4) with r 2r#/(1 + r/2) we can write
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the last equality because z A(a, r) precisely when a A(z, r). Thus the
bracketed integral is dominated by

(8) ff l
dm(a).

a(z,r)
m(D(a))

However, if a e A(z, r), m(D(a))> (l/C)(1- zl)2 for a suitable constant.
Combining this with (5) we see that (8) is bounded by a constant independent
of z. QED.

The only use made of Lemma 2 is in the proof of the following. If p 4: 1, in
addition to changing If] to If , e3 should be changed to e + 2/p in Lemma 3.
We assume from now on that 2 < 1/2.

LEMMA 3. Let 0 < e < t and f A1. Define the set

B {a U" If(a) < 133B2 f(a)}.
Then there is a constant C depending7 only on 11 (and p) such that

ff If] dm< Ce ff ]ft dm
B U

Proof Write

ff Ill dm= ff Ill am+ ff Imi am.
B BcA B-A

The first integral is estimated by Lemma 2. For the second integral, use
Fubini’s Theorem as before to obtain

ff Ifl dm< g3 ff If(:)l ff ’
B-A ts it-A

m(E,(a)) )(,x(a, z) dm(a) dm(z),

where ;(a, z) is the characteristic function of Ex(a) evaluated at z. Again, we
need only show the inner integral is suitably bounded. Since z(a, z) < Zo(a)(z),
we can invoke the argument in Lemma 2 provided we can show

1 C
m(E(a))

<
e2m(D(a))

whenever a A. We do this by showing that any disk D centered at a contains a
concentric disk D’ of area (1/C)e2m(D) with the following property. Wheneverf
is analytic and

If(a)[ >-e
m(D) I/I dm.

Then If(z) > 1/21f(a) > Xlf(a) on D’.
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Without loss of generality we take a 0, D U, and

(l/r0 ff Ill dm--1.
u

Our hypothesis then is f(0) >- . There is a constant C > 1 (depending only
on p)such that If(z)] < C on the set ]z 1/2. Assuming ]z < 1/4 we have

2rlf(z)-f()l-< J’ f(t)( 1

Itl-- /2 t--Z 1) dtl <- C

Choosing Izl < /8c we see that [f(z)l > f(0)l e/2 >-l f(0)l ona disk
about zero of area n(e,/8C) 2. Translating this back to the disk D(a) shows that
E,(a) contains a disk of area (e,2/C)m(D(a)) whenever a A. This is just what we
needed. QED.

Let F U B {a 6 U" If(a)[ >_ l3n;t f(a)}. If we now choose e so small
that eC < 1/2 (a choice which depends only on t/and p) we have

(9) ff Ill dm<2 ff Ill dm.

For a 6 F we have B,f(a)/I f(a)l < 1/e3. Therefore, if we choose 2 less than
,6/60 we get, from (7),

(2/60) log (1/e3)m(E;,(a))>
3) (2/60 (1/e3)m(D(a)) log (1/e + )log

Consequently, (2’) implies, for a 6 F,

(10) m(G E(a)) > 6om(D(a))

where the choice of 2 depended only on r/, 7io, and p.
We are now in a position to complete the proof. Because of (10) we have

m(O(a)) xo,(z) f(z) am > 1/26o;tlf(a) l, aF.

We integrate this over F, using Fubini’s Theorem on the left, to obtain

ff m(:)l m(D(a)) Zota)(z)dm(a) dm(z) > 1/2602 ff Ill dm.
G F
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The integral in brackets can then be treated exactly as in Lemma 2 and the
right hand side can be estimated from below using (9). This gives

ff Im(:)l dm(z)> 1/4 $o2 ff Imi am.

This completes the proof of (2’) (1).

V. Remarks

It is unfortunate that the proof (Lemmas 2 and 3) requires f6 Ap initially.
That is, it does not follow from this proof that t: ]f ]P dm will be finite when

f. If p dm is. This is a defect I have been unable to remedy.
The main theorem can be extended to some weighted Ap spaces without much

difficulty. In particular we have the following if > -1.

ff If(z)l(1- Izl2) din(z)< C ff If(z)l(1- Iz12) din(z)
u G

if and only if condition (2) of the main theorem holds.

The crucial properties of the weight w(z) (1 z 12) are the following"

w(a) <_ C inf {w(z)" z D(a,
and

w
l 1 zi-2 (1 I1’).

The first property is needed in Lemmas 2 and 3. It implies, for example, that

1ff [f(a)[Pw(a) dm(a) < Ce, ff [f(z)[Pw(z) ff m(D(a))Zo(a)(Z dm(a) dm(z).
A U A

whence the proof of Lemma 2 can proceed as before. The second property is
useful in proving the implication (1) (2"), which goes much like the case

We conclude with two questions.
(1) What are necessary and sufficient conditions on a weight function w in

order to satisfy

ff Iflp dm<_ C ff IfiPw dm?
u

The main theorem settles the case w
(2) Can HP(w) in Corollary 2 be replaced by

ffAP(w) {f analytic in U such that If I"w am < + }?
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This would be the case if the main theorem could be proved without the
hypothesis f AP.

Added in proof Question (2) can be settled in the negative. The hypothesis
f Ap is a necessary part of the main theorem" There exists a set G satisfying
condition (2)and a function f analytic in U such that G If dm < + but
j’$ Ifl dm +.
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