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FINITE GROUPS WITH ISOMORPHIC
GROUP ALGEBRAS

BY

G. KARPILOVSKY

Suppose that G and H are finite groups with isomorphic group algebras RG
and RH over the ring R of integers in some finite algebraic extension of the
rationals.

In [7] Passman established a bijective correspondence between the set of
normal subgroups of G and that ofH which preserves many natural operations
and properties defined on these sets. Some of Passman’s results, however,
depend on nilpotency conditions.

In this paper we provide generalizations of Passman’s result in two direc-
tions. Namely, we remove the nilpotency condition and replace R by a larger
class of rings.
Our result is as follows.

THEOREM. Let KG - KH where K is any integral domain ofcharacteristic 0
in which no rational prime divisor of IG is invertible. Then there exists an
isomorphism between the lattice of normal subflroups of G and that ofH which
preserves the following.

(a)
(b)

the commutation ofany two normal subgroups,
normal abelian sections and the isomorphism class of normal abelian
sections,
the order and period of normal sections.

Infact, the corresponding normal sections have the same number ofelements of
any given order.

COROLLARY.

(i)

(ii)

(iii)

The above isomorphism preserves the following.

nilpotency, solvability, class ofnilpotency and the derived length ofN, N
being an arbitrary normal subgroup of G (in particular, the Fitting
subgroup of N);
a central series ofN consisting ofnormal subgroups ofG and the isomor-
phism class of corresponding factors (in particular, the upper central
series and the lower central series ofN and any central series of G);
the derived series ofN, the chiefseries ofG and the isomorphism class of
corresponding factors;
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(iv) the 9roup C"(N) 9enerated by all nth powers of elements of N and the
9roup C.(N) 9enerated by all elements of N whose order divides n.

The special case of (a)and (b)when K Z was proved by Whitcomb [13]
(see also [9]). When K R Passman [7] proved part of (c)and, when G is
nilpotent, he has obtained (a) and part of (b). Obayashi [6] proved part of (b)
for K R. For other various special cases of the above theorem and corollary
refer to [3], [6], [7], [11] and [12].

1. The s,atting

Before proceeding with the proof we shall describe the notation, recall the
definitions and record some elementary properties of group rings. Let G be a
finite group and let S be a commutative ring with unit. The augmentation ideal
I(S, G) is the kernel ofthe homomorphism from the group ring SG to S induced
by collapsing G to the unit group. We shall write I(G) instead of I(S, G) when
there is no danger of confusion. For J the ideal of SG the set G c (1 + J) of
elements x in G for which x 1 in J is a normal subgroup of G. Throughout, N
and M are normal subgroups of G and in the group ring KG K will always
stand for an integral domain of characteristic 0 in which no rational prime
divisor of GI is invertible. In particular, K can be one of the following rings:

R, ZG) {a/b a, b Z, (b, GI)= 1},
and, when G is a p-group, the ring of p-adic integers.

If C and D are subsets of SG, define the Lie bracket (C, D) as the subgroup of
the additive group of SG generated by all (c, d) cd dc, c in C, d in D.

Let 2: G ---, H be a group epimorphism and let ,: SG ---, SH be the group ring
epimorphism which is the extension of 2 by S-linearity. Then

Ker =SG.I(N)= x e SG y O where N ker 2.

As a consequence of this we have G m (1 + SG. I(N))= N. That SG" I(N)is
generated by {x 11 x e X}, where X is a generating set for N (see [4])implies

(1) SG I(N M) SG I(N) + SG I(M)
and the same fact together with the identity (a 1, b 1) ba(a- b- Xab 1),
a, b G implies

(2) SG I([N, M])= SG (I(N), I(M)).
We shall write KG KH for H being a normalized group basis ofKG (i.e. H is
a group basis consisting of elements having augmentation 1).

Elements of particular interest in KG are the class sums. These are the sum of
all the group elements in any given class of G. We will denote by Co the class
containing 9 G. That KG KH implies existence of a bijective corre-
spondence between the conjugacy classes of G and those of H such that the
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corresponding classes have identical class sums was proved by Berman [2] for
the case K Z and for the case K R the same result was proved by Glauber-
man (see [7]), Poljak [8] and Saksonov [12]. The general case was established
by Saksonov [11].

2. Preliminary results

We shall need the following result due to Saksonov.

LEMMA 1 [11]. Let KG - KH. Then there exists a bijective correspondence *
be tween the conjugacy classes of G and those ofH such that:

(3) The correspondin9 classes have identical class sums.
(4) For any 9 G, C Ch implies (Con)* Ch n, h H.
(5) Every 9roup which consists of normalized units of KG is a K-linearly

independent set.

We next need to calculate the normal subgroup of G attached to the product
of ideals KG. I(N)and KG. I(M).

LEMMA 2. Let Jx KG I(N)and J2 KG I(M). Then

G (1 / JxJ2)= (N M)’.

Proof It follows from [1, Theorem 10] that G c (1 + J1J2)= (N M)/
where the right hand side is the intersection of the kernels of all homomor-
phisms of N c M into the additive group of K-modules. In particular, the case
N-- M G yields

G (I/I2(K,G))-Gr.
Therefore it suffices to prove that G c (1 + I2(K, G)) G’. By taking the case
n- 2 in Theorem 2.1 of [2] we see that G (1 + I2(K, G))= G’ whenever
Tn(G mod G’)= G’ for all primes p for which pK p+aK for some e,
Tn(G mod G’) being the subgroup of G generated by all elements of G some pth
power of which is in G’. It is clear that Tn(G mod G’) G’ whenever p If
p is a prime such that pK p+ IK for some e then p(1 px) 0 for some
x K and since K has no zero divisors, p is a unit in K. This shows that
p ]G] and completes the proof.

With these preliminaries settled, we are now ready to prove the theorem.

3. Proof of the theorem

We may assume without loss of generality that KG KH. Let N 0 Co
and let N* o^ Co*" It follows from (3)that

(x= y whence IN] y.
N N* y y N*
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Therefore N* is closed with respect to multiplication, proving that N* - H. It
is immediate that N- N* determines the desired bijeetive correspondence
which preserves order, inclusion and intersection. That (N. M)* N* M*
will follow from (1) and the following property:

(6) If J is any ideal of KG then Gc(I+J)=N implies
H c(I +J)=N*.
To prove (6), we have only to remark that N 1 + J if and only if

J
_
KG’I(N).

Let d be the ideal of KG generated by (Jx, J2) where J KG.I(N),
J2 KG I(M). We next claim that

(7) G c (I + J)= [N, M]
from which (a) will follow by virtue of (6). To prove (7) we first observe that
KG. I([N, M]) < J by virtue of (2). Therefore we may assume that [U, M] 1
in which case J < J J2. The desired assertion is now a consequence ofLemma
2.

Let " KG KG1 where G1 GIN be the canonical homomorphism. Be-
M _> N’ the application of (a) yields the first part of (b). Since two abelian
groups having the same number of elements of any given order are isomorphic
[5, p. 95] the application of (c) yields the second part of (b). We are now left to
prove (c).

Let n" KG --. KG where G G/N be the canonical homomorphism. Be-
cause of (6), KG KHa where H n(H). Let (M/N)* be the normal sub-
group of H which corresponds to M/N. It is a consequence of (4) that M/N
and (M/N)* have the same number of elements of any given order. Thus to
complete the proof it suffices to show that

(8) (M/N)* - M*/N*.
To prove (8), consider the sequence of group ring homomorphisms

KG KG KG2

where G2 G/M and (gN) gM for any g G. Then ker tn KG. I(M),
ker a KG1 I(M/N) and for any h H, (n)(h 1) (n(h) i) where ] is
the identity element of KGI. It follows from (6) that

whence
H c (1 + KG’I(N))= N*

(M/N)* H (I + ker )
{(h) ((h) ) 0}
{(h)l h H c (1 + Ker an)}
{r(h)l h m*}
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Since n induces the group epimorphism n’" M* n(M*) and since

ker n’= M* (n (1 + KG.I(N)))= M* c N*= N*,

the proof is complete.
To prove the corollary we have only to remark that (i), (ii), and (iii) are

direct consequences of (a)and (b)while (iv) follows from (4).
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