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THE FRACTIONAL PARTS OF THE
BERNOULLI NUMBERS
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PAUL ERDS AND SAMUEL S. WAGSTAFF, JR.

Abstract

The fractional parts of the Bernoulli numbers are dense in the interval (0, 1).
For every positive integer k, the set of all m for which B2m has the same
fractional part as B2R has positive asymptotic density.

1. Introduction

The Bernoulli numbers are the coefficients B of the power series

t/(e 1)= Bn tn/n
n=O

It is well known that they are rational numbers and that Bn 0 for odd n > 1.
We have B2 1/6, B4 1/30, B6 1/42, etc. The fractional parts {B2k} may
be computed easily by the yon Staudt-Clausen theorem, which says that
B2k d- E lip is an integer, where the sum is taken over all primes p for which
(p- 1) 12k.

Several years ago one of us computed {B2k} for 2 _< 2k _< 10000 and noted
two curious irregularities in their distribution: (1) There were large gaps, e.g.,
the interval [0.167, 0.315], which contained none of these numbers. More com-
putation showed that the gaps tend to be filled in if one used enough 2k’s. We
prove in Section 2 that the fractional parts are dense in (0, 1). (2) A few
rationals appeared with startling frequency. For example, 1/6 occurred 834
times among the 5000 numbers, that is, almost exactly 1/6 of the time. When
the calculation was extended to 2k 100000 it was found that the fraction of
m _< x for which {B2m} 1/6 remained close to 1/6 for 100 _< x _< 50000. We
prove in Section 4 that for every k >_ 1, the set of all m for which {B2m} {B2R}
has positive asymptotic density. The set of such m was known to be infinite (see
p. 93 of [6]).

Since our proof gives no indication of the value of the asymptotic density, we
list in a table the {B2k} which occur most frequently for 2k _< 100000. Let 2k
denote {p’p is prime and p I 2k}. The table showsp2 1/p, the first 2k for
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BERNIZIULLI NUMBERS FRFICT IONI:::IL PI::::IRTS DISTo

0.00 0.13 0.25 0.38 0.50 0.63 O. 75 O. 88 O0

which 2 appears, {/2k}, the number and density of 2m _< 100000 with
/2m--- Ji2k, and the elements of 2k. (Note that {B2R} {B2m} if and only if
J/2k /2m, by the von Staudt-Clausen theorem.)

Generally speaking, {B2k} occurs more often when there are fewer and smal-
ler primes in /2k" Not every finite set of primes which includes 2 and 3 can be a
i2k. For instance, if 5, 7 and 11 are in the set, then it must contain 61 as well.
Likewise, if the set contains 13, then 5 and 7 must be in it, too.
We also show the graph of the distribution function

Fx(z)- x-’. (the number of m <_ x for which {82m} < Z)

for x 10000 and 0 < z < 1. The graph is virtually indistinguishable from
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those of Flooo and Fsooo. The size of the vertical jump at z {B2k} approxi-
mates the asymptotic density of the set of m for which {B2m} {B2R}. We show
in Section 4 that the limiting distribution F(z)= limx-.oo Fx(z)exists. We also
mention several open questions at the end.

2. The fractional parts are dense in (0, 1)
Let S(2m)= EP.C2m 1/p. We want to prove that the {B2k} are dense in (0, 1).

According to the yon Staudt-Clausen theorem, the denominator of B2k (in
lowest terms)is I-Ipe, P" Hence {B2k} is never zero, and {B2k} 1 {S(2k)}.
Thus it suffices to prove that the fractional parts of the S(2k) are dense in (0, 1).
Note that S(2k)> 5/6 because both 2- 1 and 3- 1 divide every 2k, and
1/2 + 1/3 5/6.

THEOREM 1. For all cz >_ 5/6 and e > 0, there are infinitely many even integers
2m for which S(2m) cz < e.

Proof Let p, denote the nth prime. Let r be a large integer. (Later we will
choose r sufficiently large depending on e.) Let As 2p,p,+ P,+s. Ifp =- 1
(mod P2 P3"’" P,-I), and p 1 is squarefree, then (p 1)la for all sufficiently
large s. It follows from the prime number theorem for arithmetic progressions
and a simple sieve argument that lip diverges, where p runs over primes
p _= -1 (mod P2 P3 P-1) with p 1 squarefree. Thus we can choose s so
that S(A) > . We prove the theorem by removing the factors p,+, p,+_ , etc.,
from A, one by one, until S(A) is close to . It suffices to show that S(A)
S(A_ ) < e provided p, is large enough.

Let dx, dk be all of the divisors of A_ . Write q for p,+. Then d x, dk,
qdx, qdk are all of the divisors of A. Thus (a denotes the sum of divisors
function)

S(As) S(As- 1)
1 1 k

E-=E-=E
p- llAsbut P p- =qdi P i= 1,
P- l"t’As- for some + qdi

is prime

1 +qdi

<-1 1 =-1 di
-q i=1 q i=1 As-I qAs-1

C2log log As-1 < log (p,

c2 log q 2 log p,
<_< <e

q
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for large enough r and some absolute constants c x, 172. The estimates of a(As_ 1)
and log As-1 follow from Theorems 323 and 414 of [6], respectively. This
completes the proof.

3. A result on divisibility by p 1

In this section we prove that numbers which have a large divisor of the form
p 1 are rare. This result (Theorem 2) is the essential ingredient in our proof of
Theorem 3, and has some independent interest as well.

THEOREM 2. For each e > 0, there is a T T(e) so that if x > T, then the
number of m <_ x which have a divisor p 1 > T, with p prime, is less than ex.

Notation. The counting function of a set of integers will be denoted by the
corresponding Latin letter, e.g., A(n) is the number of a 6 with 1 < a < n.
Let R(m) be the number of primes < R which divide m (counting multiplicity).
Write f(m) for D(m).

Proof of Theorem 2. Let T be a fixed large number. Let be the set of all
natural numbers which have a divisor p 1 > T, with p prime. We will prove
the theorem by showing that there are positive constants Ca and/ such that
A(x) < Ca x/log" T for all sufficiently large T and x.

Every element m of can be written in the form m (p- 1)n, where p is
prime and p- 1 > T. We separate the elements of into three classes,
depending on the number of prime factors of p 1 and of n. Some elements
may appear in more than one class, but this does not matter, since we require
only an upper bound on A(x). The classes are defined by

f(p 1)< (2/3) log log p,

fp(n) < (2/3) log log p,

(1)
(2)
and

both f(p 1)_> (2/3)log log p and fp(n)>_ (2/3)log log p.

Lemmas 1, 2, and 4 will estimate the counting functions of these three classes.

LEMMA 1. There are positive constants c4, , Yo such that ifx > T >_ Yo, then
the number D1 (x) ofm < xfor which there is a prime p > T + 1 with (p 1)lm
and f(p- 1)< (2/3) log log p satisfies

<

Proof It was shown in [2] that the number of primes p _< y with

f(p 1)< (2/3)log log y is O(y/log +ay) provided y > Yd.
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For each such p, there are [x/(p 1)] multiples of p 1 which are < x. Thus,
for x > T > Yo, we have

p prime
p>T+l

f(p 1) < (2/3) log log p

p prime P
p>T+l

f(p 1) (2/3) log log

x dp,
p log +,

loga T"

LEMMA 2. There are positive constants c5, rl such that ifx > T > e, then the
number D2(x) ofm <_ x for which there is a prime p > T + 1 with (p 1)lm and
fp(m/(p 1)) < (2/3) log log p satisfies

D2(x) < c5 x/log" T.

Proof According to Theorem 5.9 of [7], there is a positive constant r/such
that the number of n _< y for which fR(n) < (2/3)log log g is O(y/log" g),
provided y _> 1. For each prime p between T + 1 and x + 1, we apply the
theorem with R p, n m/(p 1), and y x/(p 1). Summing the estimates,
we find

p-1
D2(x) , Z log" pp prime

T+l<p<x+l

1

V prime P log" p
p>T+l

dt
log log" (t log t)

X

log" (T/log T)"
The lemma follows since T/log T >> v/T.
LEMMA 3. There are positive constants c6, 2, To such that ifx > T > To, then

the number ofm <_ xfor which there is some > T with ft(m) >_ (4/3) log log t is
less tha, c6 x/log T.
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Proof By Norton’s Theorem 5.12 [7], there are positive constants c7 and
such that for every t, the number of m < x with f,(m)> (7/6)log log t is
< c7 x/log" t.
Now let t exp (i2/q). We apply Norton’s theorem to those t > T. Since

i= log t i=
ti > T > log/2 T

1 + logn/2 T’

we see that there is a positive c6 such that the number of m < x for which
f,,(m) > (7/6) log log t for some t > T is less than c6 x/log"/2 T.
Now let m _< x, and suppose there is a t with f,(m)>_ (4/3)log log t. If

t_ < t < t and is large enough, then we have

f,,(m) >_ [,(m)>_ (4/3)log log t _> (4/3)log log t,_ _> (7/6)log log

Thus, for sufficiently large (or T), the number of such m < x does not exceed
the number of m < x for which ft,(m) > (7/6) log log ti for some ti > T. We
showed above that the latter number is less than c6 x/logx T, with 2 r//2.

Remark. In fact a much sharper statement than Lemma 3 is announced in
[3]. A modification of our proof would give the stronger result, which can also
be demonstrated by the methods of probabilistic number theory.

LEMMA 4. There are positive constants ca, 2, To such that/fx > T > To, then
the number Da(x)ofm <_ x for which there is a prime p > T + 1 with (p 1)lm,

f(p 1)>_ (2/3)log log p and (m/(p 1))>_ (2/3)log log p

satisfies
Da(x) < c8x/log T.

Proof The hypotheses imply fp(m) > (4/3) log log p, so that this lemma is
immediate from the preceding one.
Theorem 2 now follows at once from Lemmas 1, 2, and 4 because

A(x) < Dx(x) + Dz(x) + D(x).

4. The asymptotic density is positive

We wish to show that for every k > 1, the set of all m for which {B2m} {B2k}
has positive asymptotic density. In view of the von Standt-Clausen theorem,
this is equivalent to:

THEOREM 3. For every k >_ 1, the set ofall mfor which 2m i2k has posi-
tive asymptotic density.

We introduce a little more notation. Let LCM (a, b)denote the least
common multiple of a and b. Write() for the set of all positive multiples of
elements of.
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Proof of Theorem 3. Let 2k be given. Let r be the set of all positive
multiples of 2k. Let ro be the set of all m such thatm 2k. We may assume
without loss of generality that 2k is the least element of 3fro. Note that this just
says that 2k is the least common multiple of all of the numbers p- 1 with
p i2k. Thus 3fro c . Let be the set of all LCM (p 1, 2k) for which p is
a prime not in 2k (i.e., (p 1)2k.) Then r is the disjoint union of 3C0 and
(a’). Write the elements of’ in increasing order as a < a2 <’".
We will use Theorem 2 with e 1/4k; this gives us T. Each ai in /was

formed as ai= LCM (Pi-1, 2k) for some prime p with Pi-1 <_ az<_
2k(p- 1). Choose the least r for which ar

_
2kT. Then, for i_ r, we have

Pi 1

_
ai/2k

_
T. Let ’1 {al, at} and a’2 1" We have

A2(x) <_ A(x)<_ n(x + 1)_< 2x/log x for all large x. Therefore, by [4] or
Theorem 14, p. 262 of [5], (a/) and (’2) possess asymptotic density.
Clearly (’1) has asymptotic density, too. By Theorem 2, we have (with d
denoting asymptotic density)

d((/2)) <_ 1/4k. (1)
Let T,(ql, qs) denote the asymptotic density of the sequence consisting of

all those multiples of n which are not divisible by any q (i 1, s). Behrend
[1] (see also Lemma 5, p. 263 of [5])proved that

Tl(ql, qs)Tl(q,+ 1, q+,) <- Tl(ql, q+,)

always. A slight modification of his proof yields the relativized version

1
T(ql, q)Tn(q+ 1,..., q+,) < - T(ql, q+,).

We apply this inequality with n 2k to the elements of ’. For the r chosen
above, and any s, we obtain

T2k(al, a,)T2k(a,+ 1,..., a,+,) < T2k(al, a,+s). (2)

We have

1
T2k(al,..., at)= - d(’( 1)) > 0. (3)

(The positivity may be proved easily by induction on r using (2) with s 1.)
Furthermore,

1
lim Ta(a,+ ,..., a,+,)= - d(OJ(s2)) (4)

because d((z2)) exists. (See also Theorem 12, p. 258 of [5].) Likewise,

1
lim T2k(al,..., a,+)= 2k d(’()) d(Offo). (5)
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Formulas (1)-(5) now imply

ld(g()2k > d((z’l)) -which is Theorem 3.

COROLLARY. The distribution function F(z)= limx_.(R) Fx(z) exists and is a
jumpfunction. The convergence is uniform and the sum ofthe heights ofthejumps
ofF is 1.

5. Some open questiom

It might be interesting to study S(n) ,tp_1 1/p. We proved that the range
of S is dense in [5/6, oo) and S has a distribution function which is a jump
function. Can one estimate M(x)=max.<xS(n)? It is likely that
M(x)/log log x --. 0, but that M(x)/log log log x - oo. Prachar [8] has shown
that the related function dl(n)= tp_ 1)1. 1 has average order log log n and
that d (n) > n/Og log.) for some c > 0 and infinitely many n.
More generally, let al < a2 be a sequence of integers and b 1, b2, be a

sequence of positive real numbers. (In our case, ai Pi I and bi p.) Define
fa(n) ,,,I. 1/b. When does it happen that the density of integers m for which
fa(m) fa(n) is positive? This holds at least when the a[s have this property:

(P) For all n, the set ofthose m which are divisible by precisely the same a[s
as n has positive density.

Property (P) does not hold for all sequences. It fails, for example, for a 2i.
Two related problems are to characterize the sequences of a’s which have
property (P) and to study the distribution offa(n).
Now consider the fractional parts {B2k} with 2k < x. How many distinct

values are assumed ? Theorems 2 and 3 answer o(x). On the other hand, a lower
bound is (x/log x)(1 + o(1))because {Bp_ 1} {B_ 1} when p and q are distinct
primes. The number of distinct {B2k} with 2k < x is 284, 566, 2612, and 5131 for
x 1000, 2000, 10000, 20000, respectively.
We remarked in the introduction that not every finite set of primes can be a

2k. Let 2, 3, Pr be the set of primes < x. How many of the 2 subsets can
be 2k’S?

Let di2k be the asymptotic density of the set of2m with {n2m} {B2k}. Can we
ever have 62k 62, for {B2k} {B2,}? Clearly 62k < 1/2k. What is a positive
lower bound for i2k ? IS {2kdi 2k} dense in (0, 1)? Probably one could show that
di2 is the greatest di2k.

Acknowledgment. We are grateful to Mr. Richard Sunseri, who discovered a
mistake in an earlier version of this paper.
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Table of {B2k which appear at least 150 times among {B2}, {B4} {Blooooo

First {B2k Frequency Density Primes p
p prime, (p- 1)12k P

2k to 100000 to 100000 (p 1)12k

0.833333 2 0.166667 7992 0.15984 2, 3
0.845382 82 0.154618 150 0.00300 2, 3, 83
0.850282 58 0.149718 235 0.00470 2, 3, 59
0.854610 46 0.145390 261 0.00522 2, 3, 47
0.876812 22 0.123188 566 0.01132 2, 3, 23
0.924242 10 0.075758 1080 0.02160 2, 3, 11
0.976190 6 0.023810 1371 0.02742 2, 3, 7
1.028822 18 0.971178 397 0.00794 2, 3, 7, 19
1.033333 4 0.966667 3423 0.06846 2, 3, 5
1.052201 52 0.947799 164 0,00328 2, 3, 5, 53
1.067816 28 0.932184 309 0.00618 2, 3, 5, 29
1.076812 44 0.923188 160 0.00320 2, 3, 5, 23
1.09215.7 16 0.907843 713 0.01426 2, 3, 5, 17
1.124242 20 0.875758 289 0.00578 2, 3, 5, 11
1.253114 12 0.746886 495 0.00990 2, 3, 5, 7, 13
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