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POLYNOMIAL IDENTITIES OF NONASSOCIATIVE RINGS
PART I: THE GENERAL STRUCTURE THEORY OF
NONASSOCIATIVE RINGS, WITH EMPHASIS ON

POLYNOMIAL IDENTITIES AND
CENTRAL POLYNOMIALS

BY

Louis HALLE ROWEN1

General introduction

A (polynomial) identity (resp. central polynomial) of a ring R is, intuitively, a
polynomial in several noncommuting, nonassociating indeterminates, for
which every substitution of elements in R yields 0 (resp. yields an element in the
center of R). In this paper, we study the structure of rings with 1, not necessarily
associative, which satisfy "suitable" polynomial identities; such tings are called
PI-rings. The specific aim is to obtain a theory which can be applied to associa-
tive, alternative, and Jordan rings. Central polynomials will be fundamental in
the study.
The motivating idea of this paper came from a letter of M. Slater in 1973,

where he asked whether the superficial similarities between results of mine for
associative PI-rings, and results of his for nonassociative alternative tings,
might go further beneath the surface. Upon investigation, the following
analogue was immediate" Prime alternative, nonassociative rings actually sat-
isfy a central polynomial [X, X2]2, whereas prime, associative PI-rings also
satisfy central polynomials (first discovered by Formanek).
The application of this fact led to an extension of the associative PI-theory to

altemative rings, and the nice properties of nonassociative prime alternative
tings could be derived "because" these tings are alternative PI-rings. Such
considerations were also applicable to many kinds of Jordan algebras, leading
to a theory of classes of rings satisfying central polynomials, with immediate
applications for associative rings, altemative rings, and some classes of Jordan
rings. The basic idea was to show that, for suitable classes of PI-rings, in a ring
with no nil ideals, every nonzero ideal intersects the center nontrivially. (In
particular, if the center is a field then the ring has no proper nonzero ideals.)
Repeated use of this fact yields very much information, along the lines of the

Received July 30, 1974; received in revised form May 9, 1977.
Much of this paper was written while the author was residing at the Hebrew University of

Jerusalem, winter of 1973; and later research was supported by the Anshel Pfeffer Chair. Many
thanks are due to Kevin McCrimmon, who made many valuable suggestions for reorganization,
including some improved statements and more concise proofs.

(C) 1978 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

341



342 LOUIS HALLE ROWEN

known theory of associative rings with central polynomial. (In fact the theory is
based, for a large part, on generalizing known associative PI-theory.)
Over the years since the original version of this paper was submitted in 1974,

the general theory it contained was made tighter and more extensive. Presently,
the paper stands in three parts"

I. The general structure theory of nonassociative tings, with emphasis on
polynomial identities and central polynomials.

II. Elementary sentences, universal rings, and the various radicals.
III. Applications of the structure theory to associative, alternative, and

Jordan rings.

We shall refer to these parts as I, II, and III. Clearly the applications in III
are the main motivation of this research. On the other hand, as long as a
comprehensive theory was being developed, it seemed worthwhile to put the
results of I and II in a framework broad enough to house other work on
identities.

This decision is reflected immediately, in the set f from which we draw the
coefficients of the identities of a ring R. The obvious selection for such a set is
the integers Z; by a theorem of Amitsur, identities with coefficients in Z yield
all the information of the classical PI-theory for associative rings. On the other
hand, much of the classical literature on nonassociative rings is written about
algebras over fields, so we would certainly want the possibility that f is a
commutative ring , with the stipulation that R is a -algebra. Moreover, since
many Jordan rings are built from the symmetric elements of a ring with involu-
tion (,), we want the possibility of identities "for symmetric elements," i.e.,
identities involving (,), so f should contain a symbol representing the action of
(,) on R. (A "symmetric" indeterminate would then be X + X*.) At this junc-
ture, it seemed worthwhile to make f a general set of actions on R, in this
manner we could also include the following well-studied situations: R is an
associative ring with an automorphism whose ring of fixed points satisfies a
polynomial identity, or R is an associative ring satisfying an identity with
coefficients in R (called a "generalized polynomial identity" in the literature).
These ramifications will be treated in some detail in the body of I, although, for
the application, we will be concerned primarily with the case that R is an
algebra, possibly with involution.

In the same philosophy, we have included some results which seem to con-
tain enough interest to be stated in their full generality, whereas only a special
case would be sufficient for the applications in III. For example, universal
f-rings are used only in the study of the identities of the universal Cayley-
Dickson algebra, which could be accomplished directly in less than a page.
Even so, the question of which sentences pass from a ring to its universal ring is
crucial if we want to exploit the universal ring to its fullest. Ample motivation is
provided by Amitsur’s use of a universal ring, as an example of a finite dimen-
sional division algebra without any maximal subfields Galois over the center.
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Introduction to Part I

As stated in the general introduction, we shall be interested in a ring R with
1, and a set acting distributively (over addition) on R from both the left and
right. will be fixed, and we call R an -ring. We shall consider polynomials
with "coefficients" in fl, the coefficients possibly interspersed throughout the
polynomial. The precise definitions are given in Section 1A, along with some
other basic notions, defined in the category of fl-rings. For example, the center
of a D-ring R, written Z(R), is the set of elements of R satisfying every possible
associativity and commutativity condition with fl and R. Examples of fl-rings
and certain identities and central polynomials will be given in Section lB.

If Z Z(R) and H is a commutative, associative Z-algebra, then the tensor
product R (R)z H is a -ring, under the operations induced canonically. Many
kinds of identities of R pass to R (R)z H. The most important example is the
multilinear identity, because there is a procedure by which an identity can be
"multilinearized" and still preserve many of its properties. A definition of R-
stable identities is given; these identities are characterized as the identities
which are also identities of R (R)z H for every commutative, associative Z-
algebra H. Multilinearization and Rostable identities and central polynomials
are treated in Section 1C.
The most useful instance of R (R)z H is when S is a multiplieative subset ofZ

and H Zs, the localization of Z by S. In this ase we designate R (R) z (Zs) as
Rs. Passing from R to Rs is called central localization, the subject of Section 2.
In 2A, we see some general properties of central localization; in particular
every identity of R is an identity of Rs. One very pleasant property of central
localization is that the localization of a prime ideal is prime, and in fact there
are several nice ways of obtaining information about prime ideals of R by
passing to Rs. These theorems are taken largely from [23], and are collected in
2B. Actually, we are interested mainly in prime ideals P ofR such that RIP has
no nonzero nil ideals. Call such a prime ideal "strongly prime"; R is said to be
strongly prime if 0 is a strongly prime ideal.

In Section 3, we get to the heart of the paper by using central localization to
examine certain classes of rings with central polynomial. Define a Kaplansky
class c as a class of f-rings having the following properties"

(1) If R 6 c then R/Nil R is the subdirect product of strongly prime rings
in .

(2) If R 6 c then R[2] 6 c (where 2 is a commuting, associating indeter-
minate over R).

(3) If R 6 c then every central localization of R is in .
(4) If R 6 c and Nil (R) 0, then the intersection of the maximal ideals of

g[,] is 0.

Conditions (1)-(3) are included to insure that c resembles a variety; these
conditions hold in any variety defined by identities of degree _< 2 in each
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indeterminate, for example. Condition (4) is much more restrictive, but seems
to be necessary for our purposes. The class is called "Kaplansky" because, by
theorems of Amitsur and Kaplansky, {associative PI-rings} satisfies (4). (Ac-
tually, Kaplansky’s theorem is generalized to any rings with central
polynomial.)

In a Kaplansky class, the presence of a central polynomial has many con-
sequences, the most important being that, in rings with no nil ideals, all non-
zero ideals intersect the center nontrivially. Most of the results of [23] can be
transferred verbatim; in particular there is a correspondence between the lat-
tices of prime ideals of R and Z.
Another related approach to the correspondence between ideals of R

and Z was motivated by a short proof, found independently by Amitsur [4]
and Rowen, of the famous Artin-Procesi theorem (characterizing Azumaya
algebras in terms of polynomial identities). The "heart" of the theorem can be
given for nonassociative rings, with the idea of the proof patterned after [27];
the idea is to build a new central polynomial from a ,given one, and by very
elementary manipulations to go back and forth between R and Z. This is done
in 4.

In 5, a general decomposition theorem is given which enables one to separ-
ate a semiprime ring into its associative and "purely nonassociative" parts; this
result will be particularly useful for alternative rings.

In 6, the special case of -rings with involution is treated in considerable
detail, and it is shown that the general theory described in 1 is entirely consist-
ent with the theory of "*-identities" that has developed in the last ten years.
Related f-rings are built from the symmetric elements of f-rings with involu-
tion; these f-rings are to be used in Jordan algebra constructions in Part III.

1. General preliminary results

IA. Definitions and examples. Ring will denote a nonassociative ring with
1. In a ring R, define

It1, r2, r3] (rl r2)r3 r(r2r3) and [r, r2] rl r2 rare.
Also define the nucleus

N(R)-- {r R l[r, R, R] [R, r, R] [R, R, r] --.0}
and the center

Zo(R) {r N(R)I[r, R] 0}.
When unambiguous, N and Zo will respectively denote N(R) and Zo(R). For
convenience, write rx r, for (... ((rl r2)r3)"")rm.
Now let f be a set; we say R is a -rin# if there are operations

xRR and R xfR,

both of which distribute over addition in R. Note that R is always a Z-algebra
and a Zo-algebra, so we could take f to be either Z or Zo. When we call R a
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"ring," without specifying fL we tacitly take f Z. Usually f will be some
commutative, associative ring over which R is an algebra, but we give the
general definition to include the following possibilities (which have been
treated extensively in the literature when R is associative): (i) f is a subring of
R; (ii) f contains a symbol denoting a given involution of R; (iii) f contains a
symbol denoting a given automorphism of R. The first two cases are treated
later in the paper, and will be included in the examples below.

In this theory, we fix f and deal with the category of f-rings. Accordingly, an
ideal A of a f-ring R is a ring ideal of R, such that fA

_
A and Af_ A.

Homomorphisms, epimorphisms, etc., will be viewed in the context of preserv-
ing f-structure. Given an element r in R, we will let (r) denote the ideal (of R)
generated by r. Clearly, we may assume that f has an "identity" action e given
by-er re r for all r in R; if we do not yet have such an element in .fL we add
it to f formally.
One can construct formally a "free" f-ring, which we call I2{X}, as follows.

Monomials are strings consisting of elements of fL the formal element 1, and
(nonassociating, noncommuting) indeterminates X, with parentheses indicat-
ing the order of multiplication; every monomial is stipulated to contain either 1
or some X, and we identify the monomial h with (lh) and with (h 1). f{X} is the
set of formal sums of monomials, with addition defined formally and multi-
plication given by ( h)(_ hl) (hihj)" to make f{X} into an f-ring, define
09( hi) , (oghi) and (, hi)o9 , (hog). Elements off{X} are called polyno-
mials, f{X} is free in the sense that, for any countable set of elements r , r2,
in a f-ring R, there is a unique homomorphism f{X} R sending X - r,
X2 r2, A polynomial in the kernel of all homorphisms f{X} - R is called
an identity of R.
Given an elementf of f{X}, denotefbyf(X,..., Xm)iffis in the f-subring

of f{X} generated by X , Xm; f(r, r) denotes the image off in R,
under the homomorphism sending Xi- ri for 1 _<i < m, and Xi 0 for all
other i. Let

g(f) {f(r, rm)[ all ri in R},
the set of "evaluations" offin R. Clearlyfis an identity ofR iff R(f)= 0..Also,
let R / (f) be the additive subgroup of R generated by R(f).

If the indeterminates of a monomial h occur (from left to right) in the order
Xut, Xut2, Xut0, call XutXut2... Xo thefingerprint of h. The sum of the
monomials of f with a given fingerprint is called a generalized monomial. In
other words, a generalized monomial is a sum of monomials with the indeter-
minates arranged in the same order, but with (possibly)different placement of
parentheses and different operators from f.
Many important identities are generalized monomials, given in IB;

however, motivated by the associative theory, we shall focus on the opposite
situation. Accordingly, sayfis R-proper if some generalized monomial offis not
an identity of R; f is R-strong iff is proper for every nonzero homomorphic
image of R. If R has an R-strong identity, we call R a PI (f-)ring.
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Some remarks are in order. Suppose a polynomialf is written as a sum of
generalized monomials f. Clearly f is R-strong iff the ideal generated by all

R(f) contains 1. Thus, iff is R-strong and R1 is a f-ring containing R and
having the same 1, then f is R 1-strong. By a similar argument using the "dia-
gonal map" of R into a direct power R’ of copies of R, one sees easily that iffis
R-strong then f is R’-strong; thus any direct power of a PI-ring is a PI-ring.
However, this argument fails for direct products; a polynomial which is
Ri-strong for each i, need not be VI R-strong. Also, every homomorphic image
of a PI-ring is a PI-ring.
For 6

_
f{X}, we define /’(6e), the variety determined by 6e, as the class of

f-rings for which each element of 6e is an identity. Note, for any identityfof R,
that every endomorphic image offis an identity of R. Hence, if we let 6be the
ideal of f{X} generated by all endomorphic images of 6e in f{X}, we have
(6) (6e). Conversely, f{X}/ (6e). Such a f-ring t){X}/ff’ is called
a universal PI-ring or a "relatively flee" ring and will be one subject of careful
investigation in Part II of this series. Define

Z(R; f)= {z Zo (ogr)z og(rz) and

(zr)o9 z(ro) for all r in R and all o in f}.

Since f is usually understood, we shall write Z(R) for Z(R; f). When R is
unambiguous, we merely write Z. A polynomialfis R-central if 0 R(f)

_
Z.

(Central polynomials for matrix algebras over a field were found independently
by Formanek [9] and Razmyslov [21], and revolutionized the theory of associa-
tive PI-rings. In this paper, we also build the general PI-theory around central
polynomials.)

Let 6e(R) denote {identities of R}. If R - R2 or R is a homomorphic image
of R2 then 6e(R 2) 6e(R 1). Two f-rings R and R 2 are equivalent if (R 1)
ff’(R2). For example, R1 is equivalent to any direct product of copies ofR1.
Note that equivalent f-rings also have the same set of central polynomials.
Write /(R) for /"(s(g ).
Given two polynomials fl and f2, say fl <f2 iffl f{X} / (f2), i.e., iffl is a

sum of evaluations off2 in f{X} (and their negations). It is easy to see that
fl <f2 iff R / (fl) - R / (f2) for all f-rings R. In particular, if fl < f2, then
wheneverf2 is an identity of R (resp. R-central) thenfl is an identity of R (resp.
either R central or an identity of R).

(This definition is more restrictive than saying thatfl is in the ideal of f{X}
generated by f{X}(f2), and is used so that we may treat central polynomials as
well as identities.)
The associative definitions of [23] and [24] are generalized easily. For exam-

ple, the de#ree of Xin a generalized monomial h offis the degree of Xin the
fingerprint of h; f is homogeneous in X if X has the same degree in each
generalized monomial off, andfis completely homogeneous iffis homogeneous
in each X. The height of f is the maximal height of the fingerprints of its
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generalized monomials (cf. [13], where height of a monomial is its degree minus
the number of indeterminates occurring in the monomial). Iffis homogeneous
of degree 1 in every X occurring in f, thenfis multilinear; note all multilinear
polynomials have height 0.
A polynomialf(X ,, Xm)is t-linear iffis homogeneous ofdegree 1 in each

X, 1 < < t. Say f(X,,..., X,,) is t-alternatino if whenever 1 < <j < t,
f(..., X, X, ...)vanishes when we substitute the same indeterminate for
both X and X. Iff is t-alternating then

whenever 1 < < j < t; the converse is true if 1/2 e f. A polynomialfis t-normal
iff is t-multilinear and t-alternating.

lB. Examples, with remarks. This section consists of a number of examples
of the above concepts, with remarks to illustrate how they "fit" into the general
theory to be developed.

(i) Any expression which is 0 in the free nonassociative ring Z{X} is an
(improper) identity of all rings. (Such identities are called trivial.) The following
two examples are very useful:

x,[x:, x:, x,] + Ix,, x:, x:lx, IX, x:, x:,
+ [x,, xx, x,]- Ix,, x, xx,],

Ix,, x:, x:] IX,, x, x:] + [x:, x,, x:]
+ x,[x, x] + Ix,, x]x [x,x, x].

(ii) Using identity (/), one can see that .f(X, Xm)is R-central iff
[X+ a, f], [X+ , Xm+ , f], [Xm+ , f, X+ 2], (09Xm+ )f-- 09(X+.af), and
f(X,,+ o9) (fXm+ )o9 (for all 09 in f), but not f, are identities of R.

(iii) If f is a ring Z, and e is the multiplicative unit of Z, we say R is a
E-aloie when the map Z E1 is a ring homomorphism sending Z(Z) into Z(R),
such that mr (091)r and to0 r(o91) for all r in R, 09 in . (This last condition
shows that "ideal" means the same thing, viewing R as E-algie or as ring.)
The condition "R is a Z-algie" is varietally defined as (6e0), where

:Co ((o, + o:)x, o,x, o:x,, x,(o, + o:)- x,o, x,o:,
[co,, coz, 1], [1, o9,, co2], [co,, 1, X,],

IX,, 1, 09,], [1, 09,, X 1], IX,, o9,, 1], [z, X,], IX,, X2, z], IX,, z, X2]

for all o,, 0)2 in E, all z in Z(Y)}.
(The identities el 1 and le- 1 have already been assumed.)

Algies are useful because they give a generalization of algebra, which (for
example) enables us to take "coefficients" of the identity from R itself. (Note
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that the coefficients are interspersed throughout the polynomial so that ele-
ments of E work more like "ring elements" than "scalars.") Such identities are
called "generalized polynomial identities" and are very interesting (cf. [1], [17],
[18], [24], [25] for representative results). The "algie" approach to generalized
polynomial identities is given in [24].

(iv) Iffis a commutative ring O, we say R is an algebra if R is a O-algie with
1

_
Z(R). Obviously these extra conditions are varietally defined, so the class

of O-algebras is a variety. Every ring is an algebra. We shall be concerned with
the following varieties of algebras, defined by additional identities"

(1)
(2)
(3)
(4)
(5)
(6)

power-associative (satisfying [X, X{, X]] for all i, j, k in Z + ),
right alternative (satisfying [X, X2, X2]),
alternative (satisfying [X, X, X2] and [X, X2, X2]),
associative (satisfying [X, X2, X3]),
commutative algebras (satisfying [X, X2]),
Jordan algebras (satisfying [X, X2] and [X, X2, X]).

(v) For any generalized monomials fx,f2, and f3, obviously [fx,f2,f3] is a
generalized monomial. Consequently, power-associative, right alternative,
alternative, and associative algebras are defined by improper identities.

(vi) In general, improper identities have no bearing on the dimension of an
algebra; they often give information about individual elements, instead of col-
lective information. Some examples" If nX is an identity then each element of
R is n-torsion (i.e., R has characteristic n). If f R and R is an R-algie with
identities Jr, X, X2] IX 1, r, X2] and [X , X2, r], then r N(R); if [r, X x] is
also an identity of R then r Z(R). Finally, every associative ring which is
not prime satisfies some improper generalized polynomial identity rX r2, for
suitable elements ra, r2 of R.

(vii) Supposef is a polynomial with coefficients only from {1, -1} having
the property that there is a suitable fingerprint with only one monomial corre-
sponding to it. Then f is R-strong for every R. Proof: just substitute "1" for
every Xi. (Example: [X, X2] is R-strong for every R.)

(viii) It is simple to separate an identityfof R into the sum of an R-proper
identityfx and an R-improper identityf: let f2 be the sum of those generalized
monomials offwhich are identities of R. Incidentally, the "constant term," the
part off having degree 0, is f(0, 0) 0, sofa has "constant term" 0. Thus,
we will assume in our study of proper identities that all monomials have
positive degree.

(ix) If Z(R)is a field then every R-central polynomial is obviously R-strong.
(x) It is easy to see that every t-normal polynomial is an identity of every

O-algebra spanned (as module over ) by fewer than elements. The most
famous example of a t-normal polynomial is the standard polynomial

S,(X,, X,)= , (sg t)X,,
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summed over all permutations t of (1, t); by (vii), S, is R-strong for all
rings R.

(xi) It is easy, using the result of Formanek [9] (or that of Razmyslov [21])
to construct a t2-normal central polynomial for every central simple associative
algebra of degree (i.e., dimension 2 over its center). This was observed by
Amitsur [4], Goldie, and Rowen [27], and has important implications. (Details
will be given in Section 4.)

(xii) Suppose, for convenience of notation, that R is a power-associative
-algebra. If r is an element (of R) which is algebraic of degree over , then

(r) is spanned by elements, so St+ l(r’X 1, r’-1X 1, X 1) is an improper
generalized identity of R. If every element ofR is algebraic of degree < over ,
we say that R is al#ebraically algebraic of degree < t; in this case,

is an identity of R, which is R-strong, by (vii).
(xiii) Suppose f has an element (,) which is an anti-automorphism of

degree < 2 over R. We call (,) an involution of R. We write r* for the action of
(,) on R (defined formally to be the same on both left and right). Such a
situation is very important, with representative results (in the associative case)
in [2], [10], [16], [18], [24], and [26]. We can treat the involution varietally, by
noting that (,) is an involution on R iff R satisfies the identities (,X X ,)
(so that we write X* for (,X)or (X,)), ((X)* X), (X1X2)* XX, and
(1" 1). In this case, we call the corresponding universal ring (f{X}, ,), the
’free" ring with involution. In virtually every situation, f will be itself a ring with
involution (E, ,), with (cot)* r’co* and (rco)* co*r* for all co in E, all r in R.
However, to preserve complete generality, we may not have a priori symbols
co* when co 6 . This is easily remedied. Just define co* formally via the action
co*r= (r’co)* and rco*= (cor*)*. Now (f{X}, ,) is in fact a ring with
involution.
We will treat involutions in detail in 5, including discrepancies between the

definitions presented here and the definitions in the literature.

IC. Central extensions of rings, multilinearization, and stable identities. If R
is a ring with center Z and if H is a commutative, associative Z-algebra, then
R (R)z H is a f-ring, with operations o9(, r, (R) h)= , (ogr, (R) h,) and
(, r, (R) h,)o , (r, o (R) h,), seen via the definition of tensor product. Call
R (R)z H a tensor extension of R. There is a canonical homomorphism
R R (R)z H given by r r (R) 1, although there may be a nonzero kernel. A
very important example when this map is an injection is when H Z[2], where
2 is a commuting, associating indeterminate over Z. In this case we write R[2]
for R (R)z H, and call R[2] the polynomial ring over R.

It was recognized early that, for R associative, all multilinear identities
of R are identities of every tensor extension of R. (We shall soon present this
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fact more generally for nonassociative rings.) Since tensor extensions are cru-
cial to much of the structure theory, the process of obtaining multilinear identi-
ties from arbitrary identities is fundamental. Fortunately there is the following
very successful, well-known procedure: Given f(X1, X,), define

Af(X1, Xm+ 1)=f(X1, X + Xm+ 1, Xm)

f(Xl, Sj, Sm) f(X1, gm+ 1, Xm).

Clearly A f<f, A fhas lower height thanf, and, for any generalized mono-
mialf off, there is a generalized monomialf ofAfwithf <f. By induction
on height, we see that one obtains, after a finite number of applications of
various A, a multilinear polynomial h, and an easy induction argument (on
height) yields the following properties"

PROPOSITION 1.0. With notation as above, h < f, ht (h) < ht (f) (with equa-
lity holdin# only iff is multilinear), andfor any generalized monomialf offthere
is a #eneralized monomial h ofh, withf < h. Thus, iffis a proper (resp. stron#)
identity ofR then h is a proper (resp. strong) identity of R.

Proposition 1.0 shows that every PI D.ring has a strong multilinear identity.
We shall often use this fact tacitly. The situation for central polynomials is not
nearly as nice. Multilinearizations of central polynomials may not be central.
(The problem is that the A operator might take nonidentities ofR to identities
of R. For example, if R is a commutative, associative Z-algebra satisfying the
identity X X (i.e., R is Boolean), then X is R-central, but X X2 + X2X
is an identity of R. If R is a Q-algebra then a trivial specialization argument
shows that for any polynomial f, R(Af)= R(f), so multilinearizations of
central polynomials remain nonidentities whenever R has characteristic 0.)In
general, one has a partial result parallel to [23, Section 1]. A polynomialf is
blended if for each X occurring (nontrivially) inf, X occurs in every monomial
of f. For example, X X2 X is not blended, but X X2 (X2 X)X is
blended.

PROPOSITION 1.1. Suppose G is a given additive subgroup of R, and f is a
polynomial with R(f G. Then there exists a blended polynomial h <fwith the
following additional properties: (1) ht (h) < ht (f); (2) iff is t-normal then h is
t-normal; (3) R(h) if: G.

Proof. Use the argument of [23, Lemma 1.1]. Q.E.D.

In particular, for G 0, we can use "blended" central polynomials in place of
arbitrary central polynomials. We return now to identities (and central polyno-
mials) which pass to central extensions. For this purpose, let us introduce the
concept of R-stable, defined by induction on height:
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(i) All multilinear polynomials are R-stable.
(ii) For f completely homogeneous, f is R-stable if, for every j, Af is

R-stable.
(iii) Forfnot completely homogeneous,fis R-stable if, whenfis written as

a sum of completely homogeneous polynomialsf,..., fk with k minimal then,
for all u, 1 <_ u <_ k,f is R-stable and R + (f)

_
R+ (f).

Remark 1.2. (i) Every completely homogeneous identity of degree < 2 in
each indeterminate is R-stable; for example the identities defining alternative
algebras (IB, example (iv)) are stable.

(ii) All identities of R are R-stable, iff every identity of R is the sum of
completely homogeneous identities of R (proof by induction on height). Note
that iff is a sum of completely homogeneous nontrivial polynomialsf, ,fk,
with k minimal, then ht (f) < ht (f) for all u, 1 < u < k.

(iii) If R e (R:) then every R:-stable identity ofR is an R-stable identity
of R. (In particular, this is true if R

_
R.)

The proof of [23, Proposition 1.3 (ii)] can be adapted to yield:

PRO’OSmON 1.3.
tensor extension of R.

Every R-stable identity ofa -ring R is an identity ofevery

If R
_
R1 and R RZ(R 1) then we say R1 is a central extension of R.

Clearly, in this case, R is a homomorphic image of R (R) z Z(R ), so we have:

COROLLARY 1.4. Every central extension R1 of a P!-ring R is PI.

Proofi R has a strong multilinear identity, which, by proposition 1.3, is an
identity of R1, and is obviously Rl-strong. Q.E.D.

PROPOSITION 1.5. (i) Every identity of R[2] is R[2]-stable.
(ii) An identity f ofg is R-stable ifff is an identity of R[2].

Proof. (i) By Remark 1.2 (ii), it suffices to show that any identity
f(X 1, X) ofR[2] is the sum of completely homogeneous identities of R[2].
Let X have degree d inf, let be a t-tuple (tl, t) with 0 < t < d for each i,
and let ft be the sum of all monomials offin which X1, X have respective
degrees 1,..., t. We aim to show each ft is an identity of R[2].

Suppose xl, x,, are in R[2], i.e., each x has the form Y’.= rij 2. Then
define 01 0 and, inductively, 0+ d(0 + n) + 1. Checking coeffidents of
powers of 2 in

shows eachf(x 1, x) O; we conClude that eachf is an identity ofR[], as
desired.
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(ii) Iffis an R-stable identity of R, thenfis an identity of R[2], by Proposi-
tion 1.3. The converse follows immediately from (i) and Remark 1.2
(iii). Q.E.D.

THEOREM 1.6. For any given positive integer t, a polynomialfis an R-stable
identity of R iff f is an identity of R[21,...,2,]. (In this case, f is
R[21, 2,]-stable.)

Proof Write Rt’) R[21, 2t], and note that R’’) R(’- 1)[2]. Supposefis
an R-stable identity of R. By Proposition 1.3, f is an identity of Rtl), and f is
Rt)-stable by Proposition 1.50). Using induction on t, we may assumefis an
R"-)-stable identity of R"-). But then, by Proposition 1.3,fis an identity of
Rt. Every identity of Rt’) is Rt-stable, by Proposition 1.50) (since
R’= R"-
The opposite direction is immediate; any identity of Rt is R(-stable, and

thus R-stable, by Remark 1.2. Q.E.D.

COROLLARY 1.7. R is equivalent to R[21,..., 2], iff every identity ofR is the
sum of completely homogeneous identities.

Stable identities are very important, because, in what follows, we will need to
pass identities to polynomial rings. For this reason, we give a class of rings in
which .every identity is stable (which, by Remark 1.2(i), is equivalent to saying
that every identity is the sum of completely homogeneous identities).

Say an element z of Z is regular if zr 0 for all nonzero elements r of R.

Remark 1.8. If Z contains an infinite subring Z of regular elements, then
every identity of R is the sum of completely homogeneous identities.

Proof We sketch a very well-known argument. Writef f(X , X,,),
where eachf is homogeneous in X 1, of degree t. For any c in Z and r 1, r,, in
R, we have

f(crl, r)= c%(r1, rm).

Thus, using enough different values of c, we can apply a Vandermonde deter-
minant argument to conclude that eachf(r, r)= 0; thusf is an identity
ofR. The proof is concluded by continuing this procedure for each X. Q.E.D.

In Part II, more classes of rings are given in which every identity is stable.

ID. Proving f-rings satisfy given canonical identities. By kth power of an
element, we mean some product of the element by itself k times, under suitable
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placement of parentheses. (For example, (aa)a and a(aa) are third powers of a.)
A power of an element is a kth power for some suitable natural number k. An
element is nilpotent if some power is 0, and an ideal is nil if every element is
nilpotent. Standard arguments show that the sum of two nil ideals is nil; by an
application of Zorn’s lemma, any fl-ring R has a unique maximal nil ideal,
which we call Nil (R).
A certain result of Amitsur [2] can be stated in a very general context (with

the same proof).

THEOREM 1.9 ("Amitsur’s method"). Suppose R is a f]-ring with cardinality, and let 09 max (g, 09o), where 09o is the cardinality of the inteters. Iff is an
identity of R’/Nil (R’), then some power off is an identity of R.

Sketch of Proof. Write f as f(X 1, Xm), and let R’= R% Since co corn,
we can index the components of R’ by the m-tuples of elements of R, and the
conclusion of the theorem follows forthwith, as in [2]. Namely, take the element
u of R’ whose (rl, rm)-Component is ru, for 1 < u < m. By assumption,
f(hl, hm) 6 Nil (R’), so some power off(hi, h,) is 0. In other words,
h(hl, hm)= 0 for some power h off. But for each (rl, r,,), the (rl,
rm)-component of h(hl, hm) is h(rl, rm), proving h is an identity of
g. Q.E.D.

Theorem 1.9 is used as follows. Suppose is a variety of O-rings. If R is a
PI-ring in /" then so is R’/il (R’), and often one can show that R’/qil (R’)
satisfies a standard identity. In this case, R satisfies a power of a standard
identity. For a sampling of the many uses of this method, see [2], [3], [23], [25],
[26]. We shall also be using this method in this paper.
A similar treatment of the theory can be carried out, by considering only

identities in a fixed number of indeterminates. Namely, let f{X}tm) be the
f-subring of f{X} generated by X 1, Xm. Given elements of r 1, rm of a
Q-ring R, one has a unique homomorphism f{x}tm)- R which sends
X1 - r1,..., Xm rm. The intersection of the kernels of all homomorphisms
{X}mR is the set of m-identities of R, denoted as tm(R)=
f{X}tin) ff’(R), where (g) {identities of R}. Of course fl{X} and 6e(g)are
the respective direct limits of ftm){x} and tm)(R) as m- . There is an
injection f{X} ft2){X}, given by Xk xk X2, where xk denotes a kth power
ofX (chosen arbitrarily). Hence R has a (strong) identity if and only if R has a
(strong) 2-identity. Set qltm(R)= ftm{x}/tm(R). There may fail to be an
injection from q/(R) to qltm)(R). Indeed, if (R) is the universal alternative alge-
bra, then IXt,-2,-a] =/: 0 but lies in the kernel of every homomorphism
q/(R)- q/t2)(R) (since all alternative algebras generated by 2 elements are asso-
dative). Still, the interplay between universal algebras is often useful.
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2. Central localization of f2-rings, and its effect
on the lattice of prime ideals

2A. General properties of central localization. In this section we develop the
concept of central localization, a special case of tensor extension, defined as
follows" Let R be a fl-ring with center Z, and let S be a multipliatively dosed
subset of Z, containing 1, and let H Zs, the classical localization of the
commutative, associative ring Z at S; we define Rs R (R)z H. Rs can be
characterized very neatly as the classical localization (as Z-module)of R with
respect to S, made into a f-ring via the operations

and

s; oo)s;

for all r a, r 2 in R, all s , s 2 in S, and all 09 in f. Note that any set of rn elements in
Rs can be put in the form rs-x, rs- for suitable r in R, s in S. The
canonical homomorphism qs" R Rs is given by s(r) rl-.

If B is a subset of R, we write Bs for {bs- b B, s S}. If T {regular
elements of Z} then we call R r the f-rin9 ofcentral quotients ofR, and note that
r is an injection, and Z(R r) Zr. (This concept is most interesting in the case
T Z {0}, because then Z(Rr) is the field of fractions of Z.) Central localiza-
tion works very well in PI-theory, because we have:

THEOREM 2.0. For every multiplicative subset S of Z, and for every polyno-
mial f, g(f

_
(g + (f)S)s.

Proof Use a Vandermonde determinant argument from [23, Theorem 3.1],
as follows. Let G R + (f), and let G’= (GS)s. It suffices to show

f(rs-, rms-) e G’

for r in R and s in S. Letf be the sum of all monomials offhaving total degree
t, and let y, =f(rx, r). Letting d be the total degree of f, we have

=0 s’Yt f(sr, Srm) G. Using the usual Vandermonde argument on
this system of d +! equations, with y as the variables, 0 < < d, we get
h(s)y, GS, where the Vandermonde determinant h(s) is a product of terms of
the form s s, p < q. Evidently h(s) is of the form skh’(s), where h’(s) is a
polynomial in s, with integral coefficients and constant term 1. Applying Cs
yields h(s)y,1- e G’; multiplying by ls -k gives h’(s)ytl- e G’. Let h’(s)- 1
sh"(s). Then, for all t,

y,1- sh"(s)y,1- e G’.
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Thus, by induction, y,1-* sk(h"(s))kytl-* G’, yielding

f(r,s-*, r,s-*)= f(r,s-*,
t=O

d d

2 y,s-’ 2 (h"(s))’y,l-*+ G’
t=O t=O

d, f(h"(s)r,, h"(S)rm)l-* + G’
t=O

f(h"(s)r,, h"(S)rm)l- + G’

_GI-* +G’G’.

COROLLARY 2.1.
tire subset S of Z.

Every identity ofR is an identity ofRs,for each multiplica-

Proof. When G 0, clearly (GS)s also is 0. Q.E.D.

2B. Prime and strongly prime ideals. Call R stronoly semiprime if
Nil (R)= 0. As we shall see, strongly semiprime rings are quite amenable to
examination in terms of central polynomials. Call an ideal B of R strongly
semiprime if Nil (R/B) 0. Clearly, in this case, Nil (R)

_
B.

Call an D-ring R prime if, for any two nonzero ideals, the product is nonzero;
a prime O-ring R is stron#ly prime if Nil (R) 0. An ideal P ofR is prime (resp.
stronlly prime) if R/P is prime (resp. strongly prime). Recall that < > denotes
"the ideal (of R) generated by."

Remark 2.2. If R is prime then every nonzero element of Z is regular.
(Proof: Suppose rz 0 for elements r in R, z =/= 0 in Z. Then (r)(z) 0, so
(r) 0, implying r 0. Hence z is regular.)

Strongly prime ideals arise very naturally, we see in the next result.

PROPOSITION 2.3. If T is a multiplicatively closed subset ofa f-rin# R, then
every ideal P (of R) maximal with respect to P c T ?J is strontly prime.

Proof. Assume 0 T, since otherwise the assertion is vacuous. It is stan-
dard that P is prime. Suppose Nil (R/P)= AlP O. Then A P, so there
exists (nonzero) in A T. But then some power t of lies in P. Thus
t T P , a contradiction. This proves Nil (R/P)= 0, so P is strongly
prime. Q.E.D.

The ideals described in Proposition 2.3 exist (if 0 T), by Zorn’s lemma.

PROPOSITION 2.4. Nil (R)= {strongly prime ideals of R}.
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Proof Let {strongly prime ideals of R}. For each P in , Nil (R)
_

P,
so Nil (R)

___
{P 6 }. Conversely, if r is a nonnilpotent element of R, then

T {powers of r} is multip!icatively closed; by Proposition 2.3, there exists
some P 6 with r P. Hence (-] {P 6 } is nil, implying
Nil (R)= {P 6 }. Q.E.D.

COROLLARY 2.5.
semiprime ring is O.

The intersection of the strongly prime ideals of a strongly

We continue along the lines of [23, 3]. For an associative PI-ring, all prime
ideals are strongly prime. If P is a prime ideal of Z Z(R), we note that
(Z P) is a multiplicative subset of Z, and we write Re for Rz_, (and for
the canonical homomorphism z-e: R R,). It is standard to show that
is a lattice isomorphism of {strongly prime ideals of Re} onto {strongly prime
ideals/ of R I/ Z

_
P}. This fact makes us very interested in lifting strongly

prime ideals from Z to strongly prime ideals of R. This is achieved in the next
result (when we put R1 Z).

PROPOSITION 2.6. Suppose R is an subring of an -ring R, B1 is a strongly
semi-prime ideal of R 1, and is an ideal of R, maximal with respect to

R1 - B1. Then is strongly semiprime.

Proof If Nil(R/B)=A/B4:0, then /cA, so A cR1 B1. Hence
((A cRa)+Bx)/Bx is a nonzero nil ideal of R x/B, contrary to
Nil (R /B O.

COROLLARY 2.7. In the notation of Proposition 2.6, if BI is a strongly prime
ideal ofR then is a strongly prime ideal ofR. Conversely, ifP is a prime ideal of
R, then P Z is a prime ideal of Z.

Proof. Straightforward.

We record two more results, with proofs paralleling those of [23, Lemma 3.5
and Lemma 3.6].

LEMMA 2.8.
strongly prime.

If R is strongly prime then, for any prime ideal P of Z, Re is

LEMMA 2.9. Let P be a prime ideal of Z and let be an ideal ofR, maximal
with respect to I c Z

_
P. We have P

_ . iff Pe - -,.
Now, we know that any prime, associative, commutative ring has a field of

fractions. Accordingly, call a prime f-ring absolutely prime if its ring of central
quotients is simple; an ideal/ of R is absolutely prime if R/I is absolutely
prime.
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Remark 2.10. A prime ring R is absolutely prime iff every nonzero ideal of
R intersects Z nontrivially. (Proof: pass to the ring of central quotients, using
Remark 2.2.)

THEOREM 2.11. Let P be a prime ideal of Z and let P be an ideal of R,
maximal with respect to P c Z c_c_ P.

(i) Pe is maximal in Re.
(ii) Let/ R/P, S Z P, (S + P)/P. Then there is a canonical em-

beddin9 t - Re/Pc which induces an isomorphism Re/Pc s, which is the ring
of central quotients of_. In particular, P is absolutely prime; P is maximal ifand
only if Z(R/P) is a field, in which case RIP Re/Pc.

Proof. As in [23, Theorem 3.7].

There is a simple fact about intersections of ideals in prime tings which we
record now for later use.

Remark 2.12. Suppose R is prime and {At[ ? 6 F} is a set of ideals of R, with
intersection 0. If F F u F2 and (’] {A ]]1 ff F2} # 0 then
(-] {A 1 6 Fx} O. (Proof:

( {At Y {A I F2})- (’] {A Y 1"} O.

Since R is prime, we conclude (’] {A 17 1",}= 0.)

3. Application of central polynomials and central localization
to structure theory

3A. Centrally admissible rings. The object of Section 3 is to obtain a struc-
ture theory of PI (f-)rings, based on absolutely prime ideals. Our starting
point is an attempt to learn more about "absolutely prime," i.e., when are
strongly prime tings absolutely prime? To answer this question, one needs to
study various radicals of a f-ring.
The flavor is set by the following result. Recalling that, by convention, R is a

f-ring with center Z, say a subset B of R hits Z if B Z 4: 0.

LEMMA 3.1. Suppose {M IV F} is a set of maximal ideals of g with zero
intersection such that, for any F’

_
F, R/(-] {M F’} satisfies a central poly-

nomial. Then every nonzero ideal ofR hits Z.

Proof Consider an ideal A 4:0 of R. We wish to prove A Z 0. Let

r’= {v z FIA M}, 0 {MI F’},
R R/B, Rv R/Mr, and let nv R Rv be the canonical projection, for each
? in F. Since Rr is simple, nv(A)= Rv for each in F’.
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By hypothesis,/ satisfies some central polynomial g(X , Xm). Then, for
some in F’, Rv(g) 0, so we can pick a, as in A such that g(nv(a),
nr(am) O. Let a g(al, a,)4 0 (since a 0). Clearly Z(/). But
nr(a 0 for all ), in F F’, so a 6 Z A. Q.E.D.

DEFINITION 3.2.
hold.

R is centrally admissible if the following two conditions

(1) (’] {maximal ideals of R[2]} 0.
(2) Given a set {Mv le F} of maximal ideals of R[2] with intersection 0,

there is a subset F’
_
F such that, for any F"

_
F’, R[2]/ {MI r r"} satisfies

a central polynomial, and {M I 6 F’} 0.

THEOREM 3.3.
hits Z.

If R is centrally admissible then every nonzero ideal of R

Proof. Immediate from Definition 3.2 and Lemma 3.1. Q.E.D.

The major objective of Section 3 is to build a structure theory based on
"centrally admissible," using Theorem 3.3. One major goal is to determine
which tings are centrally admissible.
Brown-McCoy [7] and Smiley [31] defined a radical of an arbitrary ring to be

the intersection of its maximal ideals; in the context of f-rings, let BM(R)
{maximal ideals of R} for a f-ring R. If BM(R) 0, we say R is semisimple

(i.e., a subdirect product of simple f-rings). Looking at Z as a ring, we see that
BM(Z) is the Jacobson radical of Z. This concept arises in Definition 3.2, since
condition (1) says "BM(R[2])= 0". In fact, for prime f-rings, we have:

THEOREM 3.4. If R is prime with R-stable central polynomial and if RIg] is
semisimple, then R is centrally admissible and absolutely prime.

Proof. It suffices to check condition (2) of Definition 3.2; for then we are
done by Theorem 3.3.
We assume {M[y F} is a set of maximal ideals of R[2] with intersection 0.

Let g be an R-stable central polynomial of R. Then g is R[2]-central. Let

r’ { r g[,q(g) M},
and let F2 F F’. For each , in F2, R[2](g)_ M, so {M[v F2} 0.
Hence, by Remark 2.12, (") {M 1), e F’} 0 (since R[2] is prime). But g is
R[2]/Mv-central for every in F’, so condition (2) holds. Q.E.D.

Thus, given a strongly prime t-ring R with R-stable central polynomial, the
obstruction to proving R is absolutely prime is BM(R[2]). Most of this section
will be spent on overcoming this obstruction.
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3B. Rings whose centers are local. Recall that a commutative ring is local if
it has a unique maximal ideal, easily seen to be the set of noninvertible ele-
ments. Accordingly, we call a f-ring R local if BM(R)is maximal. Our object
will be to study local f-rings in this subsection, but we start with a general
result.

PROPOSITION 3.5. Suppose g(X1, Xm) is a blended polynomial. For any
subset N ofg and for any ideal B of R, (B + N)(g) N([1) + B c g+ ().

Proof For any b l, bm in B and x l, x,, in N, we have

o(b + x, bm + Xm)= ([/(Xl, b2 + x2, bm + Xm)
+ l(b, b2 + x2,..., bm + Xm)
AI/(X, b2 + x2, bm + Xm, b))
#(x, b2 + x2,..., bm + Xm)+ B c g+ ()

(since the last two terms are in B R / (0)). Doing this procedure for each
indeterminate yields

g(b + xl, bm + Xm) 0(X, Xm) + B c R+(),
proving (B + N)(#)_ N(#) + B g + (#). Q.E.D.

The most common application will be merely (B + N)(g)
_

N(g) + B c Z
whenever g is R-central. We continue with another elementary computation
which will set the flavor of this section. (Generalizing the notation ofl, given a
subset W of R, and a polynomialf(X,..., Xm), we let

W(f)= {f(w, Wm)lall w, in W},
and let W/ (f) be the additive subgroup of R generated by W(f).)

THEOREM 3.6. Suppose Z is local with maximal ideal P, and let R have a
blended central polynomial [t with R(0) P. Then R is local. Moreover,for any
subset N of R, if (BM(R) + N)(#) P, then N(#) P.

Proof. Pick elements rt,..., rm of P, with g(r,..., rm) P, and choose an
ideal M of R, maximal with respect to r M. (Such M exists, by Zorn’s
lemma.) We claim that M contains every proper ideal A of R.

Indeed, suppose we have an ideal A M. By hypothesis there exist elements
a in A and x in M, with r a / x. Thus

(/1, I’m)--" g(a + x, r2, rm)
g(a, r2,..., I’m)"Jr" g(X,, 1"2,... I’m)
+ A1 g(a, r2,..., l’m, X). g(a, r2,..., rm)+ M Z,
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implying g(a, r2, rm) P (since M c Z
___

P). But

g(a, r2, ..., rs)6 A c Z,

implying A c Z g P; hence 1 6 A. In other words, if A is proper then ,4

_
M,

proving the claim.
Next, suppose N is a subset of R, with (M + N)(g) g/;: P. Then by Proposition

3.5, N(g) + M c Z P. But M c Z
_

P; hence N(g) P. Q.E.D.

COROLLARY 3.7. If Z is local and if R has a central polynomial g, with
R(g) : BM(Z), then R is local.

Proof. By Proposition 1.1, we may assume g is a blended R-central polyno-
mial, so we can apply Theorem 3.6. Q.E.D.

If W is an additive subset of R, let core (W) (ideals of R contained in
W), which is clearly the "largest" ideal of R contained in W. R is primitive if
there is a maximal left ideal, with core 0.

Remark 3.8. Primitive f-rings are prime.

Proof. If B1, B2 are nonzero ideals, of a f-ring R having maximal left ideal
L with core 0, then B2 L, so R B2 + L (by maximality of L). Hence

B1 B1R BB2 d- B1L
_
BB2 q- L

Since B g L, we conclude B B2 L, so B1 B2 0. Q.E.D.

Define Jac (R)= {core (M)IM maximal left ideal of R}. Note that
Jac (R)= 0 if R is primitive. We shall make frequent use of the connection
between BM(R) and Jac (R), which is therefore the next object of attention.

Remark 3.9. If z Z is regular, then Z c zR zZ. In particular, if z
exists then z- Z.

-1

Proofi Suppose zr Z zR. Then for all r l, r2 in R, we have

0 [zr, rx, r2] z[r, rx, r2]
showing [r, r , r 2] 0. Similar verifications yield r Z. Now if z- exists then
1 zz- Z zR, so 1 zZ, implying z- Z. Q.E.D.

In [7, Definition on p. 51 and Theorem 7], an ideal B is shown to be con-
tained in BM(R)iff b ( 1 b) for all elements b of B. (Actually [7] deals with
associative rings, but the proofs do not need associativity.)

PROPOSITION 3.10. For any R, BM(R) Z
_

Jac (Z). In particular, ifR is
centrally admissible and Jac (Z)= 0, then R is semisimple.
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Proof. We will demonstrate the first assertion, since the second assertion is
a direct consequence. Suppose z BM(R) c Z. Then, for all elements z’ of Z,

zz’ (1 zz’)= R(1 zz’).
Thus, for some r in R, zz’= r(1 zz’), implying (1 + r)(1 zz’)= 1. By Remark
3.9, (1 zz’)- Z for all z’ in Z, so we conclude that zZ is a quasi-regular
ideal of Z, proving that BM(R) Z Jac (Z). Q.E.D.

THEOREM 3.11. Suppose R is a f-rinl with central polynomial.

(i)
(ii)
(iii)

If R is primitive then R is absolutely prime.
If R is prime and Jac (Z)= Jac (R)= O, then R is semisimple.
If R is primitive and semisimple then R is simple.

Proof. First we make the following straightforward observations. Let S be a
multiplicative subset of Z, and let L be a maximal left ideal of R, with
L S . Then Ls is a maximal left ideal of Rs, and core (Ls) (core (L))s.
Also, by hypothesis, we have an R-central polynomial g which, by Proposition
1.1, we may assume is blended. Clearly g is Rs-central, by Corollary 2.1.

(i) Let S Z {0}, and let L be a maximal left ideal ofR having 0 core. By
Remark 3.8, R is prime, so, by Remark 2.2, all elements of S are regular.
Moreover, R(L Z)

_
core (L) 0, implying L Z 0. Thus, as observed

above, Ls is a maximal left ideal of Rs, with 0 core. But Zs Z(Rs) is a field,
which is certainly local with maximal ideal 0. Thus, we can apply Theorem 3.6
to obtain Rs is local with BM(Rs)

_
core (Ls) 0. Hence Rsis simple, proving

R is absolutely prime.
(ii) Let {maximal left ideals L of R IR(g L}. By Remark 3.8, for any

L in , core (L) is a prime ideal of R, so P L Z is a prime ideal of Z, and
L, is a maximal left ideal of Rp. Since Z(R,)= Ze is local and Re(g) g; P,,
Theorem 3.6 yields Re local with BM(R,)_ core (L,)= (core (L)),. Thus
core (L) is the largest ideal (of R)whose intersection with Z is contained in P.
By Proposition 3.10, BM(R) Z 0, so, in particular, BM(R)_ core (L).
Since this holds for each L in , we conclude (via Remark 2.12) that
BM(R) {core (L) a} 0.

(iii).. By assumption, there is a maximal ideal P of R with R(g) P. Let
P P Z, and let L be a maximal left ideal of R with core 0. As in (i),
L Z 0, so Lp is a maximal left ideal of Rp with core 0. Also Zp is local and
R,(g) Pc, so, by Theorem 3.6, R, is local, with BM(R,) core (L,)= 0.
Hence Re is simple, implying/, 0. Thus P 0; i.e., 0 is a maximal ideal of R.
Therefore R is simple. Q.E.D.

In Theorem 3.11(ii) we could remove the hypothesis that R be prime, by
refining Theorem 3.6, but the present form is sufficient for the following result.
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COROLLARY 3.12. If R is prime with an R-stable central polynomial, and if
Jac (g[2])= 0, then BM(R[2])- O.

Proof. Jac (Z(R[2]))= Jac (Z[2])= 0, by a famous theorem of Amitsur (of.
[12, p. 12]). Thus by Theorem 3.11(ii), BM(R[2])= O.

Thus, we would like to show that if R is strongly prime then Jac R[2] 0.
This is known in the associative case, from a theorem of Amitsur [12, p. 12].
Unfortunately, we have been unable to prove the theorem in general, due to the
fact that generation of left ideals in the nonassociative case is very complicated.

3C. Rings with regular central polynomial. Call a polynomialfregular iffis
linear in X1 (in each monomial). Let the central kernel I of R be

{R + (g) regular R-central polynomial g}, easily seen to be an ideal of Z. An
ideal of Z (similarly of R) not containing I is called identity-faithful. Then [23,
Theorem 4.16] becomes the following powerful theorem.

THEOREM 3.13. Suppose R is a f-ring. Let P be an identity-faithful prime
ideal ofZ, and let be an ideal ofR, maximal with respect to . c Z

_
P. Then

is absolutely prime, and:

(a) Z(R,= Zp Ip.
(b) P_P,i.e.,P:. Z.
(c) I is the union of all ideals of R whose intersection with Z is P. In

particular, , is the only absolutely prime ideal ofR such that I Z P. This
yields a 1" 1 order-preserving correspondence P--. between {identity-faithful
prime ideals of Z} and {identity-faithful absolutely prime ideals of R}.

(d) IfP is maximal then is maximal" hence the correspondence given in (c)
yields a canonical 1" 1 order-preserving correspondence P-- P between {identity-
faithful maximal ideals of Z} and {identity-faithful maximal ideals of R}.

(e), For any identity-faithful strongly prime ideal ,g ofR, andfor P . Z,
Rp/Pp is isomorphic to the algebra of central quotients of R/I (and is clearly
simple).

Proof. By Theorem 2.11, P is absolutely prime, and the rest of the theorem
follows, as in the proof of [23, Theorem 4.16]. Q.E.D.

Let us make a brief digression, to use Theorem 3.13 to compare Jac (R) and
Jac (Z).

COROLLARY 3.14.
kernel of R.

IfBM(R) 0 then I c Jac (Z) 0, where I is the central

Proof. Let J Jac (Z). For every maximal ideal/ of R, either I _/ or
/ Z is identity faithful (and is thus a maximal ideal of Z). Thus I c J

_
P

for every maximal ideal/ of R, proving I J
_
BM(R) 0. Q.E.D.
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COROLLARY 3.15. If R is prime with retular R-central polynomial, and if
BM(R) 0, then Jac (Z)= 0.

Proof Immediate, since I q: 0 in this case, and Z is a domain. Q.E.D.

3D. Central classes of rings. At many points we have related prime ideals of
Z to absolutely prime ideals of R, most notably in Theorem 3.13. Also, we have
used central polynomials at various points, and, in view of Theorem 3.4 we
would like to work in classes of tings for which Nil (R)= 0 implies
Jac R[2] 0. Since we have been unable to prove this result in general, let us
postulate it in a certain class of f-rings.

DEFINITION 3.16. A class of f-rings, , is called central if:

(i) Every strongly prime f-ring R in q has an R-stable central polynomial.
(ii) If R 6 then R/q’qil (R) 6 and R/qil (R)is a subdirect product of

strongly prime images in
(iii) If R 6 then R[2]

THEOREM 3.17. In a central class , thefollowinl conditions are equivalent"

(1) For all R in , Nil (R)= 0 implies Jac (R[2])= 0.
(2) For all R in , Nil (R)= 0 implies BM(R[2])= O.
(3) Every strongly prime member ofc is absolutely prime.

Proof. (1) (2). Suppose Nil (R) 0. We can write R as a subdirect pro-
duct of strongly prime images R in ; by (1) and Corollary 3.12,

0 Jac (R[2])= BM(R,[2]) for each

implying BM(R[2])= O.
(2)=(3). This is Theorem 3.4 (since any R[2]-central polynomial is

R-stable).
(3) = (1). Let J Jac (R[2]). Suppose Nil (R) 0. Given a strongly prime

ideal P of R such that R/P , let/ R/P and J’= Jac (/[2]). We have

J’ Z(/[,])_ Jac (Z(/)[])= 0

(since Z(/) is associative). But/[2] is strongly prime, and thus absolutely
prime; hence J’= 0 (since every nonzero ideal hits the center). This implies
J
_

P[2] (since/[2] R[2]/P[2]), so- (Pill R/P is strongly prime and is in } ( P)[2] 0.
Q.E.D.

DEFINITION 3.18. A class of f-rings is Kaplansky if it satisfies (i), (ii), and
(iii) of Definition 3.16, as well as"

(iv) If R 6 (g and Nil (R)= 0 then Jac (R[2])= 0.



364 LOUIS HALLE ROWEN

In part II, we will get a partial result along the fines of (iv).
Let us make some observations concerning the verification of (i)-(iv) of

Definition 3.18. Of course, given (i)-(iii), any of the conditions ofTheorem 3.17
are equivalent to (iv).

Remark 3.19. Condition (ii) holds in every variety. Moreover, when cg is a
variety, one gets the property that if R cg then every central localization ofR
is in

Remark 3.20. If cg is a variety defined by completely homogeneous identi-
ties and central polynomials of degree < 2 in each indeterminate, then (iii)
holds, in view of Remark 1.2(i). In fact, in this case, we have the stronger
property that cg is closed under tensor extensions.

Remark 3.21. If f is an infinite field then, by Remark 3.8, (iii) holds, and cg
is closed under tensor extensions.

Our use of the name "Kaplansky" for the class of Definition 3.18 was mo-
tivated by Kaplansky’s fundamental structure theorem in associative PI-rings,
hat every primitive associative Pi-ring is central simple, i.e., is simple and is a
finite-dimensional algebra over its center. The fact that simple associative PI-
rings have central polynomials enables one to apply Kaplansky’s theorem very
successfully, in a manner similar to the way we shall treat Kaplansky classes.
The obvious way that Kaplansky classes are nice is that strongly prime rings

are absolutely prime. This fact makes Theorem 3.13 quite useful in Kaplansky
classes, and also gives an easy way of obtaining a good deal of information. For
example, say a central annihilator of R is a set of the form AnnR B, where
B C. Obviously central annihilators are ideals.

PROPOSITION 3.22. If R is in a Kaplansky class, if Nil (R)= 0, and if R
satisfies the ascending chain condition on central annihilators, then the fbring of
central quotients ofR is a direct sum of simple PI-rings.

Proof Since Annz B Z AnnR B, we see that Z satisfies the ascending
chain condition on annihilators, so we can proceed as in [23, Theorem
5.4]. Q.E.D.

In Kaplansky classes, it is often very easy to obtain canonical identities, as
seen by the following result.

THEOREM 3.23. Suppose is a Kaplansky class in which every direct power of
an f-rin9 of is in , and assume every semisimple member satisfies an identityf
Then, for every f-rin9 R in , a suitable power off is an identity of R.

Proof By Theorem 1.9, it suffices to show f is an identity of R/Nil (R)
whenever R 6 c. But R/Nil (R) is a subdirect product of strongly prime f-rings
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in , so we need only show thatfis an identity of every strongly prime f-ring
gl in . Now BM(RI[2])= 0 by Definition 3.18 ((i), (iv))and Corollary 3.12.
Thus, by hypothesis, f is an identity of R112] and is thus an identity of
R1. Q.E.D.

In a variety, iff is an identity of every simple member thenfis an identity of
every semisimple member. Thus, in varieties which are Kaplansky classes,
one needs only check that f is an identity of every simple f-ring in , to
conclude that some power off is an identity of every f-ring in .

4. A nonassociative generalization of the Artin-Procesi theorem,
and its consequences

In this section we give an alternate (to Section 3) method of examining the
relationship between the ideal structures ofR and Z. The basic motivating idea
is the (associative) Artin [5]-Procesi [20] theorem which characterizes Azu-
maya algebras R of rank t, by certain polynomial conditions:

(i) R satisfies all identities of some simple f-ring Ro which is t-dimensional
over its center;

(ii) For every simple f-ring R of dimension < over its center, no non-
zero homomorphic image of R satisfies all identities of R1.

With the advent of central polynomials, it was recognized that (ii)could be
replaced by:

(ii)’ There is a 1-normal Ro-central polynomial #, such that 1 R + (9).

The proof of the Artin-Procesi theorem was made considerably simpler using
(ii)’ instead of (ii), and so it is natural to ask what can be proven about
nonassociative rings satisfying (i) and (ii)’.

Indeed, we shall obtain three properties which, in the associative case, imply
R is Azumaya: (1) For every maximal ideal P of Z, there exists c in Z P, such
that R is a free Z-module, of degree t; (2) c Z gives a lattice injection
from {ideals of R} to {ideals of Z}; (3) A AR gives a lattice injection from
{ideals of Z} to {ideals of R}, and is the inverse correspondence to the corre-
spondence given in (2). The method of proof will use t-normal central polyno-
mials in a condition replacing (ii)’, and use this polynomial to compute
elements yielding conditions (1), (2), (3). This method was discovered for the
associative case independently by Amitsur [4] and Rowen [27].

Recall from Section 1A that "t-normal" means alternating and linear in the
first t indeterminates, In particular, "1-normal" means linear in X. We shall use
the term "regular" for "l-normal." If Va, V2 are subsets of R, we write Vx V2 for
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PROPOSITION 4.1. Let g be a regular R-central polynomial, let A, B be addi-
tive subgroups of Z, and write G for R(O).

(i) R + (g) is an ideal of Z.
(ii) ((AR + BR) c Z)G AG + BG.
(iii) If ,, B are ideals ofR with c G A and B G B, then

(( + ) Z)G A + B.

Proof (i) If r, r e R and c Z then

g(F1, Fm)c g(cFl, Fm) G,

and the assertion follows immediately.
(ii) Suppose c (E, a, r, + E) b)r) Z, for suitable a, in A, b, in B; let

c’ G. We c write c’= g(x,..., Xm) for suitable x,..., Xm in R, and then

CC C(X1, X,)= (CX1,... m)
g((E a,r, + E bjrj)x, x2,

E a,g(r,x, Xm)+ Z bjg(’J1,’"

6AG+BG.

Hence ((AR + BR) c Z)G AG + BG, and the reverse inclusion is
immediate.

(iii) Let c a + b 6 Z, for a in 2, b in/. For any c’= g(x,..., Xm), we
have

C’= g(cx1,..., Xm)--- g(agl,..., Xm) -- g(bx1,
eAG+BGc_A+B.

This computation yields some general information. Let I be the additive
group generated by all R / (g), for all regular R-central polynomials g.

THEOREM 4.2. Suppose 1 I. For every ideal A ofZ, there is a unique ideal A
ofR which is maximal with respect to c Z c_ A. The correspondence A - , is
a lattice injection of {ideals of Z} into {ideals ofR}, and of{maximal ideals ofZ}
into {maximal ideals of g}. This map has a right inverse, from {ideals of R} to
{ideals of Z}, given by - c Z.

Proof. Let {ideals of R, whose intersection with Z is contained in A}.
By Zom’s lemma, has a maximal member A. IfB Z

_
A, then, by Propo-

sition 4.1(iii), (/ +/) c Z __g_ A; hence, 2 +/ =/, so/
_ ,. Hence is the

unique maximal member of .
If AI_A and 1 is maximal with respect to ,IZ_A1, then
/ Z

___
A, so/ _/. Thus, A 2 is a lattice injection from {ideals of Z} to



POLYNOMIAL IDENTITIES OF NONASSOCIATIVE RINGS 367

{ideals_ of R}. By Proposition 4.1(ii), AR c Z
_

A, so AR
_ ., implying

A A c Z. The other assertions follow immediately. Q.E.D.

To improve on Theorem 4.2, we shall need to build t-normal central polyno-
mials for simple algebras of dimension t over their center. This is accomplished
in three steps, based on a result of Erickson, Martindale, and Osborn [8]. Call a
f-ring Ro central simple (of dimension t) if Ro is simple and is a vector space
over Z(Ro) of finite dimension (t).
Given a set of elements V {rx, ten}, say a set of regular polynomials

{f(Xx,..., Xu)[ 1 <_ <_ m} separates V if there exist elements xx,..., x,u_
such thatf(x,,..., x,._ , r3) 6o, for all i,j. (Here 6o 1 if i, 0 otherwise.)
In this ease, we say V is polynomial separated.

LEMMA 4.3.
separated.

If R is simple then every Z-independent set is polynomial

Proof Suppose {rx,..., r.} is Z-independent. By [8, Theorem 3.1], adding
dummy indeterminates, we get f/(Xx, X.) and xil, x,._ x, such that

if j i, and

Since R is simple,

x,,._ r,) o.

1 (f(x,,..., x,,._,, r,)),
whereas each (f/(x, xi,u-, r))= 0 for j 4: i. The assertion follows
easily. Q.E.D.

PROPOSITION 4.4. Suppose R is simple and {rl, rt} is Z-independent. Then
there is a t-normal polynomial F(X, Xv), with 1 R(F).

Proof By Lemma 4.3, there are polynomials {f(X,..., X,)[1 <i<_ t}
which separate rx,..., rt. Let

F (sg rr)A(X,+ ,, X2,+ x, Xt,_ ,),+ x,

fz(X, + 2,..., X,_ 1>, + 2, X,2)"’" f(X2,, Xu,, X,),
summed over all permutations r of (1, t). Clearly

F(r,, r,, x,,, x,,1, x,,,_,)= 1--I f(x,1, x,,,_ 1, r,) 1.
i=1

Moreover, F is dearly t-normal. Q.E.D.

Note that the polynomial F depends on our simple f-ring.
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THEOREM 4.5. Suppose R is a central simple f-rino of dimension t. For any
regular R-central polynomial O, there is a t-normal polynomial O’<_ O with
g(g) R(g’).

Proof. With F(X:,..., Xv) as in Proposition 4.4, let

g’= g(F(X:,..., Xv)X+ , X+ 2,...). Q.E.D.

Theorem 4.5 converts regular central polynomials to t-normal central poly-
nomials. Note that this procedure generalizes IB, Example (xi). Our next goal
is to get a partial converse to IB, Example (x), to show that "t-normality" is
intimately connected with base elements of an algebra.

PROPOSITION 4.6. Suppose f(X, Xu) is t-normal. Let K be a field, and
suppose R is a K-algebra of dimension t, with R(f O. A set

{r,..., rt) - gis a K-base if and only iff(r, rt, x+ , xu) 0 for suitable x + , x
in R.

Proof. () Suppose {r, r) is a K-base and

f(r,...,r,xt+,...,x)=0 for allx+:,...,x, inR.

It would follow easily that of is an identity of R, contrary to R(f)=p O.
() Iff(r, r, x+ , x)4:0 then {r, r) is K-independent and

therefore must be a K-base. Q.E.D.

For the next result, given a t-normal polynomial f, define

f(i>(x,, Xu+ ,)=I(X,,..., Xi= , X:+ ,, Xi+ , X:)Xi,
and define the associated polynomial off to be

f(x,, X.+ ,)=I(X,, X,)Xu+ Z I(X,, X:+ ,).
i=l

THEOREM 4.7. Supposef(Xx, X,) is t-normal. Let K be afield, and sup-
pose R is a K-algebra of dimension t.

(i) If r =x iri, i in K, ri in R, then, for any x,+ , x, in R, for all
i<t,

f(rx, r,_,, r, ri+x, r,, x,+,, x,)= aif(r,, r,, x,+x,

(ii) The associated polynomialfoff is an identity of R.

Proof (i) is a straightforward computation. To prove (ii), we want to show
f(r,, r,+ )= 0 for all r in R. By (i), this is true whenever {r,, r,} is a
K-base of R. Thus, we may assume {r x, rt} is not a K-base of R. Hence
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f(rx,..., ru)ru+x =0, by Proposition 4.6, so we are done unless
fti)(r, r,+ x) =/= 0 for some i, which implies

is a K-base (by Proposition 4.6). It follows that

{r, r,_ , r,+ + r,, r+ , r,}
is a K-base. But then

f(r, ri_, r,+, ri+, r,+)= 0

and

( ,_, + + ,, r,+,..., +) 0,

implyingf(r, r+ )= O (sinccfis linear in Xi). Q.E.D.

Theorem 4.7 leads to the next major structural result of this section. Given
two -fings R and R, say R R2 if R satisfies every identity of R.
THEOREM 4.8. Suppose that the t-normal polynomial f(X,..., X) is R-

central, and that the associated polynomialfis an identity ofR. Then,for any c in
R(f), R is a free Z-module, of dimension t.

Proo Choose r,..., rt, x+, x in R, such that f(rx, r,
x+ x,..., x) c. Wc claim that r 1- , rtl- is a Z-basc of R. Indeed
given r in R, let

, f(r, ,_ , , ,+ , r,, ,+ , x).
Since fis an identity of R, wc have cr = ri, so

rc-k gic-(k+ l)ri 1-1,
i=1

proving that the r 1- span R. On the other hand, if= (c-)r1- 0, for
suitable g in Z, then, for each i,

O= il-f(rxl -, rl -, xt+l -, xl-),
so il - (icl-)(lc-) 0. Hence the ril - arc Z-indcpcndcnt. Q.E.D.

The final portion of our structure theory is based on a trivial observation.

LEMMA 4.9. Suppose (X, Xu) is t-normal and R-central" let c R(#),
and let be the associated polynomial of . If is an identity ofR then,for any
ideal of R, c ( Z)R.

Proof For any a in , wc have

(,..., )a E ")(, , a) ( + ()). Q.Z.D.
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Let fit (t-normal, R-central polynomials, whose associated polynomials
are identities of g), and let g + (fit)= . (g + (g) l# e fit). Clearly g + (fit)is an
ideal of Z, contained in I.

THEOREM 4.10. Suppose R + (fit). Then the map A --. (in Theorem 4.2) is
given by AR, and is a lattice isomorphism of {ideals of Z} with {ideals ofg}.

Proof By Lemma 4.9,
_
( c Z)R, implying (, Z)R, and the

assertion follows from Theorem 4.2. Q.E.D.

Theorems 4.2, 4.8, and 4.10 are the three structure theorems alluded to at the
beginning of this section; we now tie these results together through a formal
definition.

DEFINITION 4.11. R has Azumaya type if 1 R / (ct)R. R has Azumaya type
if R has Azumaya type for some t.

PROPOSITION 4.12. If 1 R + (ct)R, then 1

Proof. Let H R + (f#), and suppose 1 HR but 1 H. Take a maximal
ideal P of Z containing H; let S Z-P. Zs -Z(Rs), R(f#t) Hs,
Ps Rs Rs, and Ps is the unique maximal ideal of Zs. Let W be a maximal
ideal of Rs, and let Rs Rs/W, a simple f-ring. Hs R(ct), which is an
ideal of Z(Rs ), a field. Thus

Z(Rs) Hs - Zs - Z(Rs),

implyingZ(Rs)= Zs (Zs+ W)/W , Zs/(W c Zs). Therefore, W c Zsisa
maximal ideal of Zs, so W c Zs Ps, contrary to Ps Rs Rs. Hence 1 H,
after all. Q.E.D.

THEOREM 4.13. Suppose R has Azumaya type t. Then,for every maximal ideal
P ofZ, there exists c in Z P such that R is afree Zc-module, ofdegree t. Also,
there is a lattice isomorphism of {ideals of R} with {ideals of Z}, given by- A c Z, with inverse A - AR. In particular, for any maximal ideal P of Z,
R/PR is simple, of dimension over ZIP " Z(R/PR).

Proof By Proposition 4.12, 1 R + ((#t). Thus we can apply Theorems 4.2,
4.8, and 4.10. Q.E.D.

Theorem 4.13 says that rings of Azumaya type behave like associative Azu-
maya algebras, a surprising result in the nonassociative case, which contains
the associative Artin-Procesi theorem (as we shall see in Part III). For the time
being, we look for general ways of finding rings with Azumaya type. Recall that
two f-rings R and R2 are equivalent if R -< R2 and R2 _< R 1.

Remark 4.14. If R is central simple of dimension t, then, by Theorem 4.5
and Theorem 4.7, ! R / (ct). Thus, more generally, for any f-ring R which is
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equivalent to a central simple f-ring, I # 0 iff fC, =/: . (In particular, every
central simple fl-ring with regular central polynomial has Azumaya type.)

THEOREM 4.15. Suppose R is equivalent to a central simple fl-rino with regu-
lar central polynomial. If S is a multiplicative subset ofZ and S c IR # O, then
Rs has Azumaya type. In particular, Rz-to has Azumaya type.

Proof. The first assertion is immediate in view of Theorem 2.0; the second
assertion follows from Remark 4.14.

COROLLARY 4.16. Suppose R is torsion-free as a Z-module. IfR is equivalent
to a central simple f-rin9 with regular central polynomial, then Rz-to is simple.
(In particular, R is absolutely prime.)

Proof. Let R’= Rz-o. Since R’ has Azumaya type, there is a lattice iso-
morphism between {ideals of R’} and {ideals of Z(R’)} given by/i-+/i c Z(R’).
But Z(R’) is the field of quotients of Z. Hence R’ has no nonzero ideals, and is
thus simple. Q.E.D.

We close this section with some related digressions, which extend some of the
results of this section. First, call an ideal A of Z contracted if AR Z

_
A.

Clearly AR Z
_

A, so A is contracted if and only if AR Z A. Call an
ideal A of Z cancellable if for ideals A , A 2 of Z, A A A . A =:, A A 2. For
example, Z itself is cancellable; if Z is a domain, then any invertible ideal ofZ is
cancellable.

PROeOSmON 4.17. IfR has a regular central polynomial , such that R + () is
cancellable, then every ideal ofZ is contracted; infact, there is a lattice surjection
of {ideals ofR}- {ideals of Z}, 9iven by --, , Z.

Proof. Immediate from Proposition 4.1. Q.E.D.

Our final task is to improve Remark 4.14. To do this, we must obtain a
stronger result than 4.5.

THEOREM 4.18. IfR is central simple, with multilinear central polynomial g,
then there is a multilinear t-normal polynomial O’ < , such that g’ is R-central.

Proof. By Proposition 4.4, we have a t-normal polynomialf, with i R(f).
Write f as a sum of completely homogeneous polynomials f, and let

] o(fi(xl, Xm)Xm+ 1, Xm+2, ")"
Clearly 0 0, so some O is not an identity of R, and is thus R-central. For
ach ind+terminate X occurring of dgre d > 0 inf,, rplaceX by d distinct
indeterminates. This yields a multilinar, t-normal polynomial fl -<f, so

9’= Z 9(f’,(X,,..., Xm,)Xm, + 1, Xm,+ 2,...)

is obviously R-central. Q.E.D.
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Now we can carry out the above structure theorems while considering multi-
linear polynomials (which are always R-stable). Namely, we say R is muir-
equivalent to R’ if R and R’ satisfy the same multilinear identities. Then R and
R’ satisfy the same multilinear central polynomials.

THEOREM 4.19. Suppose R is mult-equivalent to a central simple -ring with
multilinear central polynomial. Then Rz-to) has Azumaya type. IfR is torsion-

free as a Z-module, then R is absolutely prime.

COROLLARY 4.20. IfR is a central extension ofa central simple -ring and if
R is prime with multilinear central polynomial, then R is absolutely prime.

Proof. Central extensions are mult-equivalent. Q.E.D.

5. Decomposition into associative and nonassociative rings

Since the overall object of this paper is to introduce methods of associative
PI-theory in a general setting, one may be interested in decomposing a ring
into an associative part and a nonassoeiative part. This is the motivation
behind Section 5, which is based on the following notions used by Slater [29]
(for alternative algebras).

Recall from IA that N(R) is the nucleus of R. Define

U(R) {ideals (of R)_ N(R)} and D(R)= {ideals
_

[R, R, R]}.
A standard argument in [13, p. 18], based on identity () of IB, Example (i),
shows U(R)D(R) D(R)U(R)= 0. If U(R)= 0, call R purely nonassociative; if
D(R R, call R absolutely nonassociative.

Remark 5.1. The following conditions are equivalent: (i) R is absolutely
nonassociative; (ii) 1 D(R); (iii) every homomorphic image of R is purely
nonassociative.

Given two additive subgroups A, B of a f-ring R, one sees easily that there is
a unique ideal which we call (B" A), maximal with respect to the property
(B: A)A B. If B 0 then we give to (0: A) the name Ann A. Note that if
A
_
Z then AnnR A {r R IrA 0}, which is the special definition given

earlier. If there is no ambiguity, we write Ann A in place of Ann A. Since
U(R)D(R)= O, we have U(R)_ Ann D(R); since D(R)U(R)=O, we have
D(R =_ Ann U(R).

LEMMA 5.2. If R is semiprime with ideals A, B, then B
_
Ann A /ff

B c A =0 iffAB=O.

Proof By symmetry, we need only show BA 0 iff B A 0. Well, if
B A 0 then BA

_
B c A 0. Conversely, if BA 0 then (B c A)2

_
BA 0, so B c A 0 (since R is semiprime). Q.E.D.
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In particular, for any ideal B of a semiprime ring R, B
_
Ann (Ann B).

PROPOSITION 5.3. Let B be an ideal of a semiprime fbring R, and let
B’= Ann B. Then B’= Ann(Ann B’), and B’ is a semiprime ideal; also
(B’:B) B’. If R is strongly semiprime then RIB’ is strongly semiprime.

Proof Clearly B’
_
Ann(Ann B’). But B

_
Ann B’, implying B’ Ann B

_
Ann(Ann B’), so B’= Ann(Ann B’). By Lemma 5.2, B’ B 0.
To prove B’ is a semiprime ideal, suppose A2

_
B’. Then

(A B)2_A2 B_B’ B=0,

so A B 0, implying A
_

B’. Hence B’ is a semiprime ideal.
Next, let A (B’:B). Then (A B)2

_
AB

_
B’, so A c B

_
B’, implying

A B_B’cB=O,

so A
_

B’. This shows (B’" B)= B’.
Finally, suppose Nil (R)= 0, and A/B’= Nil (R/B’). Then A B is a nil

ideal of R, so A B 0; hence A
_

B’, implying Nil (RIB’)= 0. Q.E.D.

Proposition 5.3 has a very nice application.

PROPOSITION 5.4. Suppose R is semiprime. Then U(R) Ann D(R), and R is
a subdirect product of an associative semiprime f-rin# R and a purely nonasso-
ciative semiprime fbrin# R2. Furthermore, if Nil (R)= 0 then R and R2 are
strongly semiprime.

Proof. We know U(R) Ann D(R) already. Conversely,

[Ann D(R), R, R]
_
D(R Ann D(R O,

so Ann D(R)= U(R). Let R R/Ann U(R) and R2 R/U(R). Since D(R)
_

Ann U(R), R is associative, and we can use Proposition 5.3 for all the asser-
tions except R1 being purely nonassociative. To see this, let
A/U(R) U(R/U(R)). Then

[A, R, R]
_

U(R) c O(R)= O,

so A
_

U(R), implying U(R/U(R))= 0, as desired. Q.E.D.

Proposition 5.4 is useful when we want to reduce questions about identities
to the respective associative and nonassociative counterparts. Let us record
some facts about purely nonassociative rings which shows why they are
interesting.

Remark 5.5. Every purely nonassociative, strongly semiprime f-ring R is
the subdirect product of nonassociative strongly prime f-rings. (Proof: Let
{P[P e } be the set of strongly prime ideals P of R such that D(R)if: P.
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Clearly {PIP 6 }
_
Ann D(R) 0, and thus R is the subdirect product of

the nonassociative prime f-rings (R/PIP
Remark 5.6. Every nonassociative prime f-ring R is purely nonassociative.

(Proof: If R is nonassociative then D(R) O, implying U(R)= Ann D(R)= 0.)

6. f-rings with involution

As observed in example (xiii) of Section 1B, the theory of f-rings with
involution (,) is merely a special case of the theory of f’-rings, when we
formally adjoin (,) to f to create a new set f’. There are a number of issues
which must be considered, however, when we wish to work in the category of
tings with involution, i.e., viewing (,) as part of the structure. Since involution
will play an important role in the applications in Part III, we shall use this
section to discuss the relation between these two approaches, as well as other
structures related to the involution. We shall assume for the time being that
(,) q f, and f’= f w {,}, as given in Section lB.
The first problem is how we want to define PI-ring with involution. On the

one hand, we could use the general definition in IA. On the other hand, we
may prefer the definition of [26], which treats X’ as a distinct indeterminate
from X. In this setting, we would define the (,)-fingerprint of a monomial (with
respect to f), to be the string of indeterminates X and X’, written without
parentheses and without coefficients. For example, viewing (,) in f’, the finger-
print of X1X would be X X2, but the (,)-fingerprint is X X itself. Then a
generalized (,)-monomial off would be the sum of all (,)-monomials with the
same (,)-fingerprint, and f would be (R, ,)-proper if some generalized (,)-
monomial offis not an identity of (R, ,). (We write (R, ,) instead ofR, to stress
the importance of (,).) For example, if F is a field with the identity involution,
then X X’ is an improper (in fact trivial) identity of F, but is (,)-proper.
This discrepancy is resolved in the next result.

PROPOSITION 6.1. Iff is a polynomial (in (f2{X}, ,))which is (,)-proper then
there exists a polynomial f’ <f having the following properties: (i) For each
generalized (,)-monomial f off, there is a generalized monomial f’ off’ with
f <f’; (ii) degf’ 2 degf.

Proof. Givenf(X, X, X, X’m), define

f(Xi, X?, X2m X’m)=f(XxX2, (XX2)*, X2m-lX2m, (X2m-lX2m)*)
=f(X,X2, * * X2m XsSm ).X2X1,... X2m-1 -1

The properties are easily verified. Q.E.D.

COROLLARY 6.2. Use notation as in Proposition 6.1. Iffis (R, ,)-proper then
f’ is R-proper (with respect to f’).
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An ideal of (R, ,) is an ideal of R which is invariant under (,). (In other
words, ideals of (R, ,) are the f’-ideals of R.) If (A, ,) is an ideal of (R, ,) then
an involution (,) is induced on R/A in the obvious manner (namely,
(r + A)* r* + A). Conversely, if (/, ,) is a homomorphic image of (R, ,),
then the kernel of the map from R to/ is an ideal of (R, ,). Call a polynomialf
of (f{X}, ,) (R, ,)-strono iff is (/, ,)-proper for every nonzero image (/, ,) of
(R, ,).

COROLLARY 6.3. Notation as in Proposition 6.1, iff(X 1, X,,) is (R, .)-
stron9 then f’(X,,..., X 2,,) + (f’(X 2,,+ ,, X4,,))* is R-stron9 (with respect
to

Proof. Straightforward computation.

Note that if (,) is an involution of R, then (,) is an automorphism of Z, of
degree 1 or 2. We say (,) is of thefirst kind on (R, ,) if (,) is the identity on Z;
otherwise (,)is of the second kind on (R, ,).

In the category of rings with involution, the center of (R, ,) (which we call
Z(R, ,)) is {z ZIz* z}; Z Z(R, ,)iff (,)is of the first kind on R. If Z has
no nilpotent elements (in particular if R is semiprime) and if a polynomial g in
(f{X}, ,) takes its values in Z, then either g + g* is (R, ,)-central or g takes
only antisymmetric values, in which case gg* is (R, ,)-central. For the remain-
der of this section, write Z’ for Z(R, ,).

If R A A, where A is the opposite f-ring of A (i.e., A has the same
additive structure as A, but all multiplications are given in the opposite order),
then we define the exchange involution (,) to be given by (a, a2)* (a2, a) for
(a, a2) in A A. Note that A can be viewed as a ring with 1, and (1, 0)*
(0, 1), so the exchange involution is always of the second kind.

Remark 6.4. It is well-known that if (R, ,) is a simple f-ring with involu-
tion (i.e., (R, ,) has no proper nonzero ideals), then either R is a simple f-fing
(without involution) or (,) can be written as the exchange involution, where A
can be taken to be a simple f-ring.

We make a brief diversion to relate the identities of (R, ,) to the identities of
R (without involution). Iff(X, XI’, X,,, X,,*) (f{X}, ,), we can "lift"fto
a polynomial ]’(X, S2,..., X2-, X2)in f{S}, by replacing Sby S2-,
and X’ by X2,, for all i. Sayfis (R, ,)-special if]is an identity of R. Clearly iffis
(R, ,)-special then f is an identity of (R, ,).

THEOREM 6.5. If Z has an element z such that z- z* is regular, then every
multilinear identity of (R, ,) is special.

Proof As in [24, Theorem 7]. Q.E.D.
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We say (R, ,) is prime (resp. semiprime) if R is prime (resp. semiprime) with
respect to f’.

COROLLARY 6.6. If (R, *) is prime and (,) is of the second kind, then all
multilinear identities of (R, ,) are special.

Thus, often the involution is "interesting," in the sense of producing new
identities, only when it is of the first kind. Next, let us make several observa-
tions which tie the earlier structure theorems for varieties of f-rings to the
corresponding structure theorems for f-rings with involution.

Remark 6.7. Nil (R) is invariant under every involution (,). Thus, R is
strongly semiprime iff (R, ,) is strongly semiprime.

Remark 6.8. BM(R) is invariant under every involution (,). (This is im-
mediate from Remark 6.4.) Thus R is semisimple iff (R, ,) is semisimple.

Remark 6.9.
involution,

Using Remarks 6.7 and 6.8, we see that in a class of rings with

Nil (R)= 0 =,, R[2] is semisimple
iff

Nil (R, ,) 0 (R[2], ,) is semisimple.

Using Remark 6.9, we have one crucial correspondence between Kaplansky
classes with (,) and Kaplansky classes without (,). Another link in the theories
is given .by"

PROPOSITION 6.10. If (R, *) is a f-rin# with involution and H is a commuta-
tive, associative Z-aloebra, then (R (R)z, H, ,) is a f-rin# with the induced involu-
tion (,), #iven by (i ri (R) hi)* i r (R) hi, for ri R and hi H.

Proof. R (R)z’ H is obviously an f-ring (under the natural operations); we
see that (,)extends to an involution on R (R)z, H, by an argument based on the
universal properties of the tensor product construction, and the involution is
clearly given by our formula.

Remark 6.11. N(R), U(R), and D(R)are all invariant under (,). Also, ifB is
an ideal of (R, ,) then Ann B is an ideal of (R, ,). In particular, the decomposi-
tion of Proposition 5.4 is valid for f-rings with involution.

We finish this section with a construction of considerable interest in the
applications. Suppose (R, ,) is a f-ring with involution, and let re(R, ,) be the
"symmetric" elements of R, i.e., {r R lr* r}. Note that 1 re(R, ,), (since
1 (1" 1 )* 1" 1 1"). Suppose 1/2 R. Then we make 6(R, ,) into a f-ring with
the same addition, and new multiplications

co.r {or + (o9r)*)/2, r’co (re) + (ro9)*)/2,
and r rz (r r2 -+- r2 rx)/2, for each o9 in f, and each r, r2 in R.
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THEOREM 6.11. Suppose 1/2 R, and (R, ,) is a f-ring with involution.
(i) The correspondence r-, (r + r*)/2 is an onto mappingfrom R to ff’(R, ,)

(as sets), whose restriction to ff’(R, ,)is the identity map.
(ii) IfH is a commutative, associative Z’-algebra then

Y’(g (R)z, H, ,) Y’(R, ,)(R)z, H (as f-rins).
(iii) If (,, ,)is a homomorphic image of (R, ,), then Y’(/, ,)--- Y’(R, ,).

Proof. (i) If r* r then r (r + r*)/2, so all assertions arc immediate.
(ii) Supposcx Y’(R (R) H, ,). Thcnx r(R)hiforsuitablerinRandh

in H. Hence

x (x + x*)/2 ((r + r})/2)(R) hi Y’(R, ,)(R) H.
This proves Y’(R (R) H, ,)

_
Y’(R, ,)(R) H; the other direction is obvious.

(iii) Clearly Y’(R, ,)
_

Y’(/, ,). Conversely, if x 6 Y’(/, ,) then

( + *)/2 (x + x*)/2 e 6e(g, ,), so 6e(R, ,)= 6a(/, ,).
Q.E.D.

One can thus analyze 6e(R, ,) in terms of (R, ,); this analysis can be carried
out in general terms, but we leave it until Part III, where there is sufficient
motivation. One example is when (R, ,) is associative; then 6e(R, ,) is Jordan.
A similar analysis can be carried out with antisymmetric elements, using a

"Lie" product in place of a "Jordan" product. The analogue to Theorem 6.11
would be useful in this context, but since our theory does not work well for Lie
algebras (as discussed in Part III), we do not go into this situation.
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