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ON EQUISINGULAR DEFORMATIONS OF PLANE
CURVE SINGULARITIES
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A. NOBILE

Introduction

In [6], a theory of equisingular deformations of irreducible algebroid plane
curves (over an algebraically closed field, k, of characteristic 0) based on par-
ametrizations and characteristic numbers was introduced. It was proved there
also that this is equivalent to other similar theories previously known, and
several applications of those methods were given. In the present paper the case
of reducible curves is studied. As is common in this type of problem, the
transition from the irreducible to the reducible case is not always straightfor-
ward, and often completely different proofs must be given. The contents of this
paper are the following.

In Section 1, we define the intersection number oftwo equisingular deforma-
tions of plane branches; with this concept we may define equisingular deforma-
tions of a reducible curve. We study basic properties of this concept, and we
compare it with Zariski’s and Wahl’s definition of equisingularity (cf. [10] and
[12]).

In Section 2 we show that an equisingular deformation is determined by a
"sufficiently high truncation" (depending on the equivalence class of the curve
only); see (2.1) for details. In [6], a similar theorem (for deformations of an
irreducible curve) was proved. The proof given here is completely different,
since apparently the proof of [6] cannot be adapted to the general case.

In Section 3, we present the main result of this paper: given a plane algebroid
curve C, there is an equisingular algebraic family of curves (n, X, V, e) (see
(3.1) for the definitions), with V smooth, such that for any curve D, equivalent
to C, there is a closed point y s V such that D is isomorphic to Spec (x,ty)).
Moreover, the induced family 7y" Spec (x,y))-’ Spec (v,) is "versal," in the
sense that any equisingular deformation of Spec (x,,(y)) is isomorphic to some
pull-back of 7t. In the construction of this family we use the results of Sections
1 and 2.

In [16], Zariski presents some interesting results about the problem of
moduli for plane algebroid branches (using the techniques that inspired [6] and
the present paper). We believe that the main result of Section 3 is a first step to
study that problem in the reducible case.
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ON EQUISINGULAR DEFORMATIONS 477

Related to Section 3, there is an interesting question that we are not able to
answer in general: is the parameter space V irreducible (or is there a similar
construction with an irreducible parameter space)?

At the end of Section 3, we indicate how the theory can be developed in the
complex analytic case.
We thank the referee for several suggestions to improve an earlier version of

this manuscript.

O. Notations and terminology

In this paper we shall follow the notations and terminology of [6]. We briefly
review some of them. For more details, see [6, Section 0]. The letter k will
denote an algebraically closed field of characteristic zero. The category of
complete local k-algebras with residue field k (resp. finite dimensional k-
algebras) is denoted by (respectively z). If A zc, r(A) denotes the maxi-
mal ideal of . The order of a power series b is denoted by O(b). If

Axt,..., x,]], res (b) denotes the power series in kxt, x] obtained
from b by reducing the coefficients mod r(A).
An algebroid plane curve (over k) is a scheme Spec k[[x, Y]]/(fo), where

fo kix, y]] has no multiple factors. Sometimes the ring kix, Y]]/(fo) or evenfo
itself is called an algebroid plane curve (actually, to simplify the notations, we
follow this convention most of the time). When fo is irreducible, we call it a
branch.
When we talk about equivalent curves, it will be in Zariski’s sense (of. [12] or

[13]). This notion of equivalence is an equivalence relation in the set of all
algebroid plane curves. An equivalence class of this relation will be called an
equisingular type (or just a type); if a curvefo belongs to the equisingular type
we say that fo has type . Thus, to say that curves fo, o are equivalent is the
same as saying that they have the same equisingular type.

1. Equisingular deformations of plane algebroid curves

(1.1) In this section, we study a theory of equisingular deformations of
plane algebroid curves, based on parametrizations and intersection numbers.
We recall that in [6] a theory of equisingular deformations of a branch, based

on parametrizations, was introduced. Throughout this section, we shall use the
results of that paper.

(1.2) Let f(d k[x, yl, i= 1,..., r, be distinct branches, A s and
fe) A[x, y], i= 1, r, an equisingular deformation off( over A (in the
sense of [6]). Assume thatft has a parametrization (, b(t)), b A[t]]. In this
case, we define the intersection number (f"). ft))of the deformationsft0 and
ftJ) (i 4: j) by

(1.2.1) (f(O f(J))---’- min (O(f(i)(t"j, )j), O(f(J)(tm’, (i))"
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(1.3) We list some basic results which are easily verified"

(a) Iff, 1, r has a parametrization (, fl), am, tm’ +’", am, a
unit in A, then it also has a parametrization (tm’, b(t)) (cf. [6, Proposition 1.5]).

(b) It is easy to see that if we replace (tm’, b(t)) by another parametrization
(t"", b’i(t)) off, for 1, r, then m’i mi and the number (f{o. fo)) does
not change (of. [6, Proposition 1.11]).

(c) The numbers (ft0. f{)) are invariant under "changes of coordinates"
x x’, y 2x’ + #y’, 2, # in A, # a unit.

(d) Iff has a parametrization (q(z), z"), 1, r, in a similar way we
may define intersection numbers. Iff, 1, r admits both parametriza-
tions as in (1.2) and as above, then the intersection numbers obtained by using
either of them are the same (since z bt + ..., b a unit of A).

(1.4) Remark. With the notation of (1.2), it could happen that

O(ft(t", dp) O(ft(t’’, b,),

For instance, let A k[e] where e2 0. Letft = y2 x3 be parametrized by
(t2, t) and let ft2)= y_ ex be parametrized by (t, et). They are equisingular
deformations offto) y2 x and f2)= y, respectively. We have

O(ft)(t, et))= 3, O(ft2(t2, t3))= 2.

(1.5) In the rest of this section, when we deal with a seriesfo kl[x, Y]I we
shall assume (unless it be otherwise specified)that O(fo(x, y))= O(fo(O, y)).
Geometrically, this means that the y-axis is not tangent to the curve fo 0.
This is not a real restriction, since by a linear change of the variables we can
reach this situation.

(1.6) DEINmON. Let fo(x, Y) be a reduced plane curve over k (of. (1.5)),
f(x, y) Al[x, y]],A a deformation offo. Letfo I-I=f be the product
offo into its prime factors in kl[x, y]. We say thatfis an equisingular deforma-
tion offo if we can write f VI’= f{0, in such a way that

(a) ft0 is an equisingular deformation of the branchf, 1, r (in the
sense of [6, Definition 2.3]) and

(b) (f’. f) (ft0. ft,) for all =/= j.

Note that by (1.5)and (1.3), (b)makes sense, and that for r= 1, this
definition reduces to Definition 2.3 of [6].

(1.7) Remark. (a) Assume that (using the notation of (1.6))fis an equis-
ingular deformation offo, let (t’, 4)(t)) be a parametrization offt, 1, r.
Then

O(fti)(t’, ))= O(f)(t’’,
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In fact, say (fro .fo)= O(fto(tm, b)). Let fto(, t#)= atN + .... By (b)of
Definition (1.6), a must be a unit. Now, as is well known,

O(f)(tm, res ())= O(f)(t’, res ($,)))= N

(cf. [11]). Letft)(t’, i)= btM + "", b O. Its image ink[t]isf)(, res (bi)),
hence either M N and b is a unit, or M < N. But Definition (1.2.1) rules out
the second possibility. Note that in (1.4),ftl) ft2)is not an equisingular defor-
mation of ya x3y.

(b) In checking that a deformation is equisingular, we may change the
variables by x x’, y 2x’ + #y’, 2,/ A, g a unit of A (cf. (1.3) c).

(1.8) If p: A A’ is a homomorphism in 5’ andf6 A[[x, y]] is an equising-
ular deformation of fo over A, then there is naturally induced equisingular
deformation p*(f) offo over A’ (obtained by replacing each coefficient ofA by
its image in A’).

The following lemma will be essential in inductive arguments. Essentially, it
says that there is a bijection between the tangential components offo and those
of its equisingular deformation f.

(1.9) LEMMA. Let f, e, fg be equisinaular deformations over A ofcurves
fo, go, fo go, where fo, go are irreducible and have the same tangent line y O.
Then

f= (Y- ox) + "’, g (y- +
(i.e., the initialforms offand g are powers ofthe same binomial y x, ct r(A).

Proof. We may assume that A is artinian. In fact, if the lemma is proved in
this case, given A e and assuming

f=(y-zx)+...,g=(y-z’xr+..., z=p’,

then for some large enough, the images , ’ of , ’ in/i A/I (d# r(A))
will be different. Then, by considering the deformationsf, ,, induced byfand g
over i, we shall get a contradiction. So, we assume A artinian, and we prove
the lemma by induction on q dimk t’., ’ r(A).

The lemma is trivial for q 0. Assume it true for q. Given (A, ,/), with
dim A q + 1, consider a small extension A A’ of kernel I (e); let u l,

u2, u, e be a basis of the k-vector space ’. We may assume, after a change
of coordinates and by using induction, that

(1.9.1) f= y +..., g (y- 2ex)" +...,

where 2 k. We must show that 2 0. Assume by contradiction that ;t 4: 0.
Consider equisingular parametrizations

(1.9.2) (x , y (t)) (x z’, y $(z))
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off and g, respectively. In view of (1.9.1), we have

(1.9.3) b(t) b’(t)+ bt(t)e,
(1.9.4) (z) ’(z)+ (z)e,

where the coefficients of b’ (respectively ’) are k-linear combinations of u ,
u, and

(1.9.5) (t) (6ta + ...) k[t, d > n,

(1.9.6) (z) (2z + ...) kz.
With the relations #(x, y)= l-IT’= y k(cox/), with co a primitive mth root
of 1, and e’ 0, a simple computation gives

(1.9.7) g(x, (x/"))= g(x, ’(x/)) + e (xTM)
tgo

(x, dPo(X/))

+
with g g’(x, y) + egl(x, y), where gl k[x, y and the coefficients of g’ are
linear combinations of u, u. Now recall that

(fo go) (f g)= O(g(P, dp(t))= O(f(zm, if(z));

note that O(g(P, tk’(t))= O(y(P,/}(t)), where y,/ are induced by g, tk, respec-
tively, by reducing the coefficients mod I. Thus, by induction, (fo" go)
O(g(P, ’(t)). We shall check that either

(1.9.8) O(g(P, tko(t)))< min (fo go), 0 dp(t)-y
(here bo res (tk)) or, after "interchanging the roles offand g" (the meaning of
this is made precise below) and using notations similar to those used in (1.9.7),

(1.9.9) O(f(’c", o())) < min l(fo, go),O ((’c)-y
Thus, in either case, (f. g)< (fo" go), contradicting the definition of
equisingularity.
By "interchanging the roles off and g" we mean the following.

(a) Set x’= x, y’= y- 2ex, so that now

f(x’, y’ + 2ex)=f’(x’, y’)= (y’ + 2ex’ + ".’, g’= y’" + "’.

(b) Consider the parametrizations induced by $ and , and proceed as
before (i.e., as between (1.9.1)and (1.9.8)), with f replaced by #’, byf’.
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To verify (1.9.8) (or (1.9.9)), we shall study the series # t(x, y) more carefully.
We have

(1.9.10) g(x, y)= ll((.DixTM) H (Y- @o(OOJx/m))’
i-I j-’pi

(1.9.11)
Let

(1.9.12) bo(t) E an th, an :/: 0; o() E b, b, 4 0.
h=p s=l

There are two possibilities: mp 4= In and mp In. Assume mp< nl. Then

ro(t)- po(Ogt)= ant +’", j 1,..., m.

Since $ t(oix TM) x +’" we get 0( t(t, So(t)) n + (m 1)p. On the other
hand, it is easily checked that

O (t(t)yt[/ (t, bo(t)))= (m- 1)p+d

(cf. (1.9.5)) and (fo o)= mp. But p > n, d > n, then (1.9.8) holds in this case.
If mp > hi, we interchange the roles offand /(cf. the explanation given after

(1.9.8)) and (1.9.9) is verified with a similar argument.
Now we assume mp= nl. We write P $o(XTM) $o(tOxt/m), j 1, m.

We may assume:

(1.9.13) If some P is not of the form (ah- b, co*)x/ + "", ah 0, then
there is a P, a, xh’/n +..., a, 0 (cf. (1.9.12)).

In fact, if this does not happen, there is a j such that

P b,ox‘/m +..., b O.

Interchanging the roles offand [/(and using the parametrization $o(Ot) rather
than $o) we have, in the new situation, the analogous condition satisfied. So,
assume that (1.9.13) holds and write

Pg(t) dPo(t)- $o(CO#t"/).
There arc several cases to bc considered. Let

O(P#o rain {O(P#)/j I, m}.

Case I. P#o b co#x/m +’", bh =P O. Then,

P# bhco#x/m +"" for all j.

This contradicts assumption (1.9.13), so that this case is ruled out.
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Case 2. Po ah x/m / "". Then, Pg a x/ / ..., and all the terms of the
sum (1.9.10) are of the form 2a’-x{m-}/+ + An easy computation
(using O() > n) shows that (1.9.8) holds.

Case 3. Po (ah bsfls)xh/n + "", ahbs 5 O, moreover, ah bso9js for
j 1, m. An elementary argument with symmetric functions and roots of
unity shows

(1.9.14)
m

I-I (an/bs o9 j) m(ah/bsr- 1.
i= ij

With (1.9.14) it is easily seen that O(Pj(t))= h for all j, that 01(tn, dpo(t))=
mA(ah/b’-:ttm-)h/" + "", and that, using these, (1.9.8)holds.

Case 4. Po as in Case 3, but now there is some j e {1, m} such that
ah bs off. Let do (m, h), and Oo oa. Then there are do values of j, say
J, Jao, satisfying ah bo9. For the remaining indices j we have
O(P(t)) h. We may assume O(P) < O(P,), i= 1, do. Now, by (1.9.13)
(of. the argument of Case 1) there are only two possibilities.

Case 4.0. PI---- at xt/n +’", at 4: 0. Then, P asx/ +’", j Jl, Jao,
and a simple computation gives

O(ll(tn, dPo(t))= h(m do) + l(do 1) + n,

O(go(t’, bo(t))= h(m do) + ldo,

0 (dpl(t)’-yOg (t, dPo)) h(m do) + l(do 1) + O(ql

by (1.9.11). Thus, (1.9.8)follows.

Case 4.1. Pj (at b, o)hlJl)xl[n -[" "’’, atbh O. There are two subcases"
either a b09 j 4: 0, j j, Jao, or not. In the first case, we obtain (1.9.8)
as in Case 3 (note that (off) is a primitive do-root of 1), concluding the proof. In
the second case, let d (do, hi); note that dl < do. We proceed as in Case 4.
Let j q, qa be the indices j e {j, ...,Jao} satisfying a- bh o9h’j 0; for
the remaining indices O(Pj(t)) = h, etc. Since d < do, it is clear that, repeating
the process a finite number of times, we shall get, eventually, relation (1.9.8) in
any ease. Lemma (1.9)is proved.

Note that if we assume that A is an integral domain, there is a much simpler
proof (by regardingf as a curve defined over an algebraic closure of A).

(1.10) Next we want to see that equisingular deformations can be "lifted."
First we need some previous results.
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We extend Definition (1.2) in the following obvious way: if (using the nota-
tions found there)f" andf are "disjoint," i.e., they belong to different power
series rings, we set (f"’f) 0. Similarly, Definition (1.6)can be extended to
curves with several "connected components."

Recall that it is possible to define the quadratic transform of an algebroid
curve. We shall follow the conventions and notations of [6, Remark (3.5)].

(1.11) LEMMA. Letfo, #o be plane branches, ofmultiplicities m and n, respec-
tively. Assume the y-axis is not tangent to either branch. Let f, 0, and fg be
equisin#ular deformations (over A 1) offo, o, and fo o, respectively. Then

(1.11.1) (f" g)= mn + (f’ g’)

andf’g’ is an equisingular deformation offg.

Proof. Let (tm, dp(t)) and (tn, fl(t)) be parametrizations off and g, respec-
tively, where 4(t)= am tm +’" ", fl(t)= bnt + ". Then the proper transforms
off and g are f’(x, y’) and g’(x, y"), respectively, where f’ (respectively g’)is
obtained from x-mf(x, xy) (respectively x-#(x, xy)) by writing y’= y- am
(respectively y"= y-

Iffo and o have different tangents, then their proper transforms have differ-
ent origins, a fortiori f’ and /’ have different origins and (1.11.1) is an obvious
consequence of the classical result that says that, in this case, (fo" o) =mn (cf.
[11]).
Assumefo and go have the same tangent. Lemma (1.9)says that b, a a.

Then, f and g have the same origin (0, a), and (by [6, 3.6])f’, g’ have strict
parametrizations (t’, t-’ok(t)- a), (t", t-"(t)- a), respectively. We obtain
(writing a’(t)= t-"a(t) a and using x"f’(x, y a)=f(x, xy))

f’(t, ’(t))= t-mf(t, (t)).
Similarly, g’(tm, t-mdp(t)- a)= t-nm(tm, dp(t)). This shows formula (1.11.1).
The rest of (1.11) is a consequence of the definitions and (1.11.1).

Now we shall prove that it is possible to "lift" deformations.

(1.12) PROPOSITION. Let rl: A A be a surjective homomorphism of rings
ft) r),in s, fo H=I a plane curve (with f) irreducible, i= 1,

f= !-!--if( an equisin#ular deformation offo to A, wherefi is parametrized by
(t% Y’.-_,, at). Then we have the following.

(a) There is an equisinoular deformation f offo over A , ft I-I’---f),
inducing f over A, and such that ft), i= 1,..., r is parametrized by
(t%, b}t), where r/(b}) a}, for all j.

(b) Moreover, there are integers s , s,, depending on the equisinoular type
offo only, such that if# A[x, y] is a deformation ofanother curve #o equivalent
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tofo, andf =- g mod (x, y)m, then g can be lifted to deformation g ofgo over A 1,

such that (i) g I-I,’.= g), where gti) is an equisingular deformation of the ith
component of go and (ii)g Mmits a parametrization (, ti), where
{’ E=n, bi)tg mod (tm-si).

Proof We shall prove (a) by induction on a(f0), the minimum numbers of
quadratic transforms needed to desingularize fo. By (1.7) (b), we may assume:

(1.12.1) Neither axis is tangent to A (then it follows that a is a unit,
1, r).

Write f(i) uti)h(i), with hti) ’+L Ai)(x)’-j and uti a unit of
A[X, y. Then (cf. [6, Remark 1.10])

hti)= H (Y-- (ix/n’))
j=l

where w is a primitive nrroot of unity. Consider the quadratic transformsf)’
off andfti)’ offti), 1, r. By formula (1.11.1) and the results of [6], it
follows that the (not necessarily connected)curvef’ = ft)’ is an equising-
ular defoation off = f)’. Moreover,ftr has a parametrization

m, (i)= at-- a.

By Lemma 3.6 of [6], the initial coefficient of fft) is a unit (so if O() < n we
can ps to a parametrization of the type required in the definitions with no
problems). By induction, we can fiftf’ tof over A,f =f), and we
may assume that fi) admits a parametrization (t )= bt), with )
induong ), 1, r. Let b A be such that ff(b,)= a., (and b. 0 if

a 0), )(t)= t) + bn. Let
ni

H (y
/=1

and let u be a lifting of u), 1, r. Then,f =, (u)h)) riftsfto A .
We claim thatf is an equisingular deformation. In fact, by Lemma 2.5 of [6],
f) is an equisingular deformation off, i= 1, r; on the other hand, by
applying Lemma (1.11)we check (b)of Definition (1.6). (Note thatf is the
quadratic transform off)). The sertion on the parametrizations is clear from
the constructions.
Now we prove (b). Agn, we assume (1.12.1) holds. Wdtefand 0 as sums of

homogeneous polynomials, f=f. +..., ff 0 +"’. If f 0m (x, y,
m > n, then d n, and #d. It follows that 0 = 0), 0 = (Y a.x’ +.., where ff is a deformation of the ith branch 0 of fro. Hence, the connected
components of the quadratic transform if’ of ff have the same centers as those of
fi There is induced congruencef’ if’ m (x, y-. By induction on a(fo)
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there are numbers s, s’, such that the statement analogous to (1.12) (b)
holds. It is easy to check, using arguments as in (a), that by taking s s +
n n, we get numbers with the property stated in (1.12) (b) (cf. [6, Lemma 3.9]
for more details).

(1.13) Next, we want to see that Definition (1.6) agrees with the definitions
of equisingularity given by Wahl and Zariski (cf. [10], [12], or [6, Remark 2.7]).
It is known that Wahl’s and Zariski’s definitions are equivalent for deforma-
tions over a regular local ring (the only case when Zariski’s notion is defined).
As in the proof of Theorem 2.8 of [6], by using Proposition (1.11), it is enough
to prove that Zariski’s definition and Definition (1.6) coincide for deformations
over a regular local ring A , i.e., A k[t,..., t.

Definition (1.6) implies Zariski’s definition. In fact, given the deformation
f(x, y, t) of a plane curve fo(x, y) over A kilt]I, t= (t:,..., ta), it is Zariski-
equisingular if the "general" curve f Kl[x, Y]I (with K an algebraic closure of
k((t))) andfo Kl[x, y]] are equivalent (cf. [12]). But Lemma 7.1 of[13] says that
fandfo are equivalent if and only if there is a pairing of their branches such that
corresponding branches are equivalent and intersection multiplicities are
preserved. It is obvious that (1.6)implies this version of Zariski equisingularity.
To see the other implication, we use this result of Zariski: with notations as
above, if f is a Zariski-equisingular deformation of fo, and fo II= f),
ftd) kl[x, y]] and irreducible for all i, then f= I-I= fi), ftO

_
kilt, x, y]],

fti)(O, x, y)=f, fti)is equivalent to f) (as curves over K) and (ft0. ft0)=
(f) .fig)) (as curves over K). This is proved in [12, Section 6]. In view of
Theorem 2.8 of [6], this easily implies Definition (1.6).

2. A theorem on truncations

In this section we want to prove the following result"

(2.1) THEOREM. Fix an equisingular type . Then, there are nonnegative
integers t, r (depending on only) such that iffo (respectively o) is an algebroid
plane curve of type ,f, t are deformations offo and go over A s/c respectively,
with f equisingular, and the congruence f-= g mod (x, y) holds, with v > t, then
there is an automorphism ck of A[[x, y such that ok(f)= t, and such that the
automorphism induced by c in A.[[x, y](x, y)-" is the identity. If, moreover,
fo o, we may choose ck in such a way that the induced automorphism ofk[x, y
is the identity.

(2.2) This is a theorem of the type discussed in [4] and [5]. Actually, when
A z is regular, Theorem (2.1) is essentially well known. In (2.3) to (2.6) we
review some known results in this direction, which we shall use.

(2.3) Let D k[xo, x,. By a hypersurface in (n + 1)-space we mean a
power series fo D without multiple factors. We say that fo has an isolated
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singularity at the origin if the radical of (f, Ofo/dZo,..., dfo/OZ)is M (Xo,
x,). Iffo has an isolated singularity, it is known that the ideal Jo (Ofo/OZo,...,
dfo/dz) has M as its radical, and hence D/Jo is a finite dimensional k-vector
space (cf. [9, 2.2]). The integer # dimk (D/Jo) is called the Milnor number
offo.
A deformation offo over A (cf. (1.1)) is a series

f A.xo,...,

which reduces to fo over k. We shall consider deformations such thatf(0,
0) 0 (i.e., which "admit the trivial section") only. If A is an integral domain,
and F is an algebraic closure of its field of fractions, the hypersurface defined by

f F[xo,..., x,,]

is called the general member of the deformation. Given a hypersurfacefo with
an isolated singularity, we say that a deformation f of fo over an integral
domain A has constant Milnor number (or that it is a #-constant deformation)
iffo and the general member have the same Milnor number.

(2.3) The following results are known. In this paragraph, A denotes a regu-
lar ring in ’, B A[xo, x],fo a hypersurface with an isolated singularity
and Milnor number #, f a deformation offo over A (where f(0, 0)= 0)

J (of/axo,..., of/ax.)n, I (Xo,..., x,)B.
We have:

(a) (Of/Oxo,..., Of/Ox,) is a regular sequence in B, and B/J is a finite free
A-module.

(b) There is an integer t such that I = J if and only iff is a #-constant
deformation.

For the proofs, see for instance [9, Section (2.3)] (there, Teissier works with
convergent, complex series, but the arguments are algebraic and they apply,
with minor changes, to the formal case).

(2.4) Remark. The statement (2.3) (b) admits the following refinement: the
number t which occurs there can be taken to be # constant Milnor
number. In fact, first of all if h is a hypersurface defined over a field K, with an
isolated singularity, it is clear that since the K-algebra K[xo, x,]]/J has
dimension # (as a K-vector space), then

(2.4.1) (Xo, x,)u = J.

To prove Remark (2.4), we must show (notations as in (2.3)) that if R B/J,
then

(2.4.2) P’R O.
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But R is a finite free module over the integral domain A, hence P’R R is
torsion-free, so (2.4.2) is equivalent to having P’R be torsion. To see that P’R is
torsion, consider the exact sequence of (finite) A-modules

O- IR R R/IR O.

After tensoring (over A) with F (an algebraic closure of A), we get an exact
sequence

o i,’ (R) f --, (R) (g/I,’g)(R) --, O.

But 0( can be identified to the natural map

F[x]VJ --. (F[x]VJ)/IU(F[x]VJ)
which, by (2.4.1), is an isomorphism. So, lUR ()a F 0 and luR is torsion.

Next we shall present an important lemma, due to Samuel (el. [8, Lemma 2]).
In [8], Samuel assumes that A is a field, but his arguments in Lemma 2 apply to
arbitrary commutative rings. We include a sketch of the proof, because from it
we shall draw some consequences.

(2.5) LEMMA. Let A be a ring, B Axo, x,], f 9 elements of B,
I (Xo,..., x,), J (Of/Oxo,..., Of/Ox,), and assume that f- O IJ. Then,
there is an automorphism k of B, such that ok(f)= O.

Sketch of the proof.
where (let f/= df/dxi)

The automorphism will be given by 4(x)= x + h,

(2.5.1) hi= uOf, i=0,...,n.
=0

The series u 6 B are obtained as follows. Write, in some way,

(2.5.2) 9 f+ a, f f, a0 B.
i,j=

Consider formal variables U, i, j 0,..., n. Write, in some specific way,
f’ =f(xo + . Uof, x. + E Unf) as

(2.5.3) f’ =/+
where G BU , U..], i, j O, n, and O(Go) > 2. Then, the elements
u B that we are looking for are solutions of the equations

(2.5.4) U a + G(U), i, j 0,..., n.

(This system can be solved inductively by writing ,’,)o ao, al+ x) ao +
Go(u)). Then u lim,.(R) u]). In fact, it is possible to show that such a limit
exists, and that the homomorphism 4 defined using this u’s satisfies the require-
ments. For details see [8].
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(2.6) COROLLARY. The notations are as in (2.3), but here A denotes an
arbitrary ring in /c. Assume that, for some integer s, I c J. Then, there is a pair
ofnumbers (t, r) such that given any g B, satisfyingf =- g mod Iv, v > t, there is
an automorphism k of B such that (i) dp(f)= g and (ii) the automorphism of
B/Iv-r induced by k is the identity. Moreover, iffo go, we may choose dp so that
(iii) b induces the identity automorphism ofkx1,..., xn].

This is an easy consequence of Lemma (2.9) (and its proof). Note that we
may take 2s / 1, r 2s.

(2.7) According to (2.3) (b) and (2.4), iffis a deformation of the hypersur-
face fo with constant Milnor number/, then f satisfies the hypothesis of (2.6),
consequently the conclusion of (2.6) holds (with 2/ + 1, r 2/). For
another proof, see [3].

(2.8) It is well known that plane algebroid curves which are equivalent (in
Zariski’s sense) have the same Milnor number (e.g., see [13, p. 531] and [7,
Lemma 4]). Hence, an equisingular deformation of a curve f0, over a regular
ring A , has constant Milnor number.

(2.9) Proof of Theorem (2.1). Let/t be Milnor number corresponding to
the equisingular type a, A c,fo a curve, andfa deformation offo over A. Let
A’ be a regular local ring in such that A A’/L, L an ideal of A’,
B A[[x, y, B’= A’[x, y. By Proposition (1.12), we may find a deformation
f’ offo over A’ (such that f’(0, 0)= 0), inducingf. By (2.4)and (2.8),

(x, y)B’ (f’x,f’y)B’.
Clearly, this inclusion induces an inclusion

(x, y)’B (f,f)B.
But then, according to (2.7), given any such that

f_= g mod (x, y), v _> 2/a + 1,

there is an automorphism 4) as claimed in (2.1) (with r 2/). As remarked in
(2.8),/ depends on a only, and the theorem is proved.

(2.10) Remark. From the proof of Theorem (2.1) it follows that, in (2.1),
we may take (t, r) (2/a + 1, 2#), where t is the Milnor number of any curve of
type a.

(2.11) Remark. It is possible to prove Theorem (2.1) in a completely dif-
ferent way, by using the technique of H. Hironaka in his proof of Theorem B,
on page 155 of [4]. In fact, it is not very difficult to adapt these methods to
prove (2.1) in the case when A is a regular ring; then we use Proposition (1.12)
(b) to reduce the general case to that one. The details are rather technical, and
we omit them.



ON EQUISINGULAR DEFORMATIONS 489

3. Equisingular families of curves

(3.1) (a) Let o denote the category of algebraic schemes over k (alge-
braically closed, of characteristic zero). Following [4], an algebraic family of
plane curve singularities is, by definition, a system (rr, X, Y, ) where n: X -o Y
is a flat morphism of schemes, e: Y X is a section of n, and for any geometric
point y of Y the fiber X is a reduced plane curve (hence e(y) is an isolated
singular point of X,). This family is said to be equisingular if for every closed
point y Y the induced algebroid family

Spec (,,())- Spec (r,)
is isomorphic to a family

Spec (A[x, y]]/f) ’ ,Spec (A),
where A &r., andfis an equisingular deformation offo res (f) (of. (1.6)), in
such a way that e corresponds to the trivial section of p.
From now on, in our text, "equisingular family" will mean "equisingular

family of plane curve singularities."
The.pull-back of a family under a morphism Y’ -o Y is defined in an obvious

way.
(b) An equisingular family has type (of. Section 0) if for each closed point

y Y, the plane algebroid curve Spec (x,)) has type
(c) An equisingular family (rr, X, Y, e) of type is said to be total if for any

algebroid plane curve fo of type there is at least one closed point y e Y such
that I[x, Y]/(fo) is isomorphic to &x,,,t.

(d) An equisingular deformation f A[x, y] (A M, of radical M) of a
curve fo is equisin#ular versal if, given any other equisingular deformation of
fo, B[x, y] (B of radical N), then there is a homomorphism p: A B
such that is isomorphic to p*(f) (cf. (1.8)), by an isomorphism reducing to the
identity modulo W. If, in addition, for any such the induced homomorphism
M/M2 N/N2 is unique, thenf is said to be semiuniversal.

(3.2) Before we present the main result of this section, we review some
well-known facts that will be used in its proof.

Let fo be a plane algebroid curve, of equisingular type , having r branches
ftot), f’). Let B be the local ring of f), B its normalization. Let
di dim B/B, d dim B/cg, where cg is the conductor of/I in B. It is
known [16, p. 10] that 26 d, and that these numbers depend on the type of
f only. If # is the Milnor number offo then

(3.2.1) #= 2( 3,)+2 (f)’fl))-r+l
i=1 i<j

(of. [7]). Let n be the multiplicity off>. In the course of the proof of the main
theorem, we shall use the integers M n(2# + 1). From (3.2.1) we get

(3.2.2) M, > max (n,, d,), i= 1,..., r

Our main result is the following theorem.
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(3.3) THEOREM. Fix an equisin0ular type . Then, there is a total equisingu-
larfamily oftype , (t, X, V, e), with V smooth, and satisfying thefollowing
property" for each closed point y
Spec ((9.) is an equisin0ular versal deformation of Spec ((.gx,,()).

(3.4) We begin the proof of (3.3). Any curve of a fixed type will have the
same number r of branches and (after reordering the branches, if necessary) its
ith branch will have a certain fixed characteristic ci (n; flt, fl,); more-
over the intersection number of the ith and jth branch will be a fixed number
d(i,j).
For reasons that will be clear in the course of this proof, we fix the number

z 2# + 1, where # is the Milnor number of the type (cf. (2.8)) and the r-tuple
of- integers

(3.4.1) M (Mr, M,), M, n,z.

Given two r-tuples of integers L and/2, L _>/2 means L _> L, 1, r. Fix
any L Z’, such that L _> M.

Using notations as in (3.2) for any branch of characteristic c, the number d
will be the same, and L _> M >_ max (n, d), i= 1, r (cf. (3.2.2)). Let
ei! G.C.D. (fl,, el,!_ l) (with eio hi), 1-- 1, i, and T {J/flil < J < di,
j fl,, 1, , and if fl,. < j < fl,.+ t, then j 0 (mod e,), j 1, ,}.
Let

(3.4.1) W(L,) {j/n, _< j < L,, j T/}, /.o) card W/(Li).

(3.5) Consider polynomials, with formal coefficients,

(3.5.1) x ’, y . A’)t, W/= W/(L,), i= 1,..., r.

(That is, if we specialize the variables 2), with the condition 2i) 0 forj flit,
1, Oi, then (3.4.2) is a parametrization of a branch of characteristic i.)

Let oi, 1, r, be a primitive nth root of unity, and let

(3.5.2) ’(i)tx y)=JLi
j=l leWl

Clearly, this is a polynomial in x, y, say,

(3.5.3) f= Y"’ + jx a)XI yni-j

of degree < L and order n; moreover, the coefficients ,,j
-’") are polynomials in

{2i)}, j e W/. These latter polynomials define a morphism

(3.5.4) L,: ALit)-’

where is the number of coefficients ,,i) (dearly this depends on Li).
Next, note that there is a morphism

(3.5.5) A(L)" AL’-..+ AN
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(where/2 L’x + + L,) induced by multiplication of polynomials. In other
words write 1-I’-- (Y"’+ a(x)Y"’-) Y" + "--- (bt,xq)Yn-t, where b,is a
polynomial in {a}; these define At. Clearly, N N(L,..., L,) depends on
L, L,. Let

(3.5.6)

We shall need the following lemma.

(3.6) LEMMA. For any (L)= (L, L,), the morphism ,) is finite.

Proof. Since clearly tI)t,) is of finite type, it suffices to show that it is integral.
We claim that the morphisms b,, and A are integral. This is an easy con-
sequence of the following classical result. Let B and D, B D, be integral
domains,/ the integral closure of B in D.

(a) Iff/= 7’__L az are monic polynomials in B[z], 1, 2, B is the inte-
gral closure of B in D andf f2 6 B[z], then a 6 B, j 1, mi, 1, 2.

(b) If h(z) D[z] is integral over B[z], then all its coefficients are in B (cf. [2,
Chapter V, Exercises 8 and 9]).

Since the product and composition of integral morphisms are integral, the
lemma follows.
Note that in particular t,) is a closed morphism, for all (L).

(3.7) We continue the proof of (3.3). We have, for any (L), an algebraic
family of curves with parameter space As), with coordinates -’") (cf. (3.5.5)),Wjl

defined by

There is a trivial section defined by x y 0. We shall define, for {L) > M, a
locally closed subscheme U(L) of = 1-I’-- A’, such that if V(L)=
(U(L)) (scheme-theoretic image), then the family {3.7.1) (restricted to V(L))

is equisingular of type e.
First of all, to get the "right characteristic" for the different branches, con-

sider the condition (in )

(3.7.2) 1-I 2a, =fi o, j 1,..., n,, i= 1,..., r.

To get the "right intersection numbers," consider the series f)i (cf. (3.5.3)) and
then the series

(3.7.3) f(iL) (tnJ,
_

2J)tl),pe Wj

for each pair 4: J. The coefficient of in this series is a polynomial "") inl,j
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2 (2o). We want (cf. condition (1.2.1))

(3.7.4) ") d(i, j), 1 < i, j < 4: j,p (2) O, u < r,

(3.7.5) p-"J))(2) 4: 0, 1 < < j < r.

Note that by the choice (3.4.1) of L, these conditions are not vacuous for any
pair (i, j).

Let Z(L) be the closed subscheme of A) defined by the equations (3.7.4),
U(L) its open subscheme defined by (3.7.2) and (3.7.5). Since .) is finite, the
induced continuous map of supports IZ(L) is surjective. Let F
be the closed set of AtL) defined by (1--I ,,#ii)(Hij pq)’J))= o, and V(L)=
tz.)(Z(L)) Otz.)(F)) (an open subscheme of t)(Z(L)). It is easy to verify that
V(L)= u.)(U(L)) (scheme-theoretic image). The restriction of the family
(3.7.1) to V(L)will be denoted (L).
Note the following.

(a) The morphism iDOL)" U(L)--+ V(L)induced by t.)is finite.
(b) The polynomials (3.7.2), (3.7.4) and (3.7.5) are the same for any r-tuple

L>_M.

Both statements are easily verified.
So far, we have seen that for L > M the closed fibers of the family (L) have

singularities of type at the origin. Next we shall show that, moreover, (L) is
equisingular.
Note that there are certain interesting automorphisms of At (for any (L)):

those induced by "changing the parameter" in one of the branches (3.4.2) and
those induced by interchanging two isomorphic branches (whenever this is
possible). In particular, we mean

(3.7.6) 2i) 2i), i=fi l, j e

2t) coJ2!), j 6 W(Lt), 09 an n,th root of 1,

and, if L, Lj and W/(L,)= W(Lj) (cf. (3.4.1)), we may also define

(3.7.7) 2- 2’, l i, j, p W(L,),

2-2, p 1,..., ni, and

These automorphisms clearly commute with
Moreover, it is easy to see, using the unique factorization property in k[x, y]

and the "essential uniqueness" of the parametrization of a branch (see for
instance [6, Proposition 1.5]), that if 2, 2’ are two closed points of At), then
.)(2) tl).)(2’) if and only if there is a finite sequence of automorphisms

trl ors cr such that or(2) 2’ and tri (i 1, s) is either of type (3.7.6) or
(3.7.7). Note that cr commutes with t.). Using this fact and the finiteness of

t.), a standard argument shows that, if Ot.)(2o)=bo, the induced
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homomorphism

(3.7.8) gv,bo V,ao, V= V(L), U U(L),
is injective.
To show that (L) is equisingular, we must show that the deformation
f gv,boiX, y] (cf. (3.7.1)) is equisingular. By construction, the pull-back of
(3.7.1) to U(L) is equisingular. Thus, the seriesf gV,o[X, y] is an equisingular
deformation of res (f) over V,ao. To deduce the equisingularity of f as a
deformation over v,o, we use the following"

(3.8) LEMMA. Let A B be rinos in , 9 Aix, y] a deformation of a
curve 9o k[[x, y] (satisfyino (1.5)). Assume 9 Bx, y] is an equisinoular defor-
mation of Oo over B. Then, 0 is equisinoular as a deformation of Oo over A.

Proof Since O Bx, y] is equisingular, we may assume that

g y" + ai(x)y-’, ai(x) A[x]
i=1

and O is equimultiple (cf. [8, (1.6)]). Write go as Otot)... gJ), the product of its
tangential components. It is known (cf. [10, (1.10)]) that the equimultiplieity of
0 implies that the ideal (o)Aix, y can be uniquely written as a product of ideals
(g(X)) (g(X)), such that res (g(i)) g). If we choose g(i) g_(i),,, + g]’+ +"" (g"(i)j
homogeneous of degree j) such that the coefficient of y"’ is 1, 1, s, then
0t., is uniquely determined, for 1, s. The same is true over B, But over B,
O is equisingular. By (1.9), gt.i] (y_ 0q x)"i, zi e B. Since 9i a[x, y], it fol-
lows that e A. Hence, the quadratic transform of g e A[[x, y] will have s
connected components, of centers (0, ), 1, s. It is easily checked that if
g;(x,), y,))= 0 is the equation of the component of center (0, 0t,), then the
assumptions of Lemma (3.8) still hold. Now, by using arguments as in (1.11)
and (1.12), the proof is easily completed by induction on a(go).

(3.9) Remark. Denoting with a bar the image of an element of k[b] (re-
spectively k[2])in V,o (respectively V,xo), we have

gv,bo k[(Ev}], V,ao kI(;[l)}]]
The deformation f admits, over V,ao, equisingular parametrizations with
coefficients {[0}. By (3.8), and the uniqueness of parametrizations (ef. [6, Pro-
position 1.11]), the elements [) must be in v,o. This shows that (3.7.8)is also
surjective, i.e., an isomorphism, it follows that *u" U(L) V(L) (L large
enough) is an etale morphism.

(3.10) Continuing the proof of (3.3), now we check that for (L)_> M
the family (L), defined by (3.7.1) over V(L), is total. Take any curve of
type ; we may assume that it has an equation h I-I= h, where its ith
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irreducible component h has characteristic c (cf. (3.4)) and an equation
ni-1

hi ,V" + a’)(x)y"-, O(aO) >_ i.
i=l

Let h be parametrized by x t", y (’)= 21’)t. Let 4)(I <, 2t. Let
f(), be defined by (3.5.2). Since L _> M _> n(2/ + 1), it follows that

hi. f(Li mod (x, y), z 2# + 1,

hence h _= I-I ,,t’ f, mod (x, y)2+ . By Remark (2.10), h and f, are isomor-
phic. Since clearly f,. is a member of the family (L), this proves that i(L) is
total.

In the following, we use these notations. Fix a closed point y V(L) and
write B &v,,, let the coordinate bva (respectively 0) induce an element b-va
(respectively 0) of B (of. Remark (3.9)). Letfbe the deformation (of its special
fiber fo) of equation

(3.10.1) f= f + E (E x)Y- e B[x, y],

i.e., the one induced by (3.7.1). Actually, we should write B(L),ft), etc., since
these depend on (L). We omitted (L) to simplify the notation.

(3.11) LEMMA. Let L > M. Let p: A’ A, Z: B A (B B(L)) be homo-
morphisms in z and , respectively, where p is surjective. Letf=f(), Z*(f)
and let g’ be any equisingular lifting of to A’. Then, there is a homomorphism
i’: B- A’ such that p’ and

a’ x,

(isomorphism of W-algebras), where g Z’*(f).

Proof. Note thatfis given by (3.10.1), and its ith component has an equisin-
gular parametrization x ’, y E w, [t, [) B (of. (3.4.1)). Hence, the
ith component of # has parametrization

j Wi

The equisingular deformation g’= I-I’= f(i) will have parametrizations
X thi, y EJ ’(i)tJ g’j Since is equisingular and #’ reduces to g in A, it follows
that (after replacing t by cot, with co an nith root of 1, if necessary) p(#0) #),
j W/, 1, r. Consider parametrizations x t"’,’ Y w, #i)tj, and the
deformation they define, i.e., that defined by

where co is a primitive nth root of 1. By the choice of (L), the following facts are
easily verified.
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(a) /t is equisingular (the only problem is in the intersection numbers--use
(3.7.4) and (3.7.5), and the fact that L > M).

(b) /t u#’ mod (x, y)*t, where u is a suitable unit in A’x, y].

Then, Theorem (2.1) implies A’[x, y/(ff 1) , A’x, y]V(ff’). On the other hand,
there is a homomorphism X’" B A’ such that ;((0) #0, for all possible i, j.
In fact, the relations (3.7.4) are satisfied by the elements #,.{0 (by the equisingu-
larity of g 1), hence such a well-defined Z’ exists. Clearly the homomorphism X’
satisfies the required conditions, and the lemma is proved.

(3.12) Lemma (3.11)implies the smoothness of V(L) (for L > M). In fact, it
suffices to show that the k-algebra v,r is smooth, for any closed point y V(L).
Recall that this means that for any surjection A’ A in a’, (cf. (1.1))the
canonical map Hom (v,, A’) Hom ((v,v, A) is surjective. But, by (1.12)
any equisingular deformation over A can be lifted to an equisingular deforma-
tion over A’ (notations as in (3.10) and (3.11)). So, we may apply (3.11) tO get
the desired map. The proof of Theorem (3.3) is complete.

(3.15) Examples. In the following examples, we use the notations of the
proof of Theorem (3.3).

(a) If is the type of an irreducible plane curve, then the set of equations
(3.7.4) is empty. Consequently, the only restrictions are the inequalities (3.7.2);
and U(L), L > 13 is an open set in Av, hence U(L) and its image V(L) are
irreducible. For an expression of # 2t5 r + 1 in terms of the characteristic
pairs, see [16, Chapter II, Section 3].

(b) Let z be the type of a curve, such that all its irreducible components are
nonsingular. In this case, the equalities (3.7.3) become Qo(x)= (, 2x’)
( 2x), where the terms on the right hand side describe the ith and jth
component, respectively. Hence, the equalities (3.7.4)are linear equalities ofthe
form t0_ 2= 0. Hence, U(L) is an open subvariety of a linear variety"
consequently U(L) and V(L) are irreducible.

(c) Let be the type of a curve C of multiplicity 3. These are the possibili-
ties: (i) C is irreducible, (ii) C has three linear branches, (iii) C has a linear and a
quadratic branch. The only case not discussed yet is (iii). In this case, we get
two relations (3.7.3), and the ideal of the polynomials (3.7.4)can be generated
by the linear forms

22)_2), 2m<%2m

22) 2m + 1 < ,2m+ 1

where we assume that the linear branch is parametrized by y 2lt, and ? is
the intersection number (this is an elementary calculation--of, example (d)).
Again, U(L) is an open subvariety of a linear variety, hence U(L) and V(L) are
irreducible.
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(d) Let be the type of a curve, C, consisting oftwo branches, each isomor-
phic to y x 0, with intersection number 7. To simplify the notations, let
2!= 2,, 2= v (cf. (3.5.1)). Here,/t 17 and M (70, 70). Fix L > M. The
series (3.5.3) is

f=ftL] (y- ;t2X) 224x2y + (22224 232)X3 226xSY + "",

and (3.7.3) becomes

+ +
+ 2(v 22)(v, + v4)]t6 + [v2v5 + vsv4 22s 2324]t7 + "".

Using the fact that/s g: 0 (of. (3.7.2)), it is clear that to get a series of order 7 it
is necessary and sufficient to have"

(3.15.1) a v 0, 223 v] 0,

(3.15.2) vv + vsv
If we consider instead j.t Y’. 2 t), we get exactly the same conditions.
Hence, U(L) is defined in Ae, with coordinates (2, 2e, v,., re) (where
Q L= Lt2--cf. (3.4.1)) by (3.15.1), (3.15.2), and the inequality 2s vs 4: 0.
Note that (3.15.1)defines a reducible algebraic variety (a union of two linear
varieties S and S, each of codimension 2), After removing the variety
2s vs 0 (which contains S c S), we get a smooth variety, having two con-
nected components U and U. The condition (3.15.2) gives nonempty open
sets U U, and U U(L)- U 2 U. So, in this case, U(L) is not irredu-
cible. However, in this case, V V(L) is irreducible. In fact, we claim that given
a closed point w U, there is an automorphism b of U, commuting with the
projection U--* V, and a point w’ e U such that b(w’)= w. Clearly, this im-
plies V b(U_), hence V is irreducible. To see it, note that a typical point of U
has coordinates

w (u, v, L,

subject to the condition (3.15.2), and v 4: 0. If the sign of v is "+," w U; if
"-," w e Uz. So, if w e U, let b be one of the automorphisms (3.7.6), with

2 2, v v. Then b(w’) w, where

w’-- (u, v, 2,,..., 2, u, -v, (-1)iv,, ...),
and our assertion is proved.
We do not know, in general, whether V(L) is irreducible or not.

(3.16) In these final paragraphs, we briefly discuss the complex analytic
case. We shall not give many details, since the methods are similar to those
used in [6, Sections 4 and 5].
The results of Section 1 extend to the convergent case with no difficulties.
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The analytic version of Theorem (2.1) can be proved, for instance, by reduc-
ing to the formal case (treated in Section 2) and by using Artin’s analytic
approximation lemma (cf. [1]).

Regarding Section 3, note that the algebraic family (L) can be considered as
an analytic family in a natural way. Moreover, there is an analytic version of
Lemma (3.1"1), in which B is replaced by (gv,v (V is the analytic variety asso-
ciated to V)and p" A’ A by a surjection of analytic tings. The proof is
essentially the same as in (3.11).

Finally, as in [6, Section 5], we can deduce the existence of an analytic versal
equisingular deformation for a complex analytic germ of a plane curve (cf. [6,
Definition 5.1]). The proof is like the proof of Theorem 5.7 of [6], with the
following differences (we use the notations of[6, Section 5]): (i) Assumefo to be
given by Equation (3.7.1) (with coefficients bn corresponding to suitable
{2]}--cf. (3.10)); (ii) Replace Lemma (5.3) by the analytic version of Lemma
(3.11); (iii) use the analytic version of Lemma (3.8)of this paper instead of
Lemma (5.5) of [6].
The proof of the analytic version of (3.8)is like that ofthe formal one, except

that the formal power series if{0 that occur there must be replaced by suitable
convergent series. This can be done by using Artin’s approximation lemma (cf.
[1]). Theorem 5.9 of [6] (and its preceding remark) extend to our situation
without difficulties.
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