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QUASI-REGULAR IDEALS OF SOME ENDOMORPHISM
RINGS

JuTTA HAUSEN?

1. Introduction

If o is an endomorphism of the abelian p-group G such that xa = x for all x
in G of order p then a is one-to-one and onto [5; 13.1, p. 279]. It follows that the
set Ann G[p] of all endomorphisms of G annihilating G[p] is a quasi-regular
(two-sided) ideal of the endomorphism ring End G of G. In general, not every
element of Ann G[p] is nilpotent which shows that the Jacobson radical
J(End G) of End G need not be nil. It is an easy exercise in ring theory to verify
that an ideal J of a ring R with identity is quasi-regular if there exists a
quasi-regular ideal L of R such that (J + L)/L is nil. Thus, for endomorphism
rings of abelian p-groups, the famous problem whether the Jacobson radical
needs to be nil reduces to the question whether J(End G) is a nil extension of
the quasi-regular ideal L = Ann Gp].

In this article we show that the answer to this question is affirmative if G is
totally projective. In general, this is not the case: if G is unbounded and torsion-
complete, then J(End G) contains elements no power of which annihilate G[p]
[5; 14.6, p. 287].

Throughout the following, G denotes a totally projective abelian p-group,
where p is some fixed prime. A complete description of J(End G) s given in 3.8:
if A denotes the length of G then J(End G) consists of all ¢ in End G for which
there exists a finite sequence of ordinals

O0=Bo<Pr< <Bu<Ba+1=4

such that pfiG[p)e < pPi*'G fori =0, 1, ..., n. It follows that an ideal of End G
is quasi-regular if and only if its restriction to G[p] is a nil ring.

The proof largely depends on a strong decomposition theorem for totally
projective p-groups (2.3) which may be of independent interest.

2. Tools

Notation and terminology will follow [2], [3], [4] unless explained otherwise.
The word “ideal” will always mean two-sided ideal. A ring is called nil if all of
its elements are nilpotent. Given fully invariant subgroups 4 < B of G, the set
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of all e in End G such that Be < A is denoted by Ann (B/A). Clearly, Ann (B/A)
is an ideal of End G. We shall make frequent use of the following result.

2.1. IfJ is an ideal of End G such that J | G[p] is nil then J is quasi-regular.

Let ¢ be an ordinal. Since G is totally projective, every endomorphism of p’G
can be extended to an endomorphism of G [7; 3.9, p. 252]. Thus, the restriction
of J(End G) to p°G is a quasi-regular ideal of End p°G, and [5; 142 and 144,
pp. 284, 286] implies the following fact.

2.2. Ife e J(End G) then p°G[ple < p°*'G for every ordinal o.

In order to construct certain endomorphisms, the following decomposition
theorem will be needed. If X is a set of ordinals, sup £ denotes the smallest
ordinal that is greater than or equal to every ¢ in X. As customary,
t={o:0<T1}.

2.3. THEOREM. Let G be a totally projective p-group of length A, let Tt < A be
a limit ordinal, and let T be a set of ordinals such that T = tand t = sup T. Then
there exist £ <= T and subgroups A and B of G satisfying the following: (i)
T =sup Z; (ii) A has length © and B has length 4; (iii) G = A @ B; (iv) For all
o € Z, p°G[p] = p°Alp] ® p°* ' B[p].

Proof. If A= =7 then G is a direct sum of cyclic groups [7; 3.5, p. 251]
and 2.3 holds with X any infinite subset of T such that T\X is infinite. Suppose
that A > w and let f be the Ulm-Kaplansky function of G, ie.,

S (u) = rk(p*G[pY/p** ' Glp])

for every u. It suffices to construct X = T such that 7 = sup X and functions g
and h from the ordinals to the cardinals satisfying the following conditions

(24) f(u) = g(p) + h(u) for every p.

(2.5) t=sup {u+ 1: g(u) #0}.

(26) A=sup {u+ 1: h(u) + 0}.

(2.7) For each limit ordinal p < 7 such that p + w < 7 and for each t < w,
Yorwsu<e J(1) < Yicn<w 9o + ).

(2.8) For each limit ordinal p < 4 such that p + w < A4 and for each t < w,
Zp+w$u</1 h(ﬂ) = ESn<w h(p + ”)‘

(29) h(c)=O0forallo e X.

In fact, by [3; 83.6, p. 100], there exist totally projective groups A and B whose
Ulm-Kaplansky functions are g and h respectively. By (2.4), the Ulm-
Kaplansky function of A@ B is f, so that G~ A@ B by [3; 83.3, p. 98].

Property (iv) is a direct consequence of (2.9). Since f is the Ulm-Kaplansky
function of G,

(210) Y, +wsu<af (1) < Dicn<aS(p + n), for each limit ordinal p such
that p + w < 4 and all t < w;
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furthermore,

(211) sup{u+1:f(u)#0,u<o}=0if 6 =4 or g < Ais a limit ordinal
[3; 83.6, p. 100].

For convenience, let I, ={u: p < pu<p+ w} and put T,=T n I,. For the
construction of X, we distinguish two cases.

Case 1. 1 =v+ o for some v < 7. We may assume, without loss of genera-
lity, that either v =0 or v is a limit ordinal [6; pp. 295f, 271f]. Let ¢t < w and
consider the cardinals

k, = Z f(w) and | = Z f(w).

v+t<spueT, v+tsuel,\T,

Let m =min {k, + I,: t <w}. Since v <v + 0 = 7 < 4, (2.11) implies
ke+ 1, = z f(#)?-No’

v+t<uel,
for each t < w. Hence, m > N,. If k, < m for some ¢t < w, put X = T,. Suppose
that k, > m for all t < w. Then T, contains an infinite subset T" such that, for all

t <®, Y, +isuer S (1) = m. In this case, pick any subset = of T" such that both
Y and T'\X are infinite. In either case, sup £ = t and

(2.12) > \,_f(”)= Y fw)=R, forallt<ao.

v+t<puel, v+itsupel,

Case2. p<rt implies p+w<t. Let A={p<t: T, #0,p limit}. For
each p € A, pick 6, € T, and let £ = {5 ,: p € A}. Then sup X = 7 [6; pp. 295,
296] as desired. In either case, the set Z has been constructed. In order to define
the functions g and h, consider an ordinal p such that either p = 0 or p is a limit
ordinal for which p + w < 7. Let

M,={uel,:0+f(u) <N, peZ}

If M, is finite, put P, = @; otherwise, pick P, = M, such that both P, and
M ,\P,, are infinite. Let

M=) {M,:p+w<r, p=0or p limit},
P=){Pip+w<1 p=0or p limit},
and define g and h by

0 ift<p,
0 if u e M\P,
f(p) ifueP vy (t\M),

glp) =

fw) ifr<p,
flp) fuet\(PuUZI)
0 ifuePuUZ.

h(p) =
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Then (29) is satisfied. The fact that f(u)=f(u)+f(x) whenever
u € 7\(M v Z) implies (2.4); (2.5) and (2.6) follow from (2.11) and (2.12), recal-
ling that either both M, and P, are infinite or both are finite. The same
argument implies

No+ Y fw<s Y flo)

prt<ueM, pttsuel,\M,

for all t < w, whenever p is a limit ordinal such that p + w < 7 or p = 0. Thus,
(2.7) follows from (2.10). It remains to verify (2.8). Let p be a limit ordinal such
that p + w < 4. Because of (2.11), we may assume p < t.If p + w < 7,(2.8)isa

consequence of (2.10), (2.11), and the properties of M, and N ; if p = v where
v + o = 1, observe (2.12).

The following easy set theoretical result will be needed.

2.13. LemMA. Let 1 ={0: 06 <7t} be a limit ordinal and let f: t—t be a
function such that f (¢) > ¢ for all o € t. Then there exists a subset T < f (t) such
that sup T = t and, for every £ < T, sup X = t implies sup [f !(Z)] = 7.

Proof. Enlarge the domain of f by setting f(t) = 7, ignoring the abuse of
notation. Define ordinals n, inductively by no = 0 and 5, = f (sup {n,: o < p}).
Then there exists v < 7 such that 5, = 7. Let v be minimal with respect to this
property. One verifies that the set T = {,: ¢ < v} meets the requirements.

2.14. LeMMA. Let G be totally projective of length A and let T < A be a limit
ordinal. Let ¢ End G such that, for all o<1, p°G[pled p'G and
p°G[ple < p°*'G. Then, for all k < w, there are A, < G, w, € A, and ordinals 1,
satisfying the following.

(i) G=®y<o A D C for some C <G.
(i) For eachk < w, p*4y =<{w,) =Z(p)and 1, < 14+, < T.
(ii) There exist ¢, ¥ € End G such that, for all k < w, w,deY = Wy, ;.

Proof. By hypothesis, for each ¢ < 7, there exists y, € p°G[p] such that

Vo€ ¢ P'G. Define f: T — 1 by f(6) = h(y, ). Then f satisfies the hypothesis of
2.13 and there exists T < 7 as described in 2.13. In particular, sup T = t and 2.3

is applicable. Hence, there are A, B < G of length 7 and 4, respectively, and
ZcTsuchthat G=A@B,supX=tand,forallue X,

p*Glp] = p*Alp] @ p** ' Blp].

Let A ={o < 1: h(y,¢) € Z} and let n: G — A be the natural projection annihi-
lating B. Then A = f ~!(Z), hence, by 2.13,

(2.15) T=sup A,

and 0+#y,eme A foralloeA.

Since A is totally projective [3; (A), p. 89] of length 7 and 7 is a limit ordinal,



QUASI-REGULAR IDEALS OF SOME ENDOMORPHISM RINGS 849

there exist H, < A such that A = ®,.. H,, p°*'H, =0 for all ¢ < 7 [3; (e),
p. 97]. Clearly, every a € A has finite support. Thus, for each g € A, there exist
ordinals n,, p, such that 6 <n,<p,<tand 0+ y,ene @, c,<,, H, By
(2.15), we may select countably many 6, € A, k < w, such that g, , > p,, for all
k < w. Simplifying our notation without going through a formal renaming
process, we write y, instead of y,, and p, instead of p,,. Let v, = h(y,) and
W = h(y,en). Then o), < v, < py < P < G441, and

(2.16) wene L, where L= @& H,
Clearly HEmso
(2.17) G=® L®H

k<o

for some H < G. By [1; 3.3, p. 15], every totally projective p-group Lis a direct
sum of subgroups each of which has a p-basis with exactly one minimal
element; and the lengths of those summands cannot exceed the length of L.
Using the fact that L, has length p, + 1 it follows that, for each k < w, Lyhas a
decomposition of the form L, = A, @ B,, where p**A4, = Z(p) for some ordinal
7, such that pu, < 1, < p,. Since p, < 6441 < Ui+, We have 1, < 7., for all
k < w. Let w, € A, such that p*A, = (w,). Then 1, = h(w,) < p, < G441 <
Vi+1 = h(yi+1)- Thus, for each k < w, there is a homomorphism from 4, to G
mapping w, to y..; [7; 39, p.252]. Since, for suitable C <G,
G =®,<, A D C, there exists ¢ € End G such that w, ¢ = y, ., forallk < w
[2; 8.1, p. 40]. Likewise, h(y,en) = p, < 7, = h(w;), and, recalling (2.16) and
(2.17), the same argument implies the existence of Y’ € End G such that
yeemy' = w, and thus, w,gemy’ = y, . emy’ = w, . for all k < w. Setting
my’ =y, the conclusion follows.

3. Main results
In the following proposition, G need not be totally projective.

3.1. PROPOSITION. Let ¢ € End G and assume the validity of (i), (ii), (iii) of
2.14. Then ¢ ¢ J(End G).

Proof. Assume, by way of contradiction, that ¢ € J(End G). Let n € End G
be the natural projection of G onto ®; ., 4, corresponding to the decomposi-
tion (i). Put f = ¢eyn. Then

(3.2) wif=wq forallk <o,

CB =0, and B € J(End G). Hence 1 — B is an automorphism and there exists

y € End G such that (1 — )~ ! = 1 — y. A straightforward computation shows
that

(33) B=PBy—7 By=18
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and (3.2) implies
(34) Wis1 = W1y — W,y forallk <w.
Let y = wo(1 — y) and let z, = wy + wy + --* + w,. Then, by (3.4),
zy=wo + (W17 — o) + (Way — wiy) + - + (W — way ),
= wo(l = 7) + w,7.

Thus, y — z, = (—w,)y has height at least 7, which implies that, for all k < o,
the component of y in the kth summand of the decomposition 2.14 (i) is w,.
This is plainly impossible and the proof is completed.

3.5. THEOREM. Let G be totally projective of length A and let ¢ € J(End G).
Then, for each 0 < t < A, there exists ¢ < t such that p°G[ple < p'G.

Proof. Assume, by way of contradiction, that, for all ¢ < 7, p’G[p)e £ p°G.
Then, by 2.2, ¢ satisfies the hypothesis of 2.14 and (i), (ii), (iii) hold. Apply 3.1.

3.6. THEOREM. Let G be totally projective of length A and let ¢ € J(End G).
Then there exist finitely many ordinals

0=Bo <Py < <By<Bus1=4
such that, for i =0, ..., n, pPG[p]e < pP*'G.

Proof. Use 3.5 together with the fact that every properly decreasing seq-
uence of ordinals terminates after finitely many steps [6; p. 270].

If ¢ has the properties stated in 3.6 then ¢ € () }=o Ann (p*'G[p)/p*'*'G[p]),
and ¢|G[p] is nilpotent. Recalling 2.1, we have the following result.

3.7. COROLLARY. Let G be a totally projective p-group and let J be an ideal
of End G. Then J is quasi-regular if and only if J induces in G{p] a nil ring of
endomorphisms.

The description of the Jacobson radical of End G is now complete.

3.8. THEOREM. If G is a totally projective p-group of length A then

sEnd6)= Y (U () Amn (#trlp-rclp) )

n<w \0=po<f1<-<fu+1=24 Li=0

Proof. Let J denote the right hand side of this equation. Then ¢|G[p] is
nilpotent for every ¢ € J. Thus, using 3.6 and 3.7, it remains to show that J is an
ideal. This follows from the fact that, if

O0=PBo<Pi<"<Ppse1=4 and O0=7,<y; <'** <Yms1 =4

are ordinals such that {B;};< .+ 1 S {V}i<m+ 1 and pPG[ple < P'*'Gfor0 <i<n,
then p"G[ple < p"*'Gfor0 <i<m.
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