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QUASI-REGULAR IDEALS OF SOME ENDOMORPHISM
RINGS

JUTTA HAUSEN

1. Introduction

If 0 is an endomorphism of the abelian p-group G such that x0 x for all x
in G of order p then 0 is one-to-one and onto [5; 13.1, p. 279]. It follows that the
set Ann G[p] of all endomorphisms of G annihilating G[p] is a quasi-regular
(two-sided) ideal of the endomorphism ring End G of G. In general, not every
element of Ann G[p] is nilpotent which shows that the Jacobson radical
J(End G) of End G need not be nil. It is an easy exercise in ring theory to verify
that an ideal J of a ring R with identity is quasi-regular if there exists a
quasi-regular ideal L of R such that (2 + L)/L is nil. Thus, for endomorphism
rings of abelian p-groups, the famous problem whether the Jacobson radical
needs to be nil reduces to the question whether ,/(End G)is a nil extension of
the quasi-regular ideal L Ann G[p].

In this article we show that the answer to this question is affirmative if G is
totally projective. In general, this is not the case" if G is unbounded and torsion-
complete, then J(End G) contains elements no power of which annihilate G[p]
[5; 14.6, p. 287].
Throughout the following, G denotes a totally projective abelian p-group,

where p is some fixed prime. A complete description of,/(End G) is given in 3.8:
if 2 denotes the length of G then 2(End G) consists of all e in End G for which
there exists a finite sequence of ordinals

0 Po < P <"" < P < #+
such that p’G[p] < ’/ ’G for 0, 1, n. It follows that an ideal ofEnd G
is quasi-regular if and only if its restriction to G[p] is a nil ring.
The proof largely depends on a strong decomposition theorem for totally

projective p-groups (2.3) which may be of independent interest.

2. Tools

Notation and terminology will follow [2], [3], [4] unless explained otherwise.
The word "ideal" will always mean two-sided ideal. A ring is called nil if all of
its elements are nilpotent. Given fully invariant subgroups A _< B of G, the set
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of all e in End G such that Be < A is denoted by Ann (B/A). Clearly, Ann (B/A)
is an ideal of End G. We shall make frequent use of the following result.

2.1. If J is an ideal of End G such that JIG[p] is nil then J is quasi-regular.

Let tr be an ordinal. Since G is totally projective, every endomorphism ofp’G
can be extended to an endomorphism of G [7; 3.9, p. 252]. Thus, the restriction
of J(End G) to p’G is a quasi-regular ideal of End p’G, and [5; 14.2 and 14.4,
pp. 284, 286] implies the following fact.

2.2. If e J(End G) then pG[p]e < p+ 1G for every ordinal a.

In order to construct certain endomorphisms, the following decomposition
theorem will be needed. If E is a set of ordinals, sup E denotes the smallest
ordinal that is greater than or equal to every tr in . As customary,

<

2.3. THEOREM. Let G be a totally projective p-group oflenoth 2, let <_/ be
a limit ordinal, and let T be a set ofordinals such that T

_
z and z sup T. Then

there exist 7.
_
T and suboroups A and B of G satisfyino the followino: (i)

z sup E; (ii) A has lenoth z and B has lenoth ; (iii) G A B; (iv) For all
tre ,, pG[p] p’A[p] pC+ B[p].

Proof If 2 09 z then G is a direct sum of cyclic groups [7; 3.5, p. 251]
and 2.3 holds with l any infinite subset of T such that T\ is infinite. Suppose
that 2 > to and let fbe the Ulm-Kaplansky function of G, i.e.,

f(l) rk(pUG[p]/Pu+ G[p])
for every/. It suffices to construct 12 T such that z sup E and functions g
and h from the ordinals to the cardinals satisfying the following conditions

(2.4) f(/) g(/) + h(#) for every #.
(2.5) z sup {# + 1: g(u) 4: 0}.
(2.6) g sup { + 1: h() 0}.
(2.7) For each limit ordinal p < such that p + w < z and for each

(2.8) For each limit ordeal p < g such that p + < Z and for each

(2.9) h()= 0 for all a .
In fact, by [3; 83.6, p. 100], there exist totally projective groups A and B whose
Ulm-Kaplansky functions are and h respectively. By (2.4), the Ulm-
Kaplansky function of A B is f, so that G- A B by [3; 83.3, p. 98].
Property (iv) is a direct consequence of (2.9). Since f is the Ulm-Kaplansky
function of G,

(2.10) ,+,s,<af(/)< _s.<o,f(P + n), for each limit ordinal p such
that p + co < 2 and all t < co;
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furthermore,

(2.11) sup {/ + 1" f(#) 4: 0, # < tr} tr if tr 2 or tr < 2 is a limit ordinal
[3; 83.6, p. 100].

For convenience, let I, {#: p < # < p + o} and put To T c I,. For the
construction of E, we distinguish two cases.

Case 1. z v + to for some v < z. We may assume, without loss ofgenera-
lity, that either v 0 or v is a limit ordinal [6; pp. 295f, 271f]. Let < to and
consider the cardinals

k, ’, f(#) and l, ’, f(#).
v+t< # Tv v+t<#. Iv\Tv

Let m min {k, + It: < o}. Since v < v + o z < A, (2.11) implies

k,+l,= E f(#) > No,
v+t<#l

for each t < ox Hence, m > o. If k, < m for some < o, put T. Suppose
that k, >_ m for all < o. Then T contains an infinite subset T’ such that, for all
t < o,+z,f(#) > m. In this case, pick any subset of T’ such that both
and T’\ are infinite. In either case, sup z and

(:2.12) f()-- f() > o for alit
v+t< lv v+t<# Iv

Case 2. p< implies p+to<. Let A={p<z:T, 4:0, plimit}. For
each p e A, pick tr e T and let E {ira: p e A}. Then sup I2 z [6; pp. 295,
296] as desired. In either case, the set Y, has been constructed. In order to define
the functions and h, consider an ordinal p such that either p 0 or p is a limit
ordinal for which p + o _< z. Let

M, {# I: 0 4:f(#)< No, # e Y}.
If M, is finite, put Po 0; otherwise, pick Po

_
Mo such that both Po and

Mo\Po are infinite. Let

M= ) {Mo:p+co_<z,p=0orplimit},

P= {Po:p+o<z,p=0orplimit},
and define 0 and h by

0 if < #,

0(#) 0 if # M\P,
f(#) if # P w (z\M),

f(u) if z _</,
h(/z) f(/z) if U e z\(P w Y)

0
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Then (2.9) is satisfied. The fact that f(#)=f(l)+f(g)whenever
/ e z\(M w Y.)implies (2.4); (2.5)and (2.6) follow from (2.11) and (2.12), recal-
ling that either both Mp and Po are infinite or both are finite. The same
argument implies

o + f(/) < f(P)
p+t .M P+tl I\M

for all < co, whenever p is a limit ordinal such that p + co < or p 0. Thus,
(2.7) follows from (2.10). It remains to verify (2.8). Let p be a limit ordinal such
that p + co < 2. Because of (2.11), we may assume p < z. Ifp + co < , (2.8) is a
consequence of (2.10), (2.11), and the properties of Mo and No; if p v where
v + co z, observe (2.12).
The following easy set theoretical result will be needed.

2.13. LEMMA. Let z {a: a < } be a limit ordinal and let f: z--. z be a

function such thatf() > for all z. Then there exists a subset T
_
f(z) such

that sup T z and, for every , _ T, sup , z implies sup If-1()] z.

Proof. Enlarge the domain off by setting f(z)= z, ignoring the abuse of
notation. Define ordinals r/o inductively by r/o 0 and r/u =f(sup
Then there exists v _< z such that r/, z. Let v be minimal with respect to this
property. One verifies that the set T {r/o: tr < v} meets the requirements.

2.14. LEMMA. Let G be totally projective of lenoth A and let z < 2 be a limit
ordinal. Let e End G such that, for all tr < z, pG[p]e : fig and
pG[p]e <_ p+ 1G. Then,for all k < co, there are A, <_ G, w, Ak and ordinals Zk
satisfyinl the followin[l.

(i)
(ii)
(iii)

G k<, Ak C for some C G.
For each k < to, ff*Ak (Wk) Z(p) and Zk < Zk+ < Z.

There exist , End G such that, for all k < to, Wke %+ 1.

Proof By hypothesis, for each a < z, there exists yo pG[p] such that
yoe pG. Define f: z --, z by f(a) h(yo). Then f satisfies the hypothesis of
2.13 and there exists T

_
as described in 2.13. In particular, sup T z and 2.3

is applicable. Hence, there are A, B _< G of length z and A, respectively, and
Z
_
T such that G A B, sup x and, for all # x,

p’G[p] pA[p] I+

Let A {tr < z: h(yoe,) e Z} and let n: G A be the natural projection annihi-
lating B. Then A f- (X), hence, by 2.13,

(2.15) z sup A,

and OyenA for alltrA.

Since A is totally projective [3; (A), p. 89] of length z and z is a limit ordinal,
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there exist Ho < A such that A 9o<, Ho, pO+ 1Ho 0 for all tr < z [3; (e),
p. 97]. Clearly, every a A has finite support. Thus, for each a A, thereexist
ordinals r/o, Po such that tr < r/o < Po < z and 0 # yoen ,,pHr. By
(2.15), we may select countably many irk A, k < to, such that trk+ > Po for all
k < to. Simplifying our notation without going through a formal renaming
process, we write Yk instead of Yo and Pk instead of Po. Let Vk h(yk)and
#k h(Yke.Tt). Then trk < Vk < #k <-- Pk <-- trk+ 1, and

(2.16) yken where /.,k Hu.
Clearly, ’ ’:p

(2.17) G= LkH
k<to

for some H < G. By [1; 3.3, p. 1 5], every totally projective p-group L is a direct
sum of subgroups each of which has a p-basis with exactly one minimal
element; and the lengths of those summands cannot exceed the length of L.
Using the fact that Lk has length p + 1 it follows that, for each k < 09, Lk has a
decomposition of the form Lk Ak ] Bk, where ffkAk Z(p) for some ordinal
Zk such that #k < Zk <_ Pk. Since Pk <-- ak+ < ilk+ 1, We have Zk < Zk+ for all
k < to. Let w AR such that PAk (Wk). Then Zk h(wk) < Pk < irk+ <--
Vk + h(y + 1). Thus, for each k < to, there is a homomorphism from Ak to G
mapping Wk to YR+I [7; 3.9, p. 252]. Since, for suitable C<_G,
G k<to Ak C, there exists b e End G such that Wk Yk+ for all k < to

[2; 8.1, p. 40]. Likewise, h(ykeTt)= Pk <-- Zk h(Wk), and, recalling (2.16) and
(2.17), the same argument implies the existence of ’e End G such that
ykeTt’= Wk and thus, Wktken’= yk+leTt’ Wk+I for all k < to. Setting
7t’= if, the conclusion follows.

3. Main results

In the following proposition, G need not be totally projective.

3.1. PROPOSITION. Let e e End G and assume the validity of(i), (ii), (iii)of
2.14. Then J(End G).

Proof. Assume, by way of contradiction, that e e J(End G). Let n e End G
be the natural projection of G onto k<o, Ak corresponding to the decomposi-
tion (i). Put fl t#e,n. Then

(3.2) Wkfl Wk+ for all k < o,

Cfl 0, and fl J(End G). Hence 1 fl is an automorphism and there exists
y e End G such that (1 fl)- 1 y. A straightforward computation shows
that

(3.3) fl fly- y, fly yfl,
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and (3.2) implies

(3.4) Wk/ Wk/- WV for all k < 09.

Let y Wo(1 ) and let z, Wo + w + ...+ w. Then, by (3.4),

z. Wo + (w- Wo)+ (w,.- w, )+...+ (w w._ ),
Wo(1 V)/

Thus, y z, (-w)? has height at least % which implies that, for all k < 09,

the component of y in the kth summand of the decomposition 2.14 (i) is w.
This is plainly impossible and the proof is completed.

3.5. THEOREM. Let G be totally projective of lenoth 2 and let e J(End G).
Then, for each 0 < < , there exists r < such that pG[p]e <_ p’G.

Proof Assume, by way of contradiction, that, for all < z, pG[p]e p’G.
Then, by 2.2, e satisfies the hypothesis of 2.14 and (i), (ii), (iii) hold. Apply 3.1.

3.6. THOrtM. Let G be totally projective of lenoth 2 and let J(End G).
Then there exist finitely many ordinals

0 o < # < ""< # < #.+

such that, for 0,..., n, p’G[p]e __. ptJ,+ G.

Proof Use 3.5 together with the fact that every properly decreasing seq-
uence of ordinals terminates after finitely many steps [6; p. 270].

If e has the properties stated in 3.6 then e e ’=o Ann (p’G[p]/p’/ tG[p]),
and e G[t,] is nilpotent. Recalling 2.1, we have the following result.

3.7. Co,topiARY. Let G be a totally projective p-oroup and let J be an ideal
of End G. Then J is quasi-reoular if and only if J induces in G[p] a nil rino of
endomorphisms.

The description of the Jacobson radical of End G is now complete.

3.8. THOtM. If G is a totally projective p-oroup of lenoth 2 then

O=o<#t <...<#,+t =.

Proof Let J denote the right hand side of this equation. Then e lG[p] is
nilpotent for every e J. Thus, using 3.6 and 3.7, it remains to show that J is an
ideal. This follows from the fact that, if

0=o<<--.</+=2 and 0=o<<...<+=it
are ordinals such that {},+

_
{}<,+ and p’G[p]e < p’/G for 0 < < n,

then p’G[p]e <_ p’/G for 0 < <_ m.
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