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PART I: DISCHARGING
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K. APPEL AND W. HAKEN

1. Introduction

We begin by describing, in chronological order, the earlier results which led
to the work of this paper. The proof of the Four Color Theorem requires the
results of Sections 2 and 3 of this paper and the reducibility results of Part II.
Sections 4 and 5 will be devoted to an attempt to explain the difficulties of the
Four Color Problem and the unusual nature of the proof.
The first published attempt to prove the Four Color Theorem was made by

A. B. Kempe [193 in 1879. Kempe proved that the problem can be restricted
to the consideration of "normal planar maps" in which all faces are simply
connected polygons, precisely three of which meet at each node. For such maps,
he derived from Euler’s formula, the equation

l/max

(1.1) 4pz + 3p3 + 2p4 +p5 (k -6)pk + 12

where P is the number of polygons with precisely neighbors and kma is the
largest value of which occurs in the map. This equation immediately implies
that every normal planar map contains polygons with fewer than six neighbors.

In order to prove the Four Color Theorem by induction on the number p of
polygons in the map (p p), Kempe assumed that every normal planar
map with p < r is four colorable and considered a normal planar map Mr+
with r + polygons. He distinguished the four cases that Mr+l contained a
polygon P2 with two neighbors, or a triangle P3, or a quadrilateral P4, or a
pentagon Ps; at least one of these cases must apply by (1.1). In each case he
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produced a map M, with r polygons by erasing from M,+ one edge in the boun-
dary of an appropriate Pk. By the induction hypothesis, M, admits a four
coloring, say cr, and Kempe attempted to derive a four coloring cr+l of Mr+
from cr. This task was very easy in the cases of Pz and P3. To treat the cases
of P4 and Ps, Kempe invented the method of interchanging the colors in a
maximal connected part which was colored by cr with a certain pair of colors
(two-colored chains were later called Kempe chains) to obtain a coloring c’r of
Mr from which one can then obtain a four coloring G+ of Mr+ 1.

While Kempe’s argument was correctly applied to the case of P4, it was
incorrectly applied to the case of P5 as was shown by Heawood [-18"1 in 1890.
Kempe’s argument proved, however, that five colors suffice for coloring planar
maps and that a minimal counter-example to the Four Color Conjecture
(minimal with respect to the number p of polygons in the map) could not con-
tain any two-sided polygons, triangles, or quadrilaterals. This restricts the Four
Color Problem to the consideration of normal planar maps in which each poly-
gon has at least five neighbors. Each such map must contain at least twelve
pentagons since in (1.1) we have P2 P3 P4 0 and thus

kma
(1.2) Ps 2 (k- 61pk + 12.

k=7

Since 1890 a great many attempts have been made to find a proof of the Four
Color Theorem. We distinguish two types of such attempts" (i) attempts to
repair the flaw in Kempe’s work; and (ii) attempts to find new and different
approaches to the problem. Among attempts of type (i) we distinguish two
subtypes" (i)(a) attempts to find an essentially stronger chain argument for
"reducing the pentagon," i.e., proving that a minimal counter-example to the
Four Color Conjecture cannot containany pentagon, and thus does not exist;
and (i)(b) attempts to make more extended use of Kempe’s arguments in
different directions and, instead of "reducing" the pentagon directly, to replace
it by configurations of several polygons. Since the method used in this paper is
of type (i)(b) we shall restrict our attention to further developments in this
branch.

In 1904, Wernicke [28] proved that any normal planar map with P2 P3
p 0 must contain at least one pentagon which is adjacent to another pentagon
or to a hexagon. This result was improved in 1922 by Franklin [14-1 who proved
that either two adjacent pentagons or a pentagon adjacent to two hexagons must
occur. A further improvement was made by Lebesgue [21] in 1940 when he
displayed a large collection of configurations at least one of which must occur
in each normal planar map with P2 P3 P4 0. We refer to such sets of
configurations as "unavoidable sets".

In 1913, G. D. Birkhoff [10] used Kempe’s chain arguments to develop a
general method of proving the "reducibility" of certain configurations, i.e., of
proving that these configurations cannot occur in a minimal counter-example



EVERY PLANAR MAP IS FOUR COLORABLE: PART 431

to the Four Color Conjecture. First, he observed that Kempe’s work immedi-
ately implies the reducibility of any ring (annulus) which is formed by two or
three polygons, and that the reducibility of the 4-ring (an annulus formed by
four polygons) can be easily proved by Kempe’s methods. Then he proved that
a 5-ring is reducible provided that there are at least two polygons of the map
inside the ring and at least two outside. The corresponding treatment of 6-rings
turned out to be much more difficult and was completed much later (1947) by
Arthur Bernhart [6]. Birkhoff, however, proved that a 6-ring is reducible in
the case that either its interior or its exterior consists of four pentagons. He
also proved the reducibility of any polygon which is entirely surrounded by
pentagons or by an even number of hexagons.

Regarding the Four Color Problem in general, Birkhoff stated three possible
alternatives:

(1) the Four Color Conjecture may be false;
(2) it may be possible to find a collection of reducible configurations such

that every planar map must contain one of them (which would prove the Four
Color Conjecture);

(3) the Four Color Conjecture may be true but more complicated methods
might be required for a proof.

He did not comment, however, on the likelihood he associated with any one
of these alternatives.
The methods for proving reducibility described in general by Birkhoff in [10]

have since been applied by many investigators, in particular Franklin [14],
Errera [13], Winn [29], Chojnacki [11], Arthur Bernhart [7], Heesch [16] and
[17], Ore and Stemple [23], Frank Bernhart [8], Allaire and Swart [2], Mayer
[22], and Allaire [1]. More detailed descriptions of the algorithms have been
given by Heesch [16] and by Tutte and Whitney [27]. In most of the more
recent applications [12], [17], [1], [2], [9], [20] the algorithms were carried
out by electronic computers. The smallest reducible configurations obtained by
these methods each consist of four polygons which surround an edge and have
been found by Birkhoff (as described above), Franklin, and Arthur Bernhart.

Regarding the three alternatives given by Birkhoff, the opinions of investi-
gators diverged considerably. Favoring the first alternative (falsity of the Four
Color Conjecture), E. F. Moore developed a method of constructing maps
which do not contain any reducible configurations which were published prior
to the late 1960s. In particular, in March 1977 he constructed a map of 846
polygons2 which contains no reducible configuration of ring size eleven or
smaller (it contains reducible 12-ring configurations, however). This result
shows that Birkhoff’s second alternative (provability of the Four Color

2 When this paper was submitted it was thought that a map of 341 polygons, constructed
by Moore in January 1963, had this property. But J. Graber found a reducible 1-ring
configuration in that map.
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Conjecture by means of an unavoidable set of reducible configurations) cannot
lead to a short proof (and not even to a moderately long one) since such a proof
would require at least reducible 12-ring configurations and very likely a large
number of these.
On the other hand, Heesch [16] observed that one finds large numbers of

reducible configurations if one considers configurations which are not too small
in size and contain relatively many pentagons. He stated a more detailed version
of Birkhoff’s second alternative as a conjecture [16; p. 216] by conjecturing
that the reducible configurations in the finite (unavoidable) set will range in size
up to the second neighborhood of a pair of polygons. Heesch states his results
in the dual language of planar triangulations and vertex colorations and uses a
special coding for indicating the degrees of the vertices (which we use in this
paper also; see Figure of Section 2). Heesch stated his conjecture in a col-
loquium talk which he gave at the University of Kiel (Germany) in about 1950.

In [16] Heesch treats several special cases of triangulations and proves that
each of them contains a reducible configuration. The case of triangulations
without vertices of degrees six or seven (which had earlier been taken care of by
Chojnacki [-11-] by a different method) is treated by a method which we call a
discharging procedure. Each degree-5-vertex is regarded as carrying a positive
"charge" of 60 and each vertex of degree k > 7 is regarded as carrying a neg-
ative "charge" of 60 (6 k). Then by (1.2), the sum of the charges is positive
(720). In a "first discharging step" the positive charges of the 5-vertices are dis-
tributed in equal fractions to their major neighbors (where major means of
degree k > 7). Then it is shown that positive charges can occur only in 16
special cases provided that the triangulation does not contain one of a list of 20
reducible configurations. Each of the 16 special cases is described by a con-
figuration in which a major vertex has received so much positive charge from
its degree-5-neighbors that its charge (which was initially negative) has a value
z > 0. These configurations are called z-positive configurations and are not
reducible (nor do they contain any reducible sub-configurations). Then in a
"second discharging step" the new positive charges z are distributed to currently
negative neighbors and it is shown that no positive charges remain, of course
provided that none of the 20 reducible configurations is contained in the tri-
angulation. This implies that there does not exist any triangulation without
6- and 7-vertices which does not contain at least one of the 20 reducible con-
figurations (since the sum of all charges must be positive).

Haken, who had been a student at Kiel when Heesch gave his talk, com-
municated with Heesch in 1967 inquiring about the technical difficulties of the
project of proving Heesch’s conjecture and the possible use of more powerful
electronic computers.

In 1970 Heesch communicated to Haken an unpublished result which he later
referred to as a finitization of the Four Color Problem, namely that the first dis-
charging step (described above), if applied to the general case, yields about
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8900 z-positive configurations (most of them not containing any reducible
configurations) which he explicitly exhibited. He hoped that it would be possible
to find a correspondingly large set of reducible configurations and to work out a
second discharging step in order to obtain an unavoidable set consisting only of
reducible configurations and thus a proof of the Four Color Conjecture. Haken
was very pessimistic regarding the combinatorial complexity of this task. He
proposed to search for a better discharging procedure in order to reduce the
complexity ofthe project. Returning to the special case of triangulations without
6- and 7-vertices, Haken immediately found an improvement of the discharging
procedure which shortened the treatment of the case considerably [15].
Encouraged by this result, Haken made several suggestions for developing an
equally improved discharging procedure for the general case.

Heesch asked Haken to cooperate on the project and, in 1971, communicated
to him several unpublished results on reducible configurations, in particular, his
observation of three "reduction obstacles," called four-legger vertices (i.e.,
vertices in the configuration with four or more neighbors in the ring surrounding
the configuration), three-legger articulation vertices (a vertex the removal of
which disconnects the configuration is called an articulation vertex), and
hanging 5-5-pairs (pairs of adjacent 5-vertices connected by edges to only one
other vertex ofthe configuration). The presence of one ofthese obstacles appears
to prevent the reducibility of the configuration (unless the configuration contains
a proper sub-configuration which is reducible and does not contain the obstacle).
The cooperation between Heesch and Haken was interrupted in October

1971 when the work of Shimamoto was thought to have settled the Four Color
Problem. Actually Shimamoto’s work stimulated Tutte and Whitney to work
out the first published theory of reduction obstacles in [27]. Their methods
were subsequently used by Stromquist [26] for exhibiting several further
reduction obstacles which included the three types mentioned above as the
practically most important special cases.

Early in 1972 Haken proposed, as a first step towards a proof of Heesch’s
conjecture, to develop a discharging procedure which would yield an unavoid-
able set of configurations which do not contain the first two reduction obstacles
mentioned above. Such configurations were called geographically good. The
object was to shift the emphasis from computing of reducible configurations to
improving the discharging procedure and to obtain a more reliable estimate of
the number and the size of the reducible configurations which would eventually
be required for the proof. An investigation in this direction was immediately
made by Osgood 1-24], who treated the special case of triangulations in which
every vertex has degree five, six, or eight.
The complexity of Osgood’s work convinced Haken that, even with a further

improved discharging procedure, the general case could not be effectively
attacked without the aid of electronic computers for the tedious task of discuss-
ing all possible configurations which can be obtained by merging pairs, triplets,
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etc., of given configurations. It is obvious that this task arises again and again
if one must survey all cases in which two, three, or more dischargings "over-
charge" a major vertex (i.e., make a formerly negative vertex positive).
At this time, in May 1972, Appel suggested proceeding with the project since

he felt that the necessary computer work was quite feasible.
From 1972 through 1975 the two authors gradually improved their discharg-

ing procedure. A discharging procedure may have three major types of defects’
(i) In some situations a positive charge may remain without a reducible (or at
least likely to be reducible) configuration occurring; (ii) The number of essen-
tially different situations in which a positive charge remains is excessive (in this
context, two situations are "essentially different" if they do not yield the same
reducible configuration); (iii) In some situation in which positive charge remains,
even the smallest reducible (or likely to be reducible) configuration which occurs
is of excessive ring size.
The search for major defects is usually very tedious by hand (unless the

defects are very obvious) but can be done quite effectively by a computer which
enumerates certain situations of remaining positive charge and tests each of
them for acceptable sub-configurations (i.e., likely to be reducible, or at least
geographically good configurations of limited ring size). An example of such a
computer program has been described in more detail in [-4, Section 27]. When
a major defect was found, the authors had to find a way of changing the dis-
charging procedure to avoid the defect. Then, usually the computer program
had to be changed accordingly and the search for further defects could begin.

In 1974, the authors could prove the existence of a finite unavoidable set of
geographically good configurations [4] and describe an algorithm for construct-
ing such a set. A much shorter existence proof (but without a construction
algorithm) was found shortly later by Stromquist [-26, Chapter 4]. The dis-
charging procedure of [-4] was rather complicated and was illustrated later by
applying it to the special case of "isolated 5-vertices" in [3]; its application to
the general case was never fully worked out because many more improvements
were found during 1975.
The cooperation with Heesch did not resume after 1972, however, and no

agreement could be reached as to which method of attacking the general case
would be better.
By September 1975 the authors had improved the methods so far that it

seemed to be more work to change the computer program after each new
improvement than to carry out the case enumeration by hand. It was decided
at this point that the most efficient approach would be to proceed with the dis-
charging procedure by hand and shift the computer work to the computation
of reducible configurations as described in Part II. (Actually, the authors and
John Koch had begun to study reducibility algorithms for computers in late
1974. Initially they conjectured that different algorithms from the standard ones
would be required for the great number of configurations of large size which
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were expected, but the efficiency of the discharging procedure rendered this
unnecessary.)

In January 1976 Jean Mayer found a considerable improvement of the pro-
cedure for treating the special case of isolated 5-vertices. A few weeks earlier
the authors had found a corresponding improvement of their procedure for the
general case. It appeared interesting to compare different discharging procedures
by applying them to the same special case. Therefore the authors applied their
discharging procedure (essentially the same one as used in this paper) to the
case of isolated 5-vertices and accepted an invitation of Mayer to write a joint
paper [5-[. Mayer’s procedure is still considerably simpler and more effective
than that of the authors’, but, thus far, no corresponding simplification for the
general case has been found. The authors are aware, however, of certain pos-
sible improvements in different directions; these are discussed in Section 5 of
this paper.

Other interesting comparisons between different discharging procedures are
possible by examining the works of Ore and Stemple [23], Stromquist [-26,
Appendix], and Mayer [22] on the Birkhoff number (treating triangulations
with an upper bound on the number of vertices) and of Stanik [25] and Allaire
[1] (on triangulations without 6-vertices).

2. The discharging procedure

We consider a triangulation A of a closed 2-dimensional manifold M2 of
Euler characteristic ;(. We assume that A is a simplicial complex, i.e., that it
does not contain any loops, nor any 2-circuits, nor any 3-circuits other than
boundaries of triangles. Moreover we assume that every vertex V of A satisfies
deg (V) >_ 5 (i.e., has degree at least 5).
To every vertex V of A we assign an initial charge qo(V) 60 (6 deg (V)).

Then, by Kempe’s version of Euler’s formula, we have

(2.1) qo(V)= 360;t.
VA

Note that qo(Vk) is negative for all major vertices (k >_ 7), zero for all 6-vertices,
and positive for all 5-vertices.
We shall describe configurations C mainly by drawings (of bounded, planar,

connected, simply connected triangulations) in which degree specifications of the
vertices are indicated by the symbols introduced by Heesch [16] (see Figure 1).
A configuration C is said to be contained in A if there is a simplicial immersion

f: C - A which respects the degree-specifications. Here we use the following
definitions. (For a more elaborate treatment of these basic concepts see Section
8 of [4].)
We call a continuous mappingf: C A of a configuration C into a triangula-

tion A an immersion (which respects the degree specifications) if it has the follow-
ing three properties.
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degree 5

(no sDecial m&rking
at the vertex)
degree 6

degree 7

degree 6

degree

_
7

not both degrees 6
(but each (5)

degree 8 M degree

_
8

degree unspecified (but __> 5)

degree => 10

degree 5 or 6 ("minor")

(i) f is simplicial and dimension-preserving; i.e., if tr is a simplex (vertex,
edge, or triangle, respectively) of C thenf tr is a homeomorphism onto a sim-
plex tr’ of A.

(ii) f respects the degree specifications of C; i.e., if V is a vertex of C for
which a degree is completely or partially specified (e.g., deg (V)= 6 or
deg (V) > 7) then the degree off(V) in A agrees with this specification.

(iii) There is a small neighborhood N of C in the plane so that N is a disk
(while C may have articulation points) and there is an extension f off over N
so thatf is locally one-to-one; i.e., ifp is a point ofN and U is a small neighbor-
hood ofp in N then f u is a homeomorphism.

If a configuration C is said to be contained in another configuration, D, then
this means that there is a simplicial immersion f: C D which respects the
degree specifications. However, in all cases which we have to consider explicitly
in this paper, the configurations C and D will be so small that the immersionf
will be an embedding (i.e., one-to-one and not only locally one-to-one) and C
will be said to be contained in D as a sub-configuration. In general, the immersion
or embedding f may preserve or reverse the orientation of C; in particular, if
C and D are defined by drawings in the plane we may or may not wish to
distinguish the cases that C is contained reflected or non-reflected in D. If we
want to indicate that C is contained non-reflected in D we write "Cn is contained
in D"; if we want to say that C is contained reflected in D (i.e., that the mirror
image of C is contained in D) then we write "Cr is contained in D". The
expression "C is contained in D" means that Cn or Cr is contained in D.
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Now we shall define3 a discharging procedure which can be applied to any
triangulation A with the above properties and which assigns to each vertex V of
A a terminal charge q(V) so that again

(2.2) q(V)= 360Z.
VA

We define the charge function q on (the set of vertices of) A by deriving it
from qo by transfers of charge from 5-vertices I/2 to nearby major vertices. We
distinguish two kinds of such charge transfers: (i) short range dischargings which
transfer charge along edges of A which join Vs’s to major vertices, and (ii)
transversal dischargings which transfer charge from a F across one, two, or
three 6-6 edges (edges joining pairs of 6-vertices) to a major vertex; these are
abbreviated T-dischargings. First, we define the T-dischargings. If one of the

T1 1 T1"2 T1 #3 T1

T2 #5 T2 @6 T2 @7

Figure 2

seven configurations of Figure 2, which we refer to as T-dischargint7 situations,
is contained in A then charge is transferred as indicated by the arrows. The

solid arrow means a transfer of 20, the open arrow means a transfer of 10,
with the following exceptions (see Figure 3) in the case that two T-dischargings
leave the same 1/2 across the same 6-6 edge (but arrive at different major ver-
tices). If at least one of the two arrows is solid then 10 is transferred along each
of the arrows; if both of the arrows are open then 5 is transferred along each of

a See discussion of choice of discharging procedure in Section 5 (p. 487) for a general
description of the method of defining the discharging procedure.
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them. In this case we may use the symbol consisting of a solid arrow splitting
into two open arrows or an open arrow splitting into two skeletal arrows of
value 5 as in Figure 3.

Figure

We refer to a T-discharging arrow of value 5 or 10 as a Tl-discharging and
to an arrow of value 20 as a T2-dischar#ing. (Correspondingly we have named
the seven T-situations in Figure 2 as TI#I,..., Tl#4, T2#5,..., T2#7.)
Occasionally we draw an "arrow without head" to indicate the path of a T-
discharging whose value we do not choose to specify. For instance, in the con-
figuration Tl#3 (Figure 2) the unspecified T-discharging will be T2 if the
vertex without degree-specification (at the bottom of the drawing) is mapped
to a 1/5 (of A) and will be T1 otherwise.

In order to define the short-range dischargings, let E be an edge of A which
joins a 5-vertex 1/5 to a major vertex Vk (k > 7). In Table we have defined (by
individual drawings) the "situations of small dischargings," abbreviated S-
situations. Most of the configurations drawn in Table contain some vertices
of partially specified degrees (_> 5 or >_7) which are separated from the con-
figuration by "clip marks."

The configurations without these "clipped off" vertices are the S-situations. The
full configurations are called enlarged S-situations and. will be explained later
(Lemma S/ in Section 3). Each of these configurations has a distinguished edge
which is drawn vertical and marked by a number (0, 5, 10, 15, 20, or 25), its
discharging value. We say that an S-situation C applies at E if C is contained
in A in such a way that .the distinguished edge D of C is identified to E. The
"situations of large discharging," called L-situations, have been similarly defined
by drawings in Table 2. Again, the discharging values (35, 40, 50, or 60) are
marked at the distinguished edges.
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In the drawings we have used the following special abbreviations, which are
explained by examples in Figure 4.

means attachment of some T2-situation so as to induce a T-
discharging of 20 to the major vertex as indicated by the arrow.

means attachment of some T-situation (TI or T2) so as to induce
a T-discharging as indicated by the arrow.

means a major vertex V, excepting one disposition: V cannot be a

V7 which is adjacent to a V5 which itself does not belong to the
configuration but is adjacent to another vertex of the configuration.

means a major vertex V, excepting the disposi-
tion in which the vertex V occurs as in the partial
diagram at right.

means that no T-discharging crosses the marked 6-6 edge.

Regarding the edge E we now have three possibilities (see Figure 5 for
examples):

Case (i). No S- or L-situation is attached at E. In this case we call E a
regular discharging edge or R-edge and we define the discharging value d(E) of
E to be 30.

Case (ii). One or more S-situations, but no L-situations, are attached at E
Then we call E a small discharging edge or S-edge and we define its discharging
value d(E) to be equal to the smallest of the discharging values of the attached
S-situations.

Case (iii). One or more L-situations and zero, one, or more S-situations are
attached at E. Then we call E a large discharging edge or L-edge and we define
d(E) to be equal to the largest of the discharging values of the attached L-
situations.
Now every edge E of A which joins a V5 to a major vertex has a uniquely

defined discharging value d(E). (To all other edges we may assign the dis-
charging value zero.) We obtain the charge distribution q from q0 by (simul-
taneously) transferring along each edge E the charge d(E) (from the V5 to the
major vertex) and carrying out the T-dischargings. We refer to the charge
transfers along R-, S-, and L-edges as R-, S-, or L-dischargings, respectively.
This finishes the definition of our discharging procedure .
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stands for one of the 5 configurations below,
provided that the T2-discharging arrows do not split,
i.e., in particular, that deg(A) 6 in the last three
configurations

A

stands for one o the 10 configurations above and below
where in this case all T-discharging arrows may or ma not
split (i.e., in particular, deg(A) is arbitrary above)

excludes and

exc1udes

Fi,gure
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20 ://: 001 10 =#: 002 10 :#: 00.5 20 :# 004 20 # 00.5

20 # 0O6 20 # O07 20

5 011 0 # 012 0 "#: 01.5 0 :#: 01, 0 : 015

0 # 016 0 017

10 :#: 021 lC :#: 022 10 :#: 02.5 024 10 # 02.5

10 :#: 026 10 "# 027 10 :#: 028 10 # 020 10 :#: 0.30

10 # 0.! 10 # 0]2 10 :#: 0] 10 # 0.4 10 # 0.5.5

Table 1 page
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10": 056 10 # 037 10 058 10 059 10 # 040

10# 041

20 # 0.51 20 # 052 20 # 0.55 20 "-If 0.54 20 # 0.55

20 # 056

20 # 061 20 # 062 20 # 063 20 # 06,4 20 # 065

20 # 06 20 # 067 20 # 068 20 09 20 # 070

20 0’71 20 =#’. 072 20 # 07. 20 # 074 20 # 075

Table I, page 2
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20# 0’76 20 # 0’79 20 080

20 # 081 20 082 20 # 08.5 2 20 085

20 # 086 20 # 087’ 20 # 088 20 # 089 20 090

20 # 091 2.5 # 092 20 093 25 094 20 # 095

20 096 20 097 25 098 20 099 20 100

2.5 20 =# 102 20 10. 2 #

20 # 106 20 # 107 20 # 108 20# 109 20 110

Table I, age 3
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20 # 111 20 # 112 20# 11.5 20# 114 20# 11.5

20 #’116 20 # 117 20 # 118 20 # 119 20 # 120

20# 121 20 # 122 20"#: 12] 20 # 124 20# 12.5

20# 126

20 # 12 20# 1], 20# 1,54 2.0

20# 1,56 20# lYt’ 25 # 1,8 20# 19 20# 140

20 :#: 141 20 142 20 # 14, 2.5 # 144 2.5 # 14.5
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2.5 # 146 20 =/f 14’7 20 @ 148 20 = 149 20 # 150

10: 161 10 .- 162 10 # 16.5 10 a 164 10 # 165

10 # 166 10 # 167

20 # 1"/1 20 # 1’72 20 # 1’73 20 1’74

20 # 176 20 # 17’7 20 # 1’78 20 # 1’79

20 #

20 180

20 # 181 20 # 182 20 # 103 20 # 184 20# 185

Table 1, page
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20 = 186 20 = 18"/ 20 = 188 20 # 189 20 # 190

20 # 191 20 # 192 20 # 19,5 20 # 194 20 # 195

20 # 196 2,5 # 19’7 20 # 198 20 # 199 20=# 200

20 # 201 20 # 202 20 # 20 20 "# 204

20 = 211 20 # 212 20 : 21 20 # 214 20 =# 21.5

2 2 2

2.5 # 221 20 # 222 20 # 22 20 # 224 20 " 22.5

Table page
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20 226 20 # 227 20 # 228 20 229 20 # 230

0 # 2.51 0 = 22 0 # 2.5.5 0"# 24 0 2.5.5

O# 2.56 0"# 237 0 2.58 2O # 20.1 i
10 # 241 10 # 242 10 # 24.5 10 244 10 # 24.5

10 # 246 10 # 247 10 # 248 10 24’::) 10 ff 2.50

10 2.51 10 # 2.52 1.5 # 2.,5

20 261 20 :# 262 20 # 26.5 20 # 264 20 # 26.5

Table 1, page 7
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20 # 266 20 # 267 20 # 268 25 # 270

20 ,- 2’71 20 # 272 20 # 2"/5
20 # 274 20 # 2’75

20 # 276 20 # 277 20 # 278 20 # 279 20 # 280

20 # 281 20 # 282 20 # 285 20 # 284 20 # 85

20 # 286 20 e 287 20 # 288 20 # 289 20 # 290

20 # 291

20# .501 20 502 20 # .50.5 20 # 504 20 # 505

Table 1, page 8
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20 306 20 307 20 # 08 20 # 309 20 # 310

20 # 311 2.5 :ff .12 20 # .51 2.5 # 314 20 # 15

20# 5 20 # 1’7 20 # .518 20 # 19 20 # 20

20 # .521 20 .22 20 # .523 20 # 24 20 # 25

Table I, page 9
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40 #401 40 #4O2 40 #40,5

60 #411

40 #421 40 422 40 #423 40 #424 40 #42.5

40 #426 40 #427 40 #428

40 #431 40 #4,52 40 #43,5 40 #4,54 40 #4.55

40 #46 33 #437

5o #44"

Table 2, page
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40 #45"I 40 #452 40 #455 40 #454 40 @455

40 #456 40 #45? 40 #458 40 #459 40 #460

40 #461 40 :#462 40 #465 40 #464 40 #465

40 #466 40 #46’( 40 #468 5.5 #469

40 #47"I 40 @472 40 #475’ 5.5 :#474 40 :#475

40 #476 40 @477 55 #478 40 #479 40 #4gO

Table 2, page 2
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60 #491 50 #492 50 #493 50 #494 50 #495

40 #/:496 40 497 40 #/:498, 40 #499 40 #500

35 #501 40 #502 40 #503 4o #505

40 #/:506 40 :#507 40 #/:508 4o #509 40 :/#310

40 #511 4o #512 4o #5) 4o #514

40 #516 40 #517 40 #51B 40 #520

40 #521 35 #522 40 #/:530

Table 2, page
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40 #556 40 #557 40 #58 40 #5}9 40 #540

40 #541 40 #519 40 #550

5o #551 50 #552 50 #553

40 #56’1 40 #562 5 #563 5 #6 40 #565

40 #566 40 #567 40 #568 40 #569 40 #570

40 #571 40 #572 40 #573 40 #574 40 #575

Tab.e 2, page 4
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40 #576 40 #577 40 578 40 #579 55

40 #58"l 40 #583 40 #504 40 #505

40 #58(; 40 #587 40 #588 40 #589 4U #590

40 #59’1 40 :/#592 a0 #595

40 #597 40 #598 40 #599 40 :#:600

40 :#.60"I 4o :02 35 #603 40 :#:604 40 #-605

Table 2 page 5

4O #6O6 40 #607 40 #(;’tO
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40 :11 40 #612 40 ":613 40 :#-614 40 :#615

40 :/16 40 :617 40 :/8 40 :#-619 40 ://:620

60 :21 50 #622

40 #631 40 :#652 40 :33 40 @634 40 #635

40 @637 40 #659

40 :#-641 40 :#=645 40 64.5

Table 2, page 6
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40 ==661 40 :#:662 40 :.66} 40 #664 40 :#6

40 :#-6(;8 40 ::669 40 :.6"(0

40 671 40 672 40 "(. 40 :#:674

40 :#:676 40 #677 40 #678 40 #679 40

40 #681 40 #682 40 #68 40 ::684 40

Table 2, page 7
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40 686 35 #687 40 @688 40 #689 40 @690

40 =#701 4o #’/o2

40 1 4o 12 40 1. 4o #"/14 .5 #715

40 16 40 :te’(18 50

40 ’[21 40 t’722 40 e"[23 40 @725

40 :#726 40 #727

Table 2, page 8
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d(E) 10 / C&s e (iii)

a(]) 60

Figure 5

Note that the discharging procedure depends essentially on the set 37- of
T-discharging situations as defined in Figure 2, on the set 5 of S-situations,
and on the set of L-situations as defined in Tables and 2. Thus, to be
precise, we should denote our discharging procedure by (’-, if’, ), indicating
that we would obtain different discharging procedures by using different sets of
T-, S-, or L-situations.
We remark that most of the S-situations in 5 (197 out of 269) have discharg-

ing value 20 and most of the remaining ones have values 0 or 10. Value 0 occurs
15 times (##012,..., 017, 151,231,..., 238) in Table 1; Value 10 occurs 42
times (##002, 003, 021,..., 041, 161,..., 167, 241,..., 252); Value 5 occurs
only once (#011); Value 15 occurs only once (#253); and Value 25 occurs 13
times (##092, 094, 098, 101, 138, 144, 145, 146, 197, 221,270, 312, 314). Cor-
respondingly we distinguish three classes of S-edges for which we use the follow-
ing abbreviations.

SO means discharging value 0 or 5,
S means discharging value 10 or 15,
$2 means discharging value 20 or 25.

In Table we have ordered the S-situations with respect to the following
distinctions"

(1) The degrees of the two vertices adjacent to the distinguished edge (see
for instance A and B in 20#001). Type 5-5 occurs only once (#001); ##002
008 are of Type 5-6; Type 6-6 does not occur at all; ##011, 150 are of
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Type 5-major; ##151,..., 230.1 are of Type 6-major; and ##231,..., 329
are of Type major-major.

(2) The classes SO, S1, $2 of discharging values.
(3) The degrees of the distinguished major vertices (7, 8, and 9 occur;

9 occurs only in Type 5-major).
(4) The degrees of the neighbors of the distinguished major vertex in lexico-

graphic order (reading counterclockwise and starting at the distinguished Vs).

Regarding the L-situations we use the following abbreviations.

L4 means value of the distinguished edge is 40 or 35,
L5 means value of the distinguished edge is 50,
L6 means value of the distinguished edge is 60.

Note that L5 occurs only 12 times (##441,492,..., 495, 551, 552, 553, 622,
623, 624, 720) and L6 occurs only three times (##411,491,621).
The ordering of the L-situations in Table 2 has been determined according

to the following distinctions"

(a) The width w of the L-situation, i.e., the number of fully specified neigh-
bors of the pivot (the distinguished major vertex). Situations ##401, 428
are of Type W3 (w 3); ##431,..., 522 are of Type W4; ##530,..., 691
are of Type WS; ##701, 730 are of Type W6 (i.e., w 6 or 7).

(b) The total dischar#in# value v of the L-situation. By this we mean the
sum of d(E) (where E is the distinguished edge) plus 30 for every other edge
from the pivot to a V5 in the L-situation. In some cases (##530, 549, 550, 701,

728) the L-situation contains another L-situation with the same pivot but
different distinguished edge, say F; in all of these cases, F is LS; then we add
50 for F instead of 30. We also distinguish v-values in increments of ten. For
instance, within Type W5,

#530 has v 120;
##531,..., 541 have v 100 or 95;
##549, 550 have v 90;
##551,..., 553 have v 80;
##561,..., 620 have v 70 or 65;
#621 has v 60;

##622,..., 624 have v 50;
##631,..., 691 have v 40 or 35.

3. The set of reducible configurations

If the discharging procedure (-, 6e, e) is applied to a triangulation A (as
described in Section 2) then it may or may not completely dischar#e A, i.e., it
may or may not be true that q(V) < 0 for every vertex V of A. Now suppose
that A* is a triangulation which does not contain any configuration belonging
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to the set q/of 1834 configurations4 presented in Part II of this paper, i.e., that
A* avoids ql. Then we shall prove the following.

DISCHARGING THEOREM FOR (-, ,.9, ), d/g,. IrA* avoids q[ then (Y-, 5e, .)
completely discharges A*.

If the Euler characteristic ;t of A is positive then, by (2.2), no discharging
procedure can completely discharge A and we obtain the following.

COROLLARY. If Z > 0 then A cannot avoid ql. In particular, every planar
triangulation (Z 2) contains at least one member of

Since every member of q/is four color reducible (see Part II) in the sense
that it cannot be contained in (i.e., immersed into) any minimal 5-chromatic
planar triangulation, this implies that 5-chromatic planar triangulations do not
exist and we have the main result.

FOUR COLOR THEOREM.
four colors.

Every planar triangulation is (vertex-) colorable with

Proof of the Discharging Theorem for (-, 5v, ), all. It follows immedi-
ately from the definition of that q(V6) 0 for every 6-vertex V6 of A*. Thus
it remains to be proved that

(A)
(B)

q(Vs) < 0 for every 5-vertex V5 of A* and
q(Vk) < 0 for every major vertex Vk of A* (k >_ 7).

Proof of (A). First, we prove some preliminary lemmas on T-dischargings.

LEMMA (5-6-6). If a 5-vertex V of A* has three consecutive neighbors of
degrees 5, 6, 6 respectively, then a T-dischargin9 of20 leaves V across the 6-6 edge
(see Figure 6).

Proof. Assume in an arbitrary triangulation A, V is a 5-vertex with consecu-
tive neighbors of degrees 5, 6, 6 so that no T2-discharging leaves V (in A) across

’ When this paper was submitted in July 1976 the unavoidable set was announced to
consist of 1936 configurations. Since then we found and eliminated about 100 "redundancies"
in q/, i.e., configurations which were accidentally listed twice or contained proper sub-
configurations which also belonged to k’.. Furthermore, we worked out a supplement to this
paper which is presented on microfiche cards (see back cover of this issue) and which describes
the details of the proof of unavoidability of (i.e., of the Discharging Theorem as stated
below). In preparing this supplement we found some simplifications of the argument to the
effect that not all configurations of q/are "really needed", i.e., that a certain proper subset
q/’ of is already unavoidable. However, we present in this paper the full set (from which
only redundancies have been removed and to which a few corrections have been made) since
we think that the reducibility of these configurations may be of some interest of its own. In
the microfiche supplement to Part II we have listed those 352 configurations of q/ which
may be removed, i.e., which belong to k’ qg’. Thus [k" 1482.
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Figure 6

the 6-6 edge, say E. Then, by definition of the T-discharging, none of the T2-
situations T2//#5, 6, 7 is contained in A so as to induce a T-discharging from
V across E. Thus A contains one of the four configurations of Figure 7 and
hence one of the four members of q/ which are circled in Figure 7. Thus
A A* which proves the lemma. []

Figure 7

LEMMA (6-6-6). Ifa 5-vertex V ofA* has three consecutive 6-nei#hbors then a
T-dischar#in# ofat least 10 leaves V across each of the two 6-6 edges (see Figure
8).

LEMMA (55-7-6-6). If a 5-vertex V of A* has four consecutive neighbors of
degrees 5, 7, 6, 6 respectively so that another V5 is adjacent to the 5- and 7-
neighbors then a T-discharging of at least 10 leaves V across the 6-6 edge (see
Figure 9).

Figure 9



462 K. APPEL AND W. HAKEN

LEMMA (6-6). If a 5-vertex V of A* is adjacent to a 6-6 edge so that no T-
discharging leaves V across E then A* contains the configuration of Figure 10
(with V and E identified to "V" and "E" as marked in Figure 10).

Figure 0

The proofs of Lemmas (6-6-6), (55-7-6-6), and (6-6) are analogous to the
proof of Lemma (5-6-6) (see the microfiche supplement).

LEMMA (S+). Iff: S A* is an immersion ofan S-situation S into A* (which
respects the degree specifications) then f can be extended to an immersion

f+: S/ --. A* of the enlarged S-situation S/ (as drawn in Table 1) into A* (so
that f/ also respects the degree specifications).

This follows immediately by inspection of Table (and the set /l in Part II).
Now we consider the discharging procedure (W, , 0) (which uses our T-

and S-situations but no L-situations) and we denote the charge distribution
which is obtained by this procedure by qrs. Then we have the following.

qrs(Vs)-LEMMA. If V is a 5-vertex of A* so that qrs(V) > 0 then one of the
cases indicated in Table 3 applies, i.e., one of the configurations CTS##O1,
33 drawn in Table 3 is contained in A* with its central V5 identified to V and so
that S-situations are attached to the edges marked E, F, G, or H as indicated in
Table 3.

Proof. This is proved by straightforward enumeration of all possible cases
of qTs(Vs) > 0 for V5 A (A arbitrary as in Section 2). Then all cases which
imply the presence of a configuration of q/are deleted and the remaining cases
are found in Table 3.
We denote by p the number of major neighbors of V. Then we must consider

the cases p 0, 1,2,3,4,5. If p 0, we have V surrounded by minor
vertices which yields a member of q/in every case. If p 1, the only cases in
which no member of q/occurs are CTS##O1, 02, and 03. The T2-arrows drawn
in CTS##O1 and 03 indicate the T-dischargings according to Lemma (5-6-6).
If # 2 then at least one S-situation must be attached (since otherwise two R-
dischargings would yield qTs(Vs) < 0); moreover, if only one S-situation is
attached then the sum of its discharging value d(E) and the values of the T-
dischargings which may be implied by Lemmas (5-6-6), (6-6-6), or (55-7-6-6)
must be smaller than 30 (since otherwise the remaining R-discharging would
yield qTS(V) < 0). This leaves the cases CTS##04,..., 13. The case # 3
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2

#002 or 003 at E #004, 007, OO5 at E

CTS #04 CTS #05 CTS O6

one of

cs #07

#o 17
at E

8

__oOne of
21, ..
025
at E

CTS #O9

ne of O51,...,O54, 056,
061,...,O68, 076, 079,...,083,

095,124, 102,
146 at103,E 117,...,119,

cTs #I o

of. 171
’\ 17 4, 180, 81,
!@191, 192, 198,

ne of-
71,
180, 181,
191,
199
at E

#151 one of
at E 174,

192, 198
st E

CTS #13 CTS ,11.1

Table 3, page
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one of
w

CTS

(015, 261n),
(O11, 265r), (014, 261n),
(O11, 266r), (O15, 261n!,
(011, 274 ), (016, 261n)I,
(o11, 525r) at (,, F)

one of @#
052,...,055 at E

CTS #15

#,. one of

/ (052, 251n),i125, 23%), (118, 25),=__ (052, 254n), 125, 254n), (118, 2),
(052, 25n), 125, 2),

(O52, 236, (125, 27n),
(052, 237 at (s, )

CTS @ 6

CTS #17

one pair out o
{052, 054, 055} x {251n, 254n,

23n, 236n, 257n}

at (E, F)

@151 at E

261n at F

O1 at Eoe of
011,

eee,

CTS #19

@002 or 005 at E

,#164 or
167 at F

CT8

n9 1air out of

L-i-" I171, 174, 18o, 181, 191, 192,

/,./ 198, 199}x I011,..., 016}
( &t (E, F)

CTS #20

#006 at E

one of one pair of

\ e.I "/- o / Ioo, oo}

Wt F or (030,002)/at(E, F}

CTS #22 CTS #25

Table 5, page 2

*)
The "r " in 265r, etc., means the reflected (mirror image) configumation

@265 from Table 1! "n" means non-reflected. See the definitions in Section 2.
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one pair out of

21 022 02
02.5} 2

at (E, F)

CTS #24

#151 at F

ne of =#
161,...,167
at E

CTS 26

CTS 29

one triplet out of

Is arta or e -mo
x1231n, 254n,..., 257n}
at (E, , G)

one triplet out of

I012, o15, 016}x {011}x I265r, 266r, 274, 525r},
or I011,...,016}x 1015, 016}x 1261n}
or {O12,...,016}x 1013, O14}x t261n}

at, (E, F, G)

CTS

one of 231r, 234r,...,237r at E,
one of

any arbitrary 81 (of Type major-major) at

any arbitrary $I (of Type major-major) at G

Table 3, page
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yields the largest tree of sub-cases. In this case, at least two S-situations must
be attached and at least one of them must be of Class SO or S 1. But if the sum
of the discharging values d(E) + d(F) is not smaller than 30 then a third
S-situation must be attached. All those cases which do not yield configurations
of //involve either an SO-or two S 1-situations. (All combinatorial details of
the enumeration of sub-cases are in the supplement to this paper.)

In the case t 4, two S-situations must be attached at consecutive edges E, F
so that d(E) + d(F) < 30 and so that E is of Type minor-major while F is of
Type major-major. Then a third S-situation must be attached at an edge G,
and if d(E) + d(F) + d(G) >_ 30 then a fourth S-situation is required. All
cases which do not yield configurations of q/involve either two SO- and one $2-,
or one SO- and two S 1-situations. Finally, if # 5, all edges from V are of Type
major-major. It is convenient to first consider all adjacent attachments of an
SO and an SO or S1 only a few of them do not yield configurations of q/. Then
one finds that all consecutive triplets (SO, SO, SO), (SO, SO, $1), and (S1, SO, S1)
yield configurations of q/. It is then easy to enumerate the remaining cases; the
only ones which do not yield configuration of q/ involve four consecutive
S-situations in the order SO, S1, S1, SO.
The proof of (A) will be completed by the following.

L-LEPtA. Each of the configurations CTS##O1, 33 of Table 3 (with S-
situations attached as indicated in Table 3) contains an L-situation (of Table 2)
which is attached to the edge marked X and the dischargin9 value ofwhich is large
enough to yieM q(V) < 0for the central V.
The proof of this is immediate by inspection. For the details see the supple-

ment to Part I (as presented on microfiche cards in the back cover of this issue).
In many cases the L-situation is identical to the configuration of Table 3 (with
S-situations attached).

Proof of (B). Again we begin with some lemmas the proofs of which are
obtained by straightforward case enumeration.

LEtA (T). If Vk is a major vertex of A* which is adjacent to a 6-6 edge E
then Vk receives at most one T-dischargin9 across E.

LEPTA (T2, T2). If Vk is a major vertex of A* which receives T 2-dischargings
across two consecutive 6-6 edges E, F, then one of the two configurations ofFigure
11 is contained in A* (with Vk, E, F, as indicated in Figure 11).

T2T2 n T2T2*r
Figure 11
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LEMMA (T2, T2, T2). If Vk is a major vertex of A* then Vk does not receive
T 2-dischargings across three consecutive 6-6 edges.

LEMMA (T, T2, T2, T). If a major vertex Vk of A* receives T-dischary&gs
across four consecutive 6-6 edges E, F, G, H then the discharyinys across the
second and third edges, F and G, are not both T 2.

LEMMA (60 OR 50, T). If a major vertex Vk of A* receives an L-discharging
of60 or 50 along an edge X and receives a T-discharging across a 6-6 edge E next
to X (i.e., so that the 5-vertex of X and the 6-vertices of E are consecutive) then
one of the two cases (a), (b) indicated in Figure 12 occurs.

LEMMA (60 OR 50, T2, T2). If a major vertex Vk of A* receives an L-dis-
charging of 60 or 50 and a T2-discharging across a 6-6 edge E next to X (see
Figure 12a) then Vk cannot receive a second T2-discharging across a 6-6 edge F
consecutive to E.

Vk
(e,) one of /411, 441,

491,..., 495 t X

"’(1#1 )

one of /411, 441,
492, 493, 494 at X

)

(o) 2 times 441 (d) #441 and one of
551, 552, 720

or 465

Flgmre 12
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LEMMA (60 OR 50, ", 60 OR 50). If V5(1), V(2), V5(3) are three consecutive
neighbors ofa major vertex Vk ofA* such that Vk receives an L6- or L5-discharging
from V(5 x) and another L6-or L5-discharging from V(3) then one of the two
cases (c), (d) indicated in Figure 12 occurs (in particular, both dischargings are
L5 and deg(V(2)) 7).

LEMMA (5, L, ", L, 5). If V(51), V( z), V(3), V5(4), V5(5) are five consecutive
neighbors of a major vertex Vk of A* such that Vk receives L-dischargings from
V(5 z) andfrom V( a) (and such that V( ) and V(55) are of degree 5) then one of the
three cases (f), (g), (h) indicated in Figure 12 occurs (in particular, deg(V(3)) 6
andk > 10).

LEMMA (5, L, 5). If V(51), V(? ), V(53) are three consecutive 5-neighbors of a
major vertex Vk ofA* then no L-discharging can gofrom the second 5-vertex V(52)
to Vk.

LEMMA (5, L). If V (51), V (52) are two adjacent 5-neighbors ofa major vertex V,
of A* then no LS- or L6-discharging can go from V(51) or V(52) to Vk (but L4-
dischargings are possible).

LEMMA (5, L, T2). If V(51), V(), V(63), V(64) arefour consecutive neighbors of
a major vertex Vk of A* such that an L-discharging goes from V(52) to Vk and a
T2-discharging goes to Vk across the edge E between V(6a) and V(64) then the con-
configuration ofFigure 13 occurs (i.e., 40#432 is attached and k > 10).

Figure 15

LEMMA (5, L, ", 60 or 50). If V(51), V(52), V(a), V5(4) are four consecutive
neighbors of a major vertex Vk of A* such that Vk receives an L-dischargingfrom
V5(2) and an L6- or L5-discharging from V(4) then the discharging from V(54) is
induced by the L-situation 50#441 (i.e., is L5) so that deg(V(a)) 7.

LEMMA (50 OR 60, T, 50 OR 60). If V (51), V (62), V (63), V (54) are four consec-
utive neohbors of a major vertex Vk of A* such that from each of V (51), V (54) an
L-discharging of value greater than 40 goes to Vk and such that a T-discharging
goes to Vk across the edge E between V(62) and V (63) then T #1 is attached at E
(and thus the T-discharging transfers a charge of 10 to Vk).
The above lemmas enable us to compute an upper bound for the sum of all
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dischargings which go to a major vertex l/k of A*; we denote this sum by d(l/k)
and the number of l/5-neighbors of l/k by V(I/k).

UPPER BOUND LEMMA FOR d(l/k). Let I/k be a major vertex of A*; let v be
the number ofneighbors of I/k of degree 5 and let k be the degree of I/k. Then the
following inequalities hold.

(3.1) d(Vk) < 30k- 7.5(k v).

If the confiyuration of Fiyure 13 does NOT occur (with pivot identified to Vk)
then

(3.2) d(Vk) < 30k- 10(k- v).

Proof. Let V(1),..., V (k) be the neighbors of Vk in some clockwise cyclic
order. We assign to each V t) (i 1,..., k) a contribution value c() so that

if Vt) is of degree 5,c")= ) if 1/) is of degree greater than 5,

where the c and **
i) are defined as follows (with indices modulo k).

(a) If I/o) is a 5-vertex which L4-, LS-, or L6-discharges to l/k and if neither
of V o- 1), V o+ is a 5-vertex then c’,- c+ 1) 5, 10, or 15, respectively,
except in the three cases of Figure 14 where c,-1 and c"+1 are defined as
indicated below the drawings.

(analogous definitions for the mirror images of these configurations)

Figure 14

(b) If V o) and V (g + ) are 5-vertices such that V o) L4-discharges to Vk then
c’,- ) 10. Correspondingly, if 1/o- ) and V o) are Vs’s and V o) L4-dis-
charges to l/k then c"+) 10.

(c) If V) and V+ 1) are 6-vertices such that a Tl-discharging goes to Vk
across the edge E between V u) and Vo+ x then ,**) c" + ) 5.

(d) If Vo and V o+ ) are 6-vertices such that a T2-discharging goes to Vk
across the edge E between V u) and V(+ 1) then **() c, + ) 10, except in
the three cases of Figure 15, where ,**) and c"+ are defined as indicated
below the drawings.
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.(J+l) (J) (.j +1) (J) c.(J + 1)
C (j) 15, C 5 C** =15 C =5 C** 12 5, =7 5

(analogous definitions for the mirror images of these configurations)

Figure 15

(e) If for some i, c or c(** is not defined by (a), (b), (c), or (d) then it is
defined to be zero.

(3.3)

Now, by the above lemmas we have

c(* > d(V,);
i=1

(22.5 ifVisnota V5
(3.4) c <_ {20 if V is neither a V5 nor a V6 in the

configuration of Figure 13.

This immediately implies (3.1) and (3.2).

COROLLARY. (Notation as in the proof of the Upper Bound Lemma.) If the
configuration of Figure 13 does not occur and if there is some index I such that
c < 20 then

(3.5) d(Vk) < 30k- 10(k- v) 10.

Proof This follows from (3.3) and (3.4) since = c0 is an integral
multiple of 10.
Now it is easy to prove (B) for all vertices Vk of degree k > 11, using the fact

that

(3.6) q (Vk) d(Vk) 60(k 6).

If k > 12 then (3.1) and (3.6) imply immediately that q(Vk) < O. If k 11
then (3.1) and (3.6) imply that if q(V) > 0 then v > 8; but if v 8 then, by
(3.2), the configuration of Figure 13 must occur. On the other hand, v > 10
is ruled out in A* because of 15-34 in q/. Now it is easy to check that in all
remaining cases q(V) < 0 or 15-34 or 15-35 occur.

It remains to prove (B) for k 7, 8, 9, and 10.
We consider the discharging procedure (-, 0, .W) (i.e., we ignore the S-

situations) and we denote the corresponding charge function by qTL. Then we
have the following.
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q,,(Vk)-LEMMA. If Vk is a major vertex in A* of degree k > 7 such that
qT,(Vk) > 0 then one of the cases CTL##1,..., 152 of Table 4 applies, in the
sense that the central major vertex is identified to Vk and that L-situations are
attached as indicated to those edges which are marked by large dischargin9 values
but to no other edges incident to Vk (the small discharging values which are written
at some edges are to be ignored in this context).

The proof of this lemma is by straightforward case enumeration for k 7, 8,
9, and 10 (see the microfiche supplement).

For k 7 one must consider the following neighborhoods of a Vv.
(7.0) No Vs-neighbor but T-dischargings of total value greater than 60.
(7.1) One Vs-neighbor which is R-, L4-, L5-, or L6-discharging to the V7

and T-dischargings of total value greater than 30, 20, 10, or 0, respectively.
(7.2) Two V-neighbors and a T- or L-discharging.
(7.3) Three or more V-neighbors to the V7.
Those cases in which no member of occurs are listed in Table 4. We remark

that all cases in which an L-situation of width w > 4 occurs (i.e., all but the
first twelve situations in Table 2) yield likely to be reducible configurations if the
pivot is a VT; but some of these configurations are of ring size greater than 14.
For this reason we preferred to include the cases CTL##76, 77 in Table 4
rather than try to reduce the corresponding 15-ring configurations in order
to include them in q/.

For k 8, which is the case of greatest combinatorial complexity, we must
consider the following Vs-neighborhoods.

(8.1, 2, 3) One, two, or three V-neighbors and correspondingly strong T-
and/or L-dischargings. The case (8.0), i.e., T-dischargings of total value greater
than 120, can be ruled out by Lemmas (T), (T2, T2, T2), and (T, T2, T2, T).

(8.4) Four V-neighbors and a T- or L-discharging.
(8.5) Five or more Vs-neighbors.

The only cases which involve an L-situation of width w >_ 5 and do not yield
a member of q/are CTL#138 and #139 in Table 4.
For k 9 and 10, the cases of qTL(Vk) > 0 turn out to require so relatively

many V-neighbors to the Vk that the total number of cases to be considered is
smaller than for k 8.

S-LEMMA. In all cases CTL##I, 152 of Table 4 there occur S-situations
(shown by drawings in Table 1) which induce the small dischar#in9 values which
are indicated in Table 4 so that in every case q(Vk) < 0 for the central Vk. (ln
some cases the S-situations may induce even smaller discharging values than
indicated in Table 4.)

The proof of the S-Lemma is immediate by inspection. This completes the
proof of (B) and thus of the Discharging Theorem.
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CTL #I CTL 2 CTL 5 CTL CTL #5

CTL #6 CTL #S CTL 9 CTL #qO
CTL 7

CTL #13 CTL #I CTL #15
CTL #11 CTL #12

CTL #16 CTL @17 CTL #18 CTL #19 CTL #20

CTL #21 CTL #22 CTL #25 CTL
CTL

Table 4, page
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CTL #26 CTL #27 CTL #28 CTL #29 CTL #)0

s $ $

CTL #} CTL #52 CTL #5} CTL #5 CTL #55

CTL #57 38 CTL #)9

CTL #I

3"!

CTL #d CTL #d5
CTL #d3

CTL #7 CTL #48 CTL #9 CTL
CTL #6

Table 4, page
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C CTL 54 CTL #55
CTL #55

01, 4 at X

CTL #6o
CTL #56 CTL ##57 CTL #58 CTL #59

#401, 402, or 405 at X

#401 or 402 at Y

CTL #61 CTL 62 CTL #63 CTL #64

(#4I) 405

CTL 65 CTL #66
CTL #69 CTL #70

#421,...,425, @421, 425 427 or 428or 427 at, Z "’’’

’at U

CTL 74 CTL 75
CTL #71 CTL [72

Table 4, page
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one of 604,...,607
615, 616, 617 nt Z 615, 616, or 617 t

CT5 #76

CTL ##81 CTL #82 CTL #85 CTL #84 CTL #85

CTL 86 CTL ##87
CTL #88 CTL @89 CTL #90

CTL #9 CTL @92 CTL 9 3 CTL #94

#401, 402, or #401, 402, or
r 402 at Y (#403) 403 at X

OTL #96 CTL @97 CTL #98 CTL 99 CTL #100

Table 4, page 4
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#401402, or @401 or 402 at Y #401, 402, or #402 or 405

i
CTL #101 CTL #102 CTL #105 CTL #104 CTL #105

#401, 402, or 405 at X

CTL #I 06 CTL #107 CTL #I 08 OTL #I 09

CTL #111 CTL #112 CTL #113

one of .
#421, 422, or 421,...,428 (#426)
423

CTL #116 CTL #117 CTL #118 CTL #119

#401, 402, Or 403 at X, (2x#402) (401 and #403)
402, or

CTL #121 CTL #122 CTL #123 CTL 124 CTL #125

Table 4, page
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one of’
432 at X at

CTL #126; CTL

(:#.441) one of’ @# (#46.5)
of’ ##433,.o ,45? at, Y

45 at
Z

CTL #I 51 CTL #132 CTL #133 CTL #I 34 CTL #135
(#475)

466,...41J

#I 36 37 CTL #138

one of 580,
591, 592, 595,
611,...,613,
615,...,617 at Q

CTL #139

#4Ol at

CTL #141 142 CTL #143 CTL #144 CTL #14.5
(#4

one of" ’//#433,
432 ...,436 t N

CTL #146 CTL @147 #148 CTL #149 CTL #150

Table 4, page 6

CTL #151 "-"CTL #152
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4. Probabilistic considerations

At first glance it may appear a very strange accident that Kempe’s attempted
proof of the Four Color Conjecture can be repaired by a method of such con-
siderable combinatorial complexity whereas a moderately simple repair seems
unlikely.

In this section we will present an argument based on elementary (and rather
crude) use of probability which leads to the belief that it is overwhelmingly
likely that there "must" exist an unavoidable set of reducible configurations
with ring sizes n not exceeding 17, and further that it is very likely that there
exists an unavoidable set with ring sizes n < 14, while it is unlikely that such a
set with ring sizes n < 12 exists. Only for sets with n < 13 can no prediction
be made.
The example of a map constructed by Edward F. Moore in March 1977

settles the existence question in the negative for n < 11 while the present paper
settles it affirmatively for n < 14, so that only n < 12 and n < 13 remain open.
While this paper may be a surprise for many mathematicians, taken together
with the work of Moore, all it actually shows is that there are no surprises.
Thus, for the time being, the probabilistic discussion we will now outline appears
a sufficient explanation for the great, but limited, degree of difficulty of the Four
Color Problem.

(a) Likelihood of reducibility. In what follows we shall consider D-reduc-
ibility (in the sense of Heesch I16-]) as our paradigm for reducibility. The reader
unfamiliar with the technical aspects of D-reducibility will find them in [-16]
and [27]. While C-reducibility is somewhat stronger, it does not appear suffi-
ciently stronger to change the result by a difference of in the required n and
its parameters seem much more difficult to define. Thus, in this sub-section,
reducible will mean D-reducible.

Given a configuration C of ring-size n, say for instance, n 13, one may ask
"How likely is C to be reducible?". We consider the ring R of thirteen vertices
surrounding C and the 66,430 different classes of colorations of R. A certain
percentage of these colorations, say x, can be extended through C; we call these
colorations "initially good" or "goodo". We consider an arbitrary coloration
c ofR which is not good0 and we ask "How good are our chances to convert this
coloration into a good one by a simple Kempe-chain argument?", i.e., how
likely is c to be good1 (of chromatic distance one from the set of goodo
colorations)?

Consider a partition zr of the four colors we permit into two pairs. The ring
will be split into 2-colored components with respect to the pairs, and the number
of components corresponding to the two pairs will be the same (since they occur
in cyclically alternating order on R). This number may be 1, 2, 3, 4, 5, or 6;
but for at least one of the three possible partitions the number of components
corresponding to each pair must be either 5 or 6 and for at least one of the
remaining two partitions it must be at least 4. We will restrict ourselves to
partitions which yield 4, 5, or 6 pairs of two-colored components of R. Then
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we have 7, 15, or 31, respectively, choices of Kempe interchanges by which we
may derive a different coloration c’ of R from c. When we consider the possible
colorations of the exterior of R which induce the coloration c of R, we note that
there are 14, 42, or 132 possible Kempe chain dispositions according as our
partition 7z had 4, 5, or 6 pairs of components on R. If for every Kempe chain
disposition, some Kempe interchange yields a goodo coloration c’ then c is
good1. For lack of better usable information we assume that the goodo
colorations are randomly distributed among all the colorations of R and com-
prise 100x percent of them. Then the probability that for each Kempe chain
disposition some Kempe interchange is good is

Y4 [1 (1 x)7] x4,

(4.1) Y5 1-1 (1 x)X5]’*z,

Y6 [I (1 x)aXl’a2,
respectively. These functions are plotted in Figure 16.
The graphs suggest that for x < 10 percent there is practically no chance for

the Kempe chain argument to succeed; for x 20 percent there is a very good

0 z 30 00

Probability of conversion vs. percentage of good0 colorations
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chance of success; and for x >_ 30 percent one should expect reducibility to be
almost certain. For examples see the configurations (b), (c), and (d) in Figure
16" where g means the number of goodo coloration classes of the ring R around
the configuration. The configurations (b) and (c) with x-values of 11.4 and
12.1 percent are not D-reducible (but C-reducible) while (d) with an x-value of
14.6 percent is D-reducible.
Next we estimate the likelihood of reducibility as a function of the number m

of vertices of the configuration C (not counting the vertices on the ring R).
While it is not so easy to estimate what value of x is to be expected for given m
and n, it is very plausible that for a fixed value of n, the average of the values
of x will increase quite rapidly with m (since the total number of possible

27-28
= 12
m= 9

.7 03
x= 0.167
D-redmoible

degree-raiszng

..v, :,,,, 7",3
43-23

n=13

= 7575
x= 0.114
no D-, bu C-reducible

A A

(o) 52-22
-’l-ex$enai0 (i)

n= 13 n= 13
m= 9 m-lO
g= 8044 g- 9680
X- 0.121 X= 0.146
no D-, but C-reducible D-edueile

Figure 16"
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colorations of C will increase considerably with m).s On this basis one might

A reasonable estimate of the dependence of x on the parameters n and m can be obtained
as follows. In order to estimate the dependence on n we raise the degree of a vertex P of a
configuration C by one. Denote the configuration so obtained by Cn+l; for example let C
and Cn+l be (a) and (b) in Figure 16". We assume that there is a triangle .4BP such that
and B are on the ring R around C (i.e., that P is at least a 2-logger vertex of C). In order
to obtain Cn+ and the ring Rn+ around it we subdivide the edge AB of R by a new vertex V
and correspondingly we subdivide the triangle ABP by a new edge from V to P (a new leg
at P). Now we consider all the t/n+ goodo colorations of Rn+ 1, each of them being extended
over Cn+l. Pretending that we do not know any details about Cn+l we may estimate that
50 percent of these colorations will have the same color at A and at B. These colorations do
not correspond to colorations of R, while the other 50 percent (where A has a color different
from B) correspond one-to-one to the t/goodo colorations of R. Thus we obtain the estimates

t/n+1 2y and xn+t 0.66x.

(Note that the total number of colorations of Rn+ is almost precisely three times as large as
the number of colorations of R.)

In order to estimate the dependence of x on m we add a ring-vertex V to a configuration C
and give a degree specification to V so as to obtain a configuration, denoted by Cm+ 1, with
the same n-value as C (this operation is called a 1-extension in [26]); for example let C and
Cm+l be (c) and (d) in Figure 16". We assume that the new vertex V has precisely two
neighbors, say P and Q, in C and thus has degree-specification 5 in Cm+l. In Rm+l a new
vertex, say IV, occurs as a replacement for Vin R. Now we consider all the t/goodo colorations
of R, each one extended over C. Let the vertices A, P, Q, B lie in that order around V. Then
we may estimate that ,in 50 percent of the colorations the vertex Q has a color different from
A and that in 50 percent.of those colorations the vertex B has the same color as A. Thus in
25 percent of all goodo colorations of R, A and B have the same color. To each of these
colorations correspond precisely two goodo colorations of Rm+ (two choices of color for IV
in each case), while those 75 percent of the colorations with A and B colored differently
correspond one-to-one to colorations of Rm+I. Thus it appears that we can expect t/m+ to
be 25 percent larger than t/. However if c is a goodo coloration of R which gives A and B
the same color then we have a likelihood of 2x percent that there is another goodo coloration,
say c’, of R which agrees with c on all vertices of R except on V. In this case we would have
only three different colorations of Rm+ corresponding to the two colorations c and c’. Thus
we may estimate that t/m+ will be only 25(1 x) percent larger than
Now if we consider two configurations C and C’, can we expect that it is possible to change

C into C’ by a sequence of the above operations (degree-raisings and 1-extensions) and their
inverses? If we assume that C and C’ are not articulated then the answer will be "yes" in
the majority of cases of interest to us. However, occasionally we may need a 1-extension
where the vertex V is adjacent to precisely three vertices of C and correspondingly has degree
specification 6 in C/ 1. In this case the increase in t/-value can be estimated to be 37.5(1 x)
percent.
For configurations with n- and m-values of the order of magnitude in which we are interested

we may now estimate that an increase in n by one yields’ a decrease in x by 33 percent and
that an increase in m by one yields an increase in x by 23 percent. This explains the empirical
observation that (for obstacle-free configurations) the likelihood of reducibility depends
essentially on the difference n m. If both n and m are increased by one then x will decrease
by about 18 percent. This means for instance that an 11-ring configuration with 8 vertices
will have an x-value of about 1.5 times the x-value of a 13-ring configuration with 10 vertices.
But for n 11 the curves y5 and y, of Figure 16 play the same role which Y6 and y play
for n 13. Therefore the likelihood of reducibility can be assumed to be about the same
for both configurations, probably somewhat larger for the 13-ring than for the 1-ring
configuration.
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predict that there will be a "critical" value m’ such that m > m’ means "likely
to be reducible" while m < m’ means "likely to be irreducible."
Of course the above predictions should make use of the knowledge we do

have and should be applied only to configurations which do not contain any of
the known reduction obstacles (see [26; Chapters II, III-]) and thus in particular
are geographically good and without hanging pairs (cf. Section of this paper).
For small ring-sizes, n 6,..., 11, these configurations have been studied
quite exhaustively (F. Bernhart [8,], Allaire and Swart [2-1, Koch [20]). The
results suggest that the "critical m-value" satisfies

(4.2) m’= n 5.

For n 6, 7, 8, 9, all configurations without reduction obstacles satisfy m >
n 5 and all of them are C- or D-reducible. (Note that the 5-5-5 triangle con-
tains hanging pairs and is meant to be excluded.) For n 10 the only such
configuration with m n 5 5 (7-5665) is irreducible6 and those of greater
rn are reducible. (The careful reader will note that a few of these are C- but not
D-reducible but the vast majority are D-reducible. The very fact that C-reduc-
ibility does not seem to change the "critical value" argues for the reasonableness
of working with D-reducibility.) For n 11 there are 6 configurations with
m n 5 6 and 4 of them are reducible; only one configuration with
m > n- 5 could not be reduced (8-556655, m n- 4 7). On this basis
it appears reasonable to accept (4.2) for n 12, 13, 14,... also; one might
actually expect that for some higher n-values m’= n- 6 would be more
appropriate. The computer results obtained so far (see [1], [9-1, [17-1, and
Part II of this paper) do not indicate any reason to doubt (4.2).

In [4-1 the authors introduced a function

(4.3) b(C) n- m- 3

and proved that an arbitrary configuration C with b(C) < 0 always contains
a geographically good subconfiguration, say C*, again with tk(C*) < 0. (The
proof is easy by induction on m.) But unfortunately, the sub-configuration C*
may still contain a hanging pair and thus may be not "likely to be reducible."
However, we have the following.

m-LEMMA. Let C be an arbitrary configuration of rin9 size n containing rn
vertices (inside the ring.) Assume that

(4.4) rn > 3n/2 6, or equivalently, ck < 3 n/2.

Then C contains a subconfiguration C* which again satisfies (4.4) such that C*
is geographically good without hanging pairs. Moreover, if A is an articulation

6 Here "irreducible" means C-irreducible. E.R. Swart has found recently that a stronger
reduction method due to Arthur Bernhart can be used to show that the configuration 7-5665
is reducible. It appears however that the reduction obstacles mentioned here remain valid also
with respect to the improved reduction method.
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vertex of C* and if Wa and W2 are the two "wings" ofA (i.e., the two configura-
tions obtainedfrom C* by deleting A) then we have

m(W) > 3n(Wi)/2 6 for 1,2.

Proof It is easy to check that m cannot be 1, 2, or 3 (since we have excluded
vertices of degrees smaller than five) and that the only possible C with m 4
is Birkhoff’s reducible 5-555 double-triangle; thus C* C. Now assume by
induction that the lemma holds for all configurations of up to m vertices.
Then we claim that the lemma holds also for C. If C has all the properties
required for C* then we let C* be C and the proof is finished. If C contains a
4- (or more-) legger vertex V then deleting V yields a configuration C’ with
m(C’) m and n(C’) < n thus C’ satisfies (4.4) and by the inductive
hypothesis the required sub-configuration C* is found in C’.

If C contains a "bad" articulation vertex B then we claim that at least one of
the wings Ca,..., Ck (k > 2) at B, say C1, satisfies (4.4). Then by the inductive
hypothesis, C1 contains the required C*.

In order to prove the claim we assume the contrary. Thus

(4.5) m(Ci) < 3n(C)/2 6 for each 1, 2,..., k.

Moreover, if k 2 and B is a 2-1egger vertex, then for at least one of the two
wings, say for C1, we have m(C) < 3n(C)/2 6. Now we have

k

(4.6) rn m(C,) +
i=1

k

(4.7) n _> In(C,) 2]
i=1

where the equality sign in (4.7) holds if and only if B is a k-legger vertex (i.e.,
precisely one "leg" lies between each two consecutive wings). Combining (4.6)
with (4.5) and (4.7) we have

m <- [n(C)-4-1 + < 3n/2- 3k +
2i=1

where in the case k 2 not both equality signs can hold. But this contradicts
the hypothesis (4.4); this finishes the proof.

By the above lemma, a configuration C which satisfies (4.4) does not contain
any known reduction obstacles and must be regarded as extremely likely to be
reducible. (Note that it far surpasses our critical condition given earlier.) One
may conjecture that every configuration which satisfies (4.4) is D-reducible;
but we do not expect that this conjecture can be proved.
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(b) Likelihood of unavoidability. For any given integer no > 5, we may try
to find integers r and bo such that every triangulation (planar with vertex
degrees > 5) contains at least one configuration with n < no and tk < tko which
is contained in the rth neighborhood of a vertex. This question has been stim-
ulated by the work of Stromquist who proved in [26; Chapter IV] that every
triangulation contains at least one configuration with b < -1 which is con-
tained in the second neighborhood of a vertex and in which no vertex has
degree greater than 30 (thus proving the existence of a finite, unavoidable set of
geographically good configurations).
We consider the following "size classes of neighborhoods" in triangulations.

Size Class Description

single vertex
edge (pair of adjacent vertices)
triangle (vertex with two consecutive neighbors)
double triangle (vertex with three consecutive neighbors)
triple triangle (vertex with four consecutive neighbors)
first neighborhood of a vertex (vertex with all neighbors)
neighborhood N6 of Class 6 plus one triangle (with base in N6)
first neighborhood of an edge
first neighborhood of a triangle

first neighborhood of a neighborhood Ns-6 of Size Class s 6 (for
s>_8)

Each of these size classes has an "average n" and an "average m" (the average
taken over all configurations of the size class in all triangulations). Since the
"average vertex degree" is certainly six we may get an approximate idea of
what these averages are by considering configurations (of the respective size
classes) which consist of 6-vertices only. The corresponding b-values are
plotted in Figure 17 versus the n-values and are marked X; the size class numbers
are written above the marks. From size class 15 on (n >_ 21) the b-values lie
below the line tk 3 n/2, and thus the average configuration of this size
class will almost certainly be D-reducible (see the m-Lemma).

Certainly, every triangulation will contain some configurations of each size
class the b-values of which are below the average; for by (1.2), every triangula-
tion must contain vertices of degree 5 (i.e., with degrees substantially below the
average of 6). For an estimate of these "unavoidable tk-values" we have con-
sidered configurations of the different size classes such that one vertex, as close
to the center as possible, is a 5-vertex while all other vertices are of degree 6.
The results are marked in Figure 17. From n 17 on the values are in the
region of extremely high likelihood of D-reducibility.
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I0

X

Figure 17 Approximate values of average (marked and

unavoidable (marked e) versus n;
size olass as parameter

--20

-3O

On the other hand we must expect that there exist triangulations in which all
configurations with n < 12 have b-values >_ 0. It is then plausible to expect
further that in some of these triangulations, no configuration with n 12 is
reducible. For instance, all these configurations might be such that iterated
removal of 4-1egger vertices eventually yields a single Vs (b 1) or a 5-5-5
triangle (b 0).
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Similarly, we must expect the existence of triangulations in which every con-
figuration with n < 13 has b > 1. But then it is not so easy to imagine that
all these configurations are irreducible. Of course, after removal of hanging 5-5
pairs and of 4-1egger vertices, a configuration with b -1 and n 13 may
yield nothing better than a 5-5-5 triangle and be irreducible; but whether there
may exist a triangulation such that this occurs in all cases seems to be not
reasonably predictable.
The corresponding reasoning for n < 14, n < 15, and n < 16 tends more

and more to the belief that every triangulation will contain a reducible con-
figuration in that n-range.

5. Possible improvements

While working out the discharging procedure and the unavoidable set q/

presented in this paper, we have been guided quite effectively by the preceding
probability considerations.
We have always refused to accept any 15-ring configurations as members of

the unavoidable set. Whenever we had no better choice than a 15- (or greater-)
ring configuration we have changed the discharging procedure (by changing the
sets of T-, S-, and L-discharging situations). In most cases, these changes also
seemed to reduce the number of configurations in the unavoidable set and to
simplify the argument. In some cases, however, we may have accepted more
than ten configurations with n < 15 in order to replace one with n 15.
On the other hand, whenever a configuration with n < 14 arose, if we found

it "easily machine reducible" (i.e., D-reducible in a reasonable length of time
or C-reducible with a reducer of the type accessible to our programs), we
accepted it. We are aware of the fact that in many cases a more careful argu-
ment (without even changing the discharging procedure) might have shown that
the configuration was not actually required (but replaceable by others already
accepted). See footnote 4 on page 460.

In this way we have produced an argument which is definitely not best pos-
sible but, in our opinion, "reasonably close for a first try" to the best possible.
At this point we remark that one may try to "improve" the argument in quite

different directions. For instance, one may try to absolutely minimize the num-
ber of configurations in the unavoidable set (possibly at the cost of a more
complicated discharging procedure, of larger ring sizes, and of a greater amount
of computer time needed). Or, one may try to minimize the ring-size of the
configurations (possibly at the cost of increasing the number of configurations).
Third, one may try to simplify as much as possible that part of the work which
is to be done by hand (at the cost of increasing the work to be done by com-
puter). Fourth, one may try to minimize the total combinatorial complexity of
the argument, regardless of whether it is handled by computer or by hand.

It appears to be an interesting question how to reasonably define the total
complexity of an argument of this kind. One might distinguish the logical
complexity and the combinatorial complexity.
We believe that our argument is logically very simple and that all the com-
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plexity is of the combinatorial nature. The relatively large number of about 485
individual S- and L-discharging situations makes the logically simple procedure
tedious to carry out, since a large number of cases must be considered. The
resulting large number of configurations in the unavoidable set q requires the
same large number of reducibility proofs. Again, every reducibility proof is
logically quite simple but requires the treatment of a great many different
colorations, and for many of these colorations the treatment of a large number
of Kempe chain arguments is required.
One might define the combinatorial complexity of a reduction proof (for an

individual configuration C) to be the sum of the number of those goodo color-
ations which are required and of all of the required colorations which are goodk

(k > 0), each of these multiplied by the number of different Kempe interchanges
which are required in order to relate it back to goodk_ colorations (in all pos-
sible cases of Kempe chain dispositions).
Applying this concept, the proof of D-reducibility of a 13-ring configuration

will have a complexity of well over 106, while a proof of C-reducibility using a
particularly suitable reducer may be of complexity under 104 and in extremely
nice cases even under 103. Although present-day computers are perfectly capa-
ble of computing D-reduction, one might consider letting the computer search
for the best possible C-reducer it can find (even if the configuration is D-reduc-
ible) and then choose the shortest proof of C-reducibility it can find. In many
cases, such a proof could be checked by hand with reasonable effort.
The total combinatorial complexity of the entire argument would then be the

sum of the complexities of all the reduction proofs required (plus the number of
case distinctions required for the proof of unavoidability, which, however, can
be expected to be much smaller than the complexity of the reduction proofs).
We think that it would be interesting to obtain a reasonably good estimate of
the minimum combinatorial complexity which is required for a proof of the
Four Color Theorem.
The choice of a discharging procedure may be viewed as the consequence of

a sequence of major decisions which must be made at certain stages of an other-
wise routine process. We begin with the extremely simple procedure (0, 0, 0)
(see Section 3) and we call the corresponding charge function qR. (qR is obtained
from qo by "regular" discharging of 30 along all 5-to-major edges.) This yields
a relatively small list of configurations called qa-positive. Some of these contain
reducible sub-configurations which become members of the unavoidable set
which will be constructed by the procedure. The remaining qa-positive con-
figurations are called critical. If we have accepted a reducible subconfiguration
for q from every qa-positive configuration which contains one, the critical con-
figurations at this point will be CTS##O1, 02, 03 (the configurations from
Table 3 with arrows deleted), and
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and CTL##I,..., 22, 28,..., 36, 81,..., 90, and 141 (from Table 4 with
arrows deleted).
At this point the first major decision is made; we must choose the "long range

dischargings" to use in . In this paper, we have chosen the set - of seven
T-discharging situations (Figure 2); but one might try other choices. Now the
discharging procedure (-, 0, 0) and the corresponding charge function qr
have been defined. Once - has been chosen in this manner, the two qR-positive
configurations drawn above are no longer qr-positive; but on the other hand we
must add to the collection of critical qr-positive configurations the configura-
tions CTL##11, 12 (with arrows), 23,..., 27, 37,..., 55, 91,..., 94 (from
Table 4).
Now our second major decision is the choice of small-discharging situations

to use in order to avoid positive charges at the major vertices Vk in the critical
[qT(l/k) > 0, k > 7J-situations above. This decision is made by specifying a
set 6eo of "primary S-discharging situations". (In this paper about 70 members
of Table are primary in this sense.) The choice of 6o yields the discharging
procedure (-, if’o, 0) and the corresponding charge function qTso. Of course,
we shall have made a basic decision as towhich reducible configurations should
be admitted to qT. (In this paper, no 15-ring configurations were admitted. One
might instead admit only configurations which are easily reducible in some
sense; but this decision depends on the goal one has in mind.)

Next, it is a purely mechanical procedure to enumerate all critical qTso-
positive configurations. Then we must decide which large-discharging situations
to use in order to avoid positive charges at the central Vs’s of these critical con-
figurations. In most cases, this decision will be "automatic". (In the procedure
we used it was automatic in all cases.) This happens because at most one Vs-to-
major edge which leaves a qrso-positive V5 will not be an So-edge, and such an
edge is the natural choice for an L-discharging edge. The set Lao of L-discharg-
ing situations chosen yields (-, 6eo, &ao) and qrsoLo. At this point, additional
S-situations must be chosen in order to take care of the critical qrsoLo-pOsitive
major vertices. This yields an enlarged set 6e (6Co c 6el), (-, 6el, o), and
qrslo. This process iterates until, at some stage, no critical positive situations
remain. Then construction of the discharging procedure and the unavoidable
set is finished. (For the discharging procedure presented in this paper we needed
three stages of additional S- and L-situations 6e 6ca, a where a
was obtained from Sa2 by adding only two members.)

It is interesting to ask why this process "must" terminate, provided that the
decisions are "reasonably" made. The answer can be obtained from the ob-
servation that from stage to stage the critical positive configurations contain
more and more non-5 neighbors of the positive central vertex.
We did not carry out any further experiments of the type described above

since the purely mechanical enumeration processes for the critical positive con-
figurations are quite time-consuming if done by hand. Of course, since the
enumeration processes are logically very simple, it is possible to write acom-
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puter program to carry them out. Then, the work to be done by hand would
consist of making the major decisions described above and would not involve
much labor. But at such a stage of automation, how should one define an
improvement of the procedure ?
At the present stage of the development, many mathematicians might prefer

a method by which the reduction proofs are done by machine but everything
else is done by hand. Probably the best way to achieve this end would be to
exhaustively compute 12- and 13-rings (in the same manner that Allaire and
Swart treated 10-rings in [2-1 and 11-rings in their not yet published work).
This would take care of the most tedious part of the combinatorial work. It is
much easier to generate a configuration than it is to check whether this con-
figuration contains a sub-configuration belonging to a given large set q/ of
reducible configurations. It is easy, however, to verify that a configuration
contains a sub-configuration with n < 13 and say b < 1. If this is done, only
the few irreducible configurations of n < 13 and the required reducible con-
figurations with n 14 need be listed. (And the number of the latter could
certainly be kept much smaller than the approximately 660 in our set q/.)
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Added in proof On September 21, 1977 we received the following preprint
containing the list of 2669 reductions referred to on page 491 of this journal.

30. K. D/RRE, H. HEESCH, AND F. MIEHE, Eine Fieurenliste zur Chromatischen Reduktion,
Preprint No. 73 (1977), Institut ftir Mathematik der TU Hannover.

On this list we found 415 configurations which are members of our set
of which 256 are D-reducible. We also found reducible sub-configurations of
227 of the members of q/’. (These latter permit a decrease in the size of q/’ by
77, thus the smallest current unavoidable set has 1405 members.)

In all cases of configurations appearing on both lists there is agreement on
whether or not the configuration is D-reducible. For those that are not D-
reducible there is exact agreement on the number of bad colorings after the
D-algorithm is applied (these numbers are given in the microfiche supplement)
with the exception of two articulated 11-ring configurations for which the list in
[30] shows fewer bad colorings. In these two cases our results agree with those
of Allaire’s program.
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