ON FINITE GROUPS IN WHICH THE GENERALIZED
FITTING GROUP OF THE CENTRALIZER OF SOME
INVOLUTION IS EXTRASPECIAL

BY
MICHAEL ASCHBACHER'

1. Introduction

A finite group G is said to be of characteristic 2 type if F*(Cg(t)) is a 2-group
for each involution ¢ in G. It seems probable that in the near future the problem
of determining the finite simple groups will be reduced to determining the simple
groups of characteristic 2 type. The principal model for investigation of the
characteristic 2 type groups is Thompson’s work on N-groups. There Thompson
argues on abelian normal subgroups of 2-locals. As an extreme case, he must
consider the situation where, for some maximal 2-local M, abelian normal
subgroups of M have order at most 2. Hence Z(M) = {z) is of order 2,
M = C4(z), and F*(M) is an extraspecial 2-group. Since many of the sporadic
simple groups possess such centralizers, it seems likely that this will be a trouble-
some case in most suitably general classification problems.

Thompson’s analysis of this situation may be divided into two sections. In
Lemma 13.63 he proves that z is weakly closed in F*(M). The remainder of
Section 13 is then devoted to eliminating this case The following theorem
supplies this latter analysis in general.

THEOREM. Let G be a finite group and z an involution in G such that

F*(Cg4(2)) = Q is an extraspecial 2-group of width at least 2. Then one of the
Jollowing hold:

1) zeZ(G).

@) <z% = F*(G) is isomorphic to U,(2), the m-dimensional unitary group
over GF(2), or the second Conway group Co,.

() z ¢ 0,(Cg(t)) for some involution t € Q. In particular F*(Cg(2)) is not a
2-group, so G is not of characteristic 2 type.

4) zis fused in G to some noncentral involution of Q.

The proof depends upon work of B. Fischer and F. Timmesfeld on groups
generated by {3, 4}-transpositions. See [6] or [1] for notation and termi-
nology. Certain results in Sections 4 and 5, in particular Lemma 5.12, may be
of independent interest. Co, is identified using a result of F. Smith [14].
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2. A preliminary lemma

(2.1) Let L =~ L,(2") or Sz(2"), n = 2, and let V be an irreducible, L,
GF(2)-module. Let T € Syl,(L) and S = Q,(T). Assume m([V,S]) <n + 1.
Then L =~ L,(2") and either

(1) V is the natural module for L, or
(2) n = 2andV is the natural module for O; (2).

Proof. Let te S* and m = m([V, t]). If L =~ Sz(2") then ¢ inverts an
element x of prime order p where p divides 2** — 1 but not 28 — 1 for i < 4n.
Thus m([V, x]) = 4n, so

m = m({V, x, t]) = m(V, x])/2 = 2n.

Thusn + 1 > m([V, S]) = m = 2n, a contradiction.

So L = L,2"). Let F= GF(2"), A = Aut(F), and M the natural L,
F-module. Then

V®F = @& N*°
acd
for some irreducible L, F-module N. Moreover N = ®,.5 M" for some
B = A. This allows us to determine m. In particular as m < n + 1 we con-
clude either V is the natural module for L or # is even and V is the natural
module for O (2"?), or n = 8 and V is induced by the permutation module
for L on 9 letters. In the last case m(V) = 8 and [V, S] is a hyperplane of V,

contrary to hypothesis. In the second case [V, S] is of codimension n/2,
son = 2.

(22) Let Q be a 2-subgroup of G = {Q% with Q = U® P where
U < Z(G), P is extraspecial, ®(Q) = ®(P) = {z>, and Q =2 M = Cgx(2).
Assume M contains a Sylow 2-subgroup of G, z € O,(G), and M is the unique
maximal subgroup of G containing Q. Set V = {(z%) and let K be the largest
normal subgroup of G contained in M. Then either

1) |V:CA(G)| = 4and G/K = S;, or
2) G/K = As and V|Cy(G) is the natural module for O (2).

Proof. Set G = GJ/K. As z € 0,(G) and M contains a Sylow 2-subgroup of
G, we conclude V is abelian, K = Cg(V), and 0,(G) = 1. As<z) = ®(Q) <
K, Q is elementary abelian. Hence as M is the unique maximal subgroup of G
containing Q, and as Q <X M, M = Ng(Q) > Cy(X) for each X € Q%. Also if
1% Qn Qfthen 0 < C(Q n Q% < M, so by uniqueness of M, M = M?*
and g € M. Hence Q is a TI-set in G. As M is the unique maximal subgroup
containing Q and 0,(G) = 1, Q is strongly closed in G (e.g., 2.14 in [16]).
Hence by 3.3 in [1], M is strongly embedded in G. Therefore by Bender’s

Theorem and uniqueness of M, G = L,(2"), Sz(2"), or D,,, for some odd
prime p.
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LetR=Q0nKandZ = Z(R). ThenR=U® (PN RandU(QNnV) <
Z. Let n = m(G), k = m(U), and m + k = m(Z). As P is extraspecial,
m<mPIRAP)+1=n+1. Set V=V/C,G). [V,0]<VnQ<2Z,
som([V,Q]) < m < n + 1. Moreover m(Z(Q)) = k + 1 so

m(C@) n[V,Q]U) < k + 1.
Suppose M = D,,. Let x € Q — K invert y with § of order p. Then
UV =Cy(»®LV,y] and m(V,Q] =m{V,y, x]) =m(V,y]/2=i[2.

Also [V,Q] < Z(Q). Hence k + 1 = m(C(Q) n [V, Q]U) = k + i/2, so
thati = 2, p = 3, and |V/Cy(G)| = 4.

So assume G = L,(2") or Sz(2"), n > 2. Let W be an irreducible submodule
of V. Then m([W, Q] < m(V,Q]) <n+ 1, so by 2.1, G = L,(2") and
either W is the natural module for G or n = 2 and W is the natural module for
0;(2). Let xe Q — K. Then x inverts an element y of odd order with
W = C(G) ® [W, y], so Cy(x) = Cy(G) ® [W, y, x] and hence Cy(x) =
Cy(x)/Cy(G). In particular Q centralizes an element w in [W, Q] — U, so
Z(Q) = U{z) = Uw) < UW and hence V = (z% < W.

Suppose ¥ is the natural module for L,(2"). Then

U[V,Q] < C(Q) with m(U[V,Q]D) =k +n>k + 1,

a contradiction. So n = 2 and V is the natural module for O;(2). This
completes the proof of 2.2.

3. {3, 4}*-transpositions

Let G be a finite group. A set of {3, 4}*-transpositions is a G-invariant
collection D of involutions such that D generates G and for each a, b in D, ab
has order at most 4, and [a, b] € D when ab has order exactly 4. Groups

generated by {3, 4}*-transpositions have been classified by Timmesfeld. We
record some of his results.

(3.1) Assume O,(G) = 1. Then D is partitioned into subsets D;, 1 < i <'r,
such that :

(1) [Dy, Dj] = 1fori#j.
(2) {(D;> is transitive on D;.

(3) Ifa, b € D with ab € D then a is conjugate to b in G, and hence lie in the
same block D,.

Proof. See 4.1.5 and 4.1.6 in [13].

(3.2) Assume G is transitive on D, O,(G) = 1, and all numbers from 1 through
4 occur as an order of a product of two elements of D. Then G|Z(G) is isomorphic
to one of the following groups:

1 LQ2)yn=3
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@ Sp2),n =6
3) Q2),n =38
@ Us(3)
(5 *Dy2)
6 Fiu2)
(1) E¢(2)
() Ee(2)
©) E, Q)
(10)  Es(2)

Moreover D is a class of root involutions of G.

Proof. This is the main theorem of [12].
A set D of {3, 4}"-transpositions of G is a set of 3-transpositions of G if ab
has order at most 3 for each a, b in D.

(3.3) Assume D is a conjugacy class of 3-transpositions of G and L = F*(G) =
E(G). Then L|Z(L) is one of the following:

(1) A,, and D is the set of transpositions.

2) U,2), Sp,(2), or Q,2), and D is the set of transvections.
(3) Q.(3), and D is a set of reflections.

(4) F,, and D is uniquely determined.

Proof. This is the main theorem of [5].

(3.4) Assume G= H, F¥(H) = L = E(H), G is transitive on D, and
O,(H) = 1. Let ae D and assume P =2 Cy(a) with P extraspecial. Then one
of the following hold :

(1) Pn D& {a} and either P = O,(Cr(a)) and L|Z(L) = L,(2), Qi(2),
3D,(2), 2E(2), or E,(2), or H = G,(2) and P = 0,(Cy(a)).

2) G/Z(G) = U,2) and F*(Cy(a)) = P is of widthn — 2.

(3) L= Us(3)and P = Qs.

(@) L= Ly2)and P = Ds.

(5) H = Spe(2)and P = Qg * Qs.

Proof. Without loss we take L simple and H < Aut (L) = 4. Assume
firsta = [b, c] for some b, c € D. Then by 1.2.21in [12], <b, ¢} < 0,(C,(@)) =
Q. Moreover L is described in 3.2 and D is a class of root involutions.

Now C,(a) is described in [3]. By inspection we find either (i) Q is the unique
extraspecial normal subgroup of Cy(a), or (ii) L =~ F,(2) or Sp,(2) and Cy(a)
has no normal extraspecial subgroup, or (iii) (3) or (4) holds, or (iv) H =
Aut (U5(3)) = G,(2) and P = 0,(Cy(a)), or (5) holds. Therefore the lemma
holds in this case.

So assume D is a set of 3-transpositions of G. Then the pair L, D is described
in 3.3. C,(a) is described in [3] and [5]. By inspection O,(Cy(a)) is abelian
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unless G = L = U,2), in which case Q is the unique nonabelian normal 2-
subgroup of Cy(a) and is extraspecial of width n — 2. The proof is complete.

Let V be an n-dimensional orthogonal space over GF(2) with bilinear form
( , ) and quadratic form f of sign e. Let H = Aut (V) = 0i(2). Recall
ve V¥* is singular if f(v) = 0, and nonsingular otherwise. U < V is totally
singular if each point of U is singular.

(3.5) Let t be an involution in H, let m = m([V, t]), and let

V() = {veV: (@, ) =0}
Then:

1) m < nj2.

) m(V[V(t)) < 1 with equality if m is odd.

(@) t is fused to an involution s in H if and only if m = m([V, s]) and
m(V[V(2)) = m(V/[V(s)).

@ [V, 11" = GO.

Proof. See Sections 7 and 8 in [3].

If tis an involution in H we say tis of type a,, if m([V, t]) = mand V(¢) = V.
t is of type b,, or ¢, if m([V, t]) = m, m(V/V (¢)) = 1, and m is odd or even,
respectively. By 3.5 the type of ¢ determines its conjugacy class in H.

(3.6) Let t be an involution in H and U = [V, t]. Then:

(1) Iftis of type a,, then U is totally singular, and there exists W < V with

m/2
W= WeWw)
i=1
where W, is of dimension 2 and sign —, and U = [W, t].
) Iftisoftype b, or c, then U = {vyy ® U, where {v,) is a nonsingular
point and U, is totally singular.

Proof. See Sections 7 and 8 in [3].
(3.7) Let a be an involution of type a, in H, D = a", and G = (D). Then:

(1) D is a conjugacy class of {3, 4}*-transpositions of G.

(2) Let X < Cyla) with [Cy(a), X] < <u) for some ue [V, a). Then X is
abelian.

() Ifbe D with abe D then [V, a, b] = 0 and Cy({a, b)) = Cy(@) NV,
velV,b].

@) If be D with {a,b) = Sy then [V, ab] = W, @ W, with W; of di-
mension 2 and sign — and [V, a] n [V, b] = 0.

Proof. See 11.9 in [3] for parts (1), (3) and (4). Part (2) follows from an
easy calculation using the information in Sections 7 and 8 of [3].
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(3.8) Let G = U,2),n = 4, D the class of transvections in G, t an involution
in Aut (G), and W = {Cp(t)). Assume W < 0,(C¢(2)). Then:

(1) te W and t is determined up to conjugacy in G.
) If xe Ng(W) — C(¢t) then {(Cg(t), Ce(t™)) contains a Sylow 2-subgroup
of G.

Proof. By 19.9 in [3] if t¢ G then W =~ Sp,(2) or the centralizer of a
transvection in Sp,(2). In particular W is not a 2-group. Hence t € G. Represent
G on a unitary space U. By Section 6 in [3], [U, ¢] is a totally singular sub-
space of U and the class of ¢ is determined by m([U, t]). Moreover C4(2) is
exhibited and, by inspection, since W is a 2-group we have m = [n/2]. Let H
be the stabilizer in G of [U, t]. Then H is a maximal parabolic of G, O,(H) =
Cg(W), and H acts as GL,(4) on [U, t] with O,(H) the kernel of this repre-
sentation. ¢ is the product of m members of D and hence lies in W. Moreover
Cs(2)/O,(H) = GU,(2) and corresponds to the centralizer in H/O,(H) of a
graph-field automorphism of H/O,(H). Again this follows from the form of
Cq(2) exhibited in Section 6 of [3]. Hence by the main theorem of [4], C¢(?)
is maximal in H. Finally by 10.6.1 in [3], {¢t)> = Z(C4(t)). Thus H =
{C4(1), Cs(t*)> for xe H — C(t), and in particular contains a Sylow 2-
subgroup of G.

(3.9) Let G =U,2), n =4, and let a be a transvection in G. Then no
element of Aut (G) induces a transvection on O,(C(a))/{a).

Proof. Let Q = 0,(C(a)) and suppose ¢ induces a transvection on Q/{a).
Cg(a) is given explicitly in Section 6 of [3], and by inspection ¢ ¢ G. Now by
Section 19 in [3], C4(#) = Sp,(2) or the centralizer of a transvection in Sp,(2),
so in particular 0,(Cg(a)) N C(t) is abelian, a contradiction.

(3.10) Let H = Aut (V) = O3 (2) and Spe(2) = G < H. Then:

(1) Cy(G) is a 3'-group.
(2) Either G stabilizes a nonsingular vector of V or an element of order 5 in
G acts without fixed points on V*.

Proof. Let x be an element of order 7 in G. Cy(x) is of dimension 2 and
sign + and hence does not admit the faithful action of an element of order 3
in H. Moreover [V, x] is of dimension 6 and sign +, so x does not centralize
an element of order 3 in Aut ([V, x]) & Ss. Hence Cy(x) and then Cy(G) is a
3'-group.

Suppose (2) is false. G permutes the set v* of 120 nonsingular vectors of V.
From the table on page 113 of [15], G has orbits of length 120 or 1, 63, 56 or
36, 28, 56. As (2) does not hold we are in the last case. Then G has a 2-transitive
orbit v of length 28. K = H, = Sp¢(2) and by [15, p. 113], G, = 05(2) is
determined up to conjugacy in both K and G. In particular we find G, has
orbits of length 1, 27, 2, 54, and 36. This forces H = {G, K) to act on the K
orbit of length 56, a contradiction.
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4. Extraspecial generalized Fitting groups

In this section G is a finite group, z is an involution in G, M = Cg4(z), and
Q = F*(M) is an extraspecial 2-group of width at least 2.

@41) <z} = Ca(Q).

Proof. <z) = Z(Q),50 Ce(Q) = Cu(Q) = Cu(F*(M)) = Z(F¥(M) = {z).
(4.2) If S is a 2-subgroup of G containing Q, then {(z) = Z(S).

Proof. This is a consequence of 4.1.

(4.3) Let P be a subgroup of Q of index 2. Then P contains each involution
in CG(P ).

Proof. See 13.62 in [11].
(4.4) Let t be a noncentral involution in Q. Then:

(1) tis fused to z in G if and only if Cy(t) < MY for some ge G — M.
(2) If F*(Cg(2)) is a 2-group then z € F*(Cg(t)).

Proof. Set P = Cy(t). If t = z9 then clearly ge G — M and P < M°.
Moreover by 2.4 in [2], ze Q% Suppose ¢ ¢ z% 1z is fused to ¢t in Q and
{z,t) = Z(P), so z is weakly closed in Z(P), and hence by 4.3, also in Cg(P).
Let P < T € Syl,(Cg(t)). Then z € Z(T), so if F*(Cg(t)) is a 2-group, we have
z in F*(Cg(t)). Moreover if P < M? then z9 € C4(P) n z% = {z},s0 g e M.

4.5) Set M = M/Q and M = M|{z)>. Then:

(1) The maps (%, §) = [x, y] and f(X) = x* are bilinear and quadratic forms
on Q preserved by M. Hence M is a subgroup of the orthogonal group on Q
preserving these forms.

(2) Let x be an involutionin M — Q, k = m(Q/Cp(x)), andr = m(Z(Cy(x)).
Then, in the notation of Section 3, either

(i) Xisoftypea,,k =m,andr =m + 1 or
(ii) X isof type b, or c,,, k = m + 1,r = m, and x is fused to xz or
(iii) xisoftypeay,, k =m+ 1,r =m + 1 orm + 2, and x is fused to zx.

Proof. The first remark is well known. Set m = m([Q, x]). Then, in the
notation of Section 3, X is of type a,,, b,,, or ¢,,. Let P = Cy(x). Then m(Q/P) =
m. If x is of type b, or c,, then by 3.6 there exists a nonsingular vector @ in
[0, x]. Thus u is of order 4 and as xu is fused to u, x inverts . Hence x is
fused to xz in <{x, u). Also |P: Cp(x)| =2, so k = m + 1. Finally r =
m(Z(P)) = m by 3.6.2.

So take X of type a,. Then m(Z(P)) = m + 1 by 3.6. Hence if [P, x] =1
then (i) holds. Otherwise {x, u) =~ Dg for some u € P, so x is fused to xz in
{(x,uy,and k = m + 1. By 3.6, there is a subgroup R of Q with

R=Q Q7 x--%Q,xQ% s =m|2
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0, = Qg, and [Q, x] = [R, x]. Thus Z(P) = Pn R < C(x), and is of 2-
rank m + 1. Let P = WZ(P) with Z(P) n W = (z) and (v, z) = Z(Cp(x)).
Then {(v)Z(P) = Z(Cy(x))is of 2-rank m + 1 orm + 2, completing the proof.

(4.6) Assume Q has width 2 and L = F*(G) is simple. Then:

() L = Us(3), Usy(2), Ls(3), Us(3), G5(3), Ag, Aoy M3, J, OT Js.
(2) If z is weakly closed in Q then G = U,(2), or L,(3).

Proof. First we claim G is of sectional 2-rank 4. By 4.2, M contains a
Sylow 2-subgroup T of G. By 4.5, M/Q acts as a subgroup of 0%(2) on Q/{z).
Hence T/Q is of sectional 2-rank at most 2. Soif 4/B is an elementary section of
T of rank 5 then (BQ n A)/B is of rank at least 3 and is centralized by 4Q/BQ.
But no 4-group in O%(2) centralizes a section of rank 3 in its corresponding
orthogonal space,so B = land 4 n Q =~ Eg. Now by 4.5, AQ/Q is a 4-group
in which each involution is of type a,. But no such 4-group exists.

So G is of sectional 2-rank 4. Now L is determined by the main theorem of
[7]. By 4.2, z€ is the unique class of 2-central involutions of G so z € L. Of
course F*(Cy(z)) < Q is a 2-group of order at most 32. Hence by inspection,
L is described in (1) or L = L;(3), L,(16), A9, A1y, M,,, or M,;. Further
inspection establishes (1) and (2).

@4.7) Assume z € O,(C(¢)) for each involutiont € Q. Then one of the following
hold:

1) G=M.
Q) (9% =z
B) F*(G) = (%) is simple.

Proof. Assume not. Let U be a 4-group in Q and X = O(G). Forue U¥,
[z, Cx(W)] < O(CW) N X =1,

0 X = (Cy(w):ueU*y < CEzZ)nX<O0C(E)=1 SoX=1.

LetQ < T € Syl,(G). By4.2,{z) = Z(T). Set H = {z%> and C = C4(H).
If ze C then H is abelian, so H < Q. Hence zz? is fused to z¢ in Q, so
H* = z% and (2) holds. Therefore z ¢ C. But z is contained in every non-
trivial normal subgroup of M, so C = 1.

Suppose Y = 0,(G) = 1. Thenze Z(Y), so H < C = 1, a contradiction.
Thus Y = 1and G contains a component L. {z)> = C4(Q) = (L% n C(Q) #
1, s0 ze (L?%). Thus H =<1 (L%, soas C = 1, H = {(L%). Let ¢t be a non-
central involution in Q. If L # L' then K= LL'n C(t) = L. But as
H = (L% we may pick L so that L = [L, z] and hence

K = [K, z] < [K, 0,(C(t))] < 0,(C()),

a contradiction. Thus ¢ fixes L. Hence Q = Q,(Q) < N(L),so ze{L? = L.
Let J be the product of all components of H distinct from L. Then J = M, so
asQ = F¥(M),J = 1. Thus H = L. As C = 1, H = F*G).



EXTRASPECIAL FITTING GROUPS 355

(4.8) Let N be a minimal subject to Q < N £ M and O,(N) # 1. Set
V = (z") and let K be the largest normal subgroup of N contained in M. Then
either

(1) |V| =4 NK=x=S;,andV < Q, or
Q) N/K = Asand V is the natural module for O] (2).

Proof. Let Q < T e Syl,(N). By 4.2, {z) = Z(T). O,(N) # 1, so
1 # Z(T) n O,(N) < {(z) and hence ze O,(N). By minimality of N,
M A N is the unique maximal subgroup of N containing Q, and N = (Q">.
As {z> = Z(T) and N £ M, Cy(G) = 1. Thus by 2.2 it remains to show
V < Qif |V| = 4. But in this case V centralizes a subgroup of index 2 in Q,
so the remark follows from 4.3.

(4.9) Assume Q is of width at least 3 and Q is a Tl-set in G. Then M = G.

Proof. Assume G = M. Then Cg(t) < M for all t € Q% and z is weakly
closed in Q, so by 4.7 and the Z*-theorem, F*(G) is simple and there exists
geG — Mwithz?eM. LetP = Q' n M, R = Q n M? and S = Ny(RP).
By 4.2, P # @Q° so by Theorems 2 and 3 and 4.5 in [1], R =~ P is abelian,
|Q: S| < 2 with Q,(S) = R and |S| = |R|? in case of equality, and Z =
Q,(R) < Z(S). Therefore |Q: Cy(Z)| < 2, so Z = E, and S # Q. Hence
R = Q,(S) = Z and |Q| = 2°. This is impossible as Q is of width at least 3.

5. D(z)

We continue the hypothesis of Section 4. In addition assume z € O,(Cg(x))
for each x € Q*, Q has widthn > 3,z ¢ 0,(G),and G = {Q%>. Set M = M/Q
and M = M/{z). By 4.5, M is faithfully represented as a subgroup of the
orthogonal group on J defined by the forms (%, ) = [x, y] and f(x) = x%.
Hence we may use the notation and results of Section 3.

Let # be the set of all subgroups H of G containing Q such that O,(H) # 1
and H £ M. Let #* be the set of minimal members of # under inclusion.
Let E = E(z) be the set of all conjugates z" of z such that <Q, 0"> € #* and
z¢2: 2 — 7 % z" is of order 5. Let D = D(z) be the set of z" € E such that
zz" ¢ 26,

Throughout this section we assume ¢t = z? € E(z) and set H = {Q, Q%) and
V = {z*t) = (z®). Let K be the largest normal subgroup of H contained
inM. Set P = Q n M.

(5.1) (1) H/K = As and V is the natural module for O; (2).

(2) tinduces a, on Q, Cs(t) = Co(1)/<z), and |Q: Co(?)| = 4.

@) [0, 1] = (Q n P)Xz) with|Q n P| = 4.

@ z°nV=z0=zxtifteD.

Proof. Part (1) follows from 4.8 and the fact that |z x ¢] = 5. By part (1),

1Q: Co()l =4 and Q@ nV = Z(Cot)) =<z)> @ (@ n Q°) = Ey
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Now (2) and (3) hold with 4.5. H has orbits z¥ and (¢z)? on V#, yielding (4).
(5.2) F*(G) = {z%) is simple and G = F*(G)Q.

Proof. The first remark follows from 4.7 and the hypothesis that z ¢ 0,(G).
Now G = (0% = F*G)Q.

(53) KEntQ) =V.

Proof. Assume tx € E, x € Q. Let y € Cy(tx). Then [%, j] = [1%, ] =1,
so [1, 5] = 1. Hence by 5.1.2, [t,y] =1, so [t,x] = 1. Thus Cy(tx) =
Co(t) N Cy(x). But tx € D, so |Cy(tx)| = |Cy(?)| and hence

Co(tx) = Cy(t) = Cp(x).
ThusxeV n Q,sotxe V.
(5.4) Cy() = Cu(1)Q/Q if t € D. In any case |Cy(8): Cy(1)Q/0| < 2.
Proof. 5.2, 5.3, and a Frattini argument.
(5.5) Let xe M with[Q, t, x] = 1. Then[t,x] = 1.

Proof. As [Q,t,x] =1, [{,X] =1 and x centralizes the hyperplane
VnQofV. As [i,X] = 1, x acts on V by 5.3. Thus if [#, x] # 1 then x
induces a transvection on V with axis ¥V n Q. This is impossible since trans-
vections in O (2) have axes not conjugate to V' n Q.

(5.6) Letse D with(s,t) =~ S;. Then<{s, t) = S;.

Proof. x = (st)®> € Q and xt is fused to s or ¢ in (s, t), so by 5.3, x e V.
Similarly x € {z * s>. By 5.1 and 3.74, (z*xs) nV = (z). If x = z then
tx = tze z% against se D. Sox = 1.

Let B be the set of involutions of M of type a,. (See Section 3). Then E < B.
By 3.7, B is a set of {3, 4}*-transpositions of M.

(5.7) Suppose i inverts a subgroup X of odd order. Then |X| < 3.

Proof. As B is a set of {3, 4}-transpositions, X is an elementary abelian
3-group. Let X be a Sylow 3-group of the preimage of X, let y € X*#, and let
Y = (y). Then by 3.74, [Q, Y] = Qg * Qg and [Q,t] < [Q, Y]. Thus
ifxeX*,0#[0,t]<[0,Y]n[Q,x],soasxactson[Q, Y], [Q, x] =
[0, 1, x] = [0, Y]. It follows that X = Y is of order 3.

(5.8) Let X be a P-invariant subgroup of Cy(t) with X = O(X)E(X).
Then |X| < 3, C(t) contains a Sylow 3-group X of the preimage of X, and if
|X| = 3then[Q,1, X] = Q n P.

Proof. By 5.4 we may choose X < C(¢) to cover X. Then [X, P] < P, so
as X = O(X)E(X) is P-invariant, [X, P] = 1. Let x be an element of X* of
odd order. Then [x, P] < Q n Qf = E,, so either [P, x] =1 or [P, x] =
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Q n P. Also [Q?: P| = 4 and x acts faithfully on Q% so if [P, x] = | then
P = Q% n C(x). This is impossible as Q7 n C(x) is extraspecial while
OQNnP<ZP). SoQn P =][0Q,1t x]. As this holds for each element x of
odd order in X*, |X| < 3.

(5.9) ze€ 0,(Cq(zt)) if teD. If also {t) is the only elementary normal
2-subgroup of Cy(1) then {t, z) = Cq(tz).

Proof. Let A =z%t — {t,z}. Then zt e Q" for each z" € A. Thus by
hypothesis z" € 0,(C(zt)). Also zt is fused to ztz" in Q", so z" is weakly closed
in Z(Q" n C(tz)) and then in C(Q" n C(tz)) by 4.3. So z" is in the center of a
Sylow 2-subgroup of C(#z). Let I' be the set of conjugates z* such that zt € Q*.
It follows that A = T’ < Z(0,(C(tz))). Let U =<I). Then U < C(A) <
N(V), so [U, z] < <tz)>. As z* is weakly closed in {tz,z*) for z*eT,
[U, z] = 1. Set X = <z€U?>. Then [U, X] = 1. Hence X < C(A) < N(V),
so [X, z] < <#z). Inparticular z € O,(Cg(22)). If also Cy(?) is as hypothesized
above then as U is an abelian normal subgroup of Cy(#), U < (i). By sym-
metry U < Co(1){t) n P{z) = V. So C(zt) = N(V)n C(tz) = N[z, t}).

(5.10) Assumete E — Dandlet I = {Q° n N(V)) and C = C,(V). Then:

(1) IC = 4,
(2) 1is transitive on V*.
(3) t* = tz for some xe I n M, [P, P*] = 1and P n P* = (i).

Proof. Let A =zt — {z,t}. Calculating in H, zt € Q" for z" € A. Let
zt = 2°. Aszt¢ Q,2.41in [2] implies Q* "V = (A>. Thus Pn Q < <A) <
Q’. So

[PNQ, O nM]<tz)nQ = 1.

That is Pn Q < Z(Q” n M). We conclude from 3.5 that there exists
1 #veliz)(Pn Q)andr e @’ with[z, r] = v. Thenractson{[Q, t], tz) =
V and z" = zv. As zv € (zt)! we conclude {H, r) < N(V)is transitive on V*.
Thus r € Q” < I'and Iis transitive on V#. As H < I'and Cy(z)actson Q n V
we conclude I/C = Agand t* = tzforsomexeln M. P2 C,so[P, P*] <
PAP <[Q%tz] =[Q,t], so [P,P]=1. Also (i) =Z(P), so
P n P* = (§).

(5.11) Assumel # X = [X, t] is a P-invariant subgroup of odd order. Then:

(1) X is extraspecial of order 27 and PZ® ~ SL,(3). n = 3.
Q) If X = M then G = Uy(2).

Proof. As iis contained in every nontrivial normal subgroup of P and # acts
faithfully on X, P acts faithfully on X. Hence X is not cyclic, so by 5.7, ¢ does
not invert X. As ¢ inverts the P-invariant subgroup [Z(X), t] we conclude
[Z(X),t] = 1. Soby 58, Z = Z(X) = Cx(¢) is of order 3. Now ¢ inverts
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X/Z, so as (B) is a set of {3, 4}-transpositions, X/Z is an elementary abelian
3-group. Thus Z = ®(X) and X is extraspecial.

Let X be a Sylow 3-subgroup of the preimage of X. Let Z < Y < X with
|Y| =9. Then ¥ = Z ® [Y,t]. Set Y; =[Y,¢]. Then Q =[0Q, Y,] *
Co(Yy) and by 3.7, [Q, Y] = Qg * Qs. By 58, [0, 1,Z] = QN P, so as
[0, Y,]=1[0,¢ Y], [Q, Y] =1[0, Yy, Z]. X is transitive on the three
subgroups Y; of order 3 in Y distinct from Z, so [Q, Y;] & Qg * Q5 for each i.
As[Q, Y] =1[0,Y,,Z],[Q, Y, Y;] = Qg fori = 3,2. Thus

[0, Y] =K/[Q, V]: 1 <i<3)=[0 V][0, V2] = Qg * Qs * Q.

Moreover [Q, Y] is X-invariant, so as Z acts faithfully on [Q, Y], so does X.
Hence |X| = 27. As P acts faithfully on X, |P| < 8, son = 3. Thus Q =
[Q, Y] and then P = Q.

Next Co(1)Z/Q N P = SL,(3) so Z°P = SL,(3). Let M, = QXPZ®. Then
the isomorphism class of M, is determined and M contains a Sylow 2-subgroup
T of H. X acts transitively on the noncentral involutions of Q. Moreover all
involutions in ¢tQ are in V. Hence all involutions in T are fused into V in M.
As there are two H classes of involutions in V' with representatives z and zz,
these are representatives for the G classes of involutions in T.

Assume X =2 M. X does not admit Qg * Qg so by 5.10.3, t € D. Also as the
normalizer of X in Og (2) contains M, as a subgroup of index 2, |M: M,| < 2.
X acts irreducibly on §, so by 5.2, Gis simple. If M = M, then M is isomorphic
to the centralizer of a transvection in Us(2), so by [10], G = Us(2), a con-
tradiction. So |M: M,| = 2.

Let @ be an involution in M — M,. M is transitive on involutions in aM,,
and [J, a] = Cp(a), so Q is transitive on involutions in 40. Thus we pick 4
to be an involution and M is transitive on involutions in @M, Ny(X) =
XPZ9(a), so we may pick a to act on X and centralize t. Next a centralizes an
element x of order 3in X — Z and

W = C(@)n [x, OKx, t> = Z, x S,.

Moreover Cy(x)<ay = Co(x){ay0, 3(M?)]0, ;(M?) is a Sylow 2-group of
M?/0,, ;(M?) and hence semidihedral. Thus we may pick a to be an involution,
M is transitive on involutions in aMy, and W = C(a) n M,. As Gissimple and
all involutions in T are fused to z or z¢, by Thompson transfer, a is fused to z
or zt in G.

Next O,(Ci(?)) = P with Cy(¢) irreducible on P/{i) so by 5.9, C(zt) <
Nz, t>) < H{a). In particular for u = z or z¢t, if U < C(u) with U x> A4,,
then O,(U) < 0,(C(u)). Therefore [Cy(a), x] < 0,(C(a)).

Now a acts on z * ¢ as a transposition (s, ). Let B be a Sylow 3-group of
Cy({s, r)). Then a Sylow 2-subgroup of H<{a) n N(B) is of the form
{ay, sY ® (v) where <a;, s) = Dy and Ka = Ka,. Thus we may choose
a = a, € N(B), and a centralizes an element b € B* acting as (z, ¢,¢') on
z % t. But now [Cy(a), x, b] is not a 2-group, contradicting [Cy(a), x] <
0,(C(a)).
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(5.12) Let L = (E). Then F*(Cy(L)) has order at most 3 and one of the
Sollowing hold:

1) G = Us2).

(2) G = Sz the sporadic Suzuki group or Co,, the largest Conway group.
3 L/Z(L)=U,),n=>4P < L,and D = E.

4 L/jZ(L) = Q¢ ,(2). Moreover D = E, P = O,(C(f)), and DN P & {t}.
(5) (PMy 2 G,(2),P = Qg*Qg,n=4,D =Eand DN P & {t}.

6) G = Co,.

Proof. By 3.1, B is partitioned into subsets B; such that [B;, B;] = 1 for
i # j, {B;) is transitive on B; and if &, b € B with ab e B then ab is conjugate
to a in {B) and hence lies in the same orbit B; as a. Choose notation so that

E=B,u---UB, and feB,.
Let L; = {(B).

By 5.8, |F*(Ci(L,))| < 3. By 5.11, |[F¥L,)| > 3. We conclude L = L,
and E = B,. Thenby 5.11 either L = E(L) or G =& Us(2), and we may assume
the former. If e D let R = P. If t ¢ D then by 5.10 there exists x € M with
t* = tz. In this case let R = PP*. By 5.10, [P, P*] = 1 and P n P* = (i).
Thus in any case with 5.4, R =0 Cy(7) and R is extraspecial. As |F*(C(L))| < 3,
L = F*(LR). Hence one of the conclusions of 3.4 holds. Notice Q7 =
Qg * Qg * P by 3.7.4.

Assume first that ¢ D. Then R = P % P*, x € C3(?). In particular R is
of width at least 2 so neither 3.4.3 nor 3.4.4 hold. In 3.4.5, n = 3 while
Spe(2) £ O4(2). Moreover O*(Cy(i)) leaves P and P* invariant and hence
does not act irreducibly on R/{#>. This forces RL isomorphic to L,(2), G,(2),
U,(2), or Q4(2). If RL =~ L,(2), m > 4, then Cr(#)/R has 2 nonequivalent
irreducible submodules R;/{f) on R/{i) and R; is abelian. Hence C(f) =
0?*(Cr(#)) does not act on P. If LR = G,(2) then there are precisely two
proper O*(Cy(?)) invariant extraspecial subgroups of R and both are invariant
under Cy(7). So this case is out. We are left with (i) LR =~ U,(2) or L,(2) and
P~ Qg or (i) LR Qf(2) and P =~ Qg *x Q5. As Q = Qg * Qg % P,
Q = (Qg)%, k = 3 or 4 in (i) or (ii), respectively. Now in (i), L is a subgroup
of O5(2) = Aut (U,(2)), so L = U,(2) = Q5 (2). Thus in either case L =~
Q%,(2). L acts irreducibly on J so by 5.2, G is simple. By Theorem 2 in [17],
M = L. Now by [8] and [9], G is isomorphic to Sz or Co, in (i) or (ii),
respectively.

This completes the case ¢ ¢ D. In the remaining cases, £ = D. Let X be a
subgroup of order 3 in Cy({t, z)). If [P, X] = 1 then as z and ¢ are inter-
changed in Ny(X), [P, X] =P Q so [Q, X] = Qg * Qg. In particular
[O, X, L] = 1 whereas [Q, X, t] # 1. So [P, X] # 1. Therefore

(5.12.7) 04(Cx(H)/PC(L)) # 1.

This eliminates 3.4.4. If 3.4.3 holds, Q@ =~ (Q)® whereas 7 divides the order
of U,(3) but not Og (2). In 3.4.5, n = 4, so (6) holds by [14] and 3.10. Here
use Corollary 1 in [17] to show M does not fix a singular point of 0.
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Finally assume 3.4.1 holds. 5.12.7 implies L/Z(L) =~ Q%(2) or M = G,(2).
P has width n — 2 while the isomorphism class of P is determined by 3.4.1.
This allows us to calculate n by inspection. By 3.4.1 there exists be D n P
distinct from 7. It remains to show (z * b) » P is nonempty. bie D so by
3.7.3, [0,t,b] = 0. Thus by 5.1.2, [Q,¢t,b] =1, so by 5.5, [b,t] = 1.
Hence b = xy, x € Cy(t), y € P. b = j is an involution so as ®(P) n Q = 1,
y is an involution. Similarly x> = 1, so [x, y] = 1. If u e Cy(<b, 1)) — C(x)
then z = [x, u] = [y, u] € Q% a contradiction. So Cy(<b, 1)) < Cy(x). But
by 3.7.3, Cu(Kb, 1)) = Co(Kb,v)), ve[Q,t], so xe[Q,t][Q,b]. As
[0, 1] < P[Q,b] we may take x e [Q, b] and then y = bx e b[Q, b] <
{z % b). Thus either ye D n Pory = zd, d € z * b, and we may assume the
latter. Now if L is not L,(2), there is no normal elementary abelian 2-subgroup
of Cy(#) properly containing #, so by 5.9, (z,d)> =2 (Q? n C(y))Xz), a con-
tradiction. So L = L,(2). As [X, P] = 1, X is semiregular on §. This is
impossible as a conjugate of # inverts X whereas m([0, i]) = 2. (Argue as in
3.10 to get F*(M) = Lso that X < L.)

(5.13) LetseDwith[5,1] = 1. Then[Q,t,s] =[t,s] = 1.

Proof. 1If [Q,t,s] =1 then [t,5] =1 by 5.5, so assume [Q, ¢, s] =
{u) # 1. Then u = sr, r € z * 5. But now we choose u with

s ¢ 0,(C(u) N HSs)),
against 5.9.

6. Proof of the main theorem

In this section, G is a counter example of minimal order to the main theorem.
Thus z is an involution in G, M = Cy4(2), Q = F*(M) is extraspecial of width
n > 2, z is weakly closed in Q with respect to G, G # M, and z € O,(Cq4(t)) for
each t € Q*. We continue the notation of Section 5. By 4.7 and minimality
of G:

(6.1) F*(G) = {z%) is simple and G = F*(G)Q.
62) n> 3.

Proof. See 4.6.2.
(6.3) o is nonempty.

Proof. Assume S is empty. By 4.9 there exists g € G — M with Q N Q7 #
1. Let u be an involution in Q N QY. As z is weakly closed in Q, u ¢ z%. Thus
P = Cy(u) is of index 2 in Q and by 4.4, Cs(u) £ M° By symmetry,
Ce(w) £ M. Let N be a minimal subject to P < N < C(u)and N £ M. Let
V = {z") and let K be the largest normal subgroup of N contained in M. Asz
is weakly closed in Q, z is weakly closed in Z(P) = (u, z) and hence also in
Ce(P) by 4.3. Let P < T € Syl,(N). We conclude z € Z(T). By minimality
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of N, N = (P"y and M n N is the unique maximal subgroup of N containing
P. We may choosege N — M. Sett = z9 By 2.2either |V: Cy(N)| = 4 and
N/K =~ S; or N/K =~ A5 and V/C,(N) is the natural module for O;(2). If
x € Cy(t) — P, thenasu e Q7 z = [x, u] € Q% a contradiction. So Cy(t) < P.

Suppose N/K = S;. Then |Q: Cy(t)l = 4 and (u, z) < Z(Cy(t)), so by
4.5, t induces a, on § and Z(Cy(t)) = Z = Eg with [Q, t] < Z. Suppose
Z = {z)(Q n @9, and set U = {¢t>Z. Then U contains [Q, U] and [Q?, U],
so H=1<Q, Q% = < N(U). Hence He #, contrary to assumption. So
QN Q= <u. Then (Q°n M)/{u) = (Q° n M)Q/Q acts on ( with
[Co®), O n M] < i), so by 3.7.2, (Q? n M)/{uy is abelian. This is
impossible as Q has width » > 3 and |Q?: O n M| = 4.

So N/K = As. Then (ud[V, P] = W < Z(Cy(t)) with m(W) > 4, so by
4.5, t induces a, on §, W = Z(Cyx(t)) is of rank 4, and ¢ is fused to 7z. Now
W = (u)V n Q and ¢z is fused into W — (z) in N, contradicting z weakly
closed in Q.

(64) Let He #* geG — H,and t = z° Then H = {Q, 0%, z¥ is of
order 5 and tz ¢ z€.

Proof. Let K be the largest normal subgroup of H contained in M and
V = (z%. Ast ¢ Q,4.8implies H = {(Q, 0%, H/K = As,and V is the natural
module for O; (2). Now ¢z is fused into Q — <{z) in H, so tz ¢ z€.

6.4 establishes the hypothesis of Section 5. Continuing the notation estab-
lished there we take t =z9e D, H=4Q,0%, V={_2x*t), and P =
0’ n M. By 5.12.

(6.5) <D)> = U,2),n = 4, P < (D), and |F*(Cyz(D))| < 3.
(6.6) D is a set of 3-transpositions of {D).

Proof. By 6.5, D is a set of 3-transpositions of (D), so the result follows
from 5.6 and 5.13.

(6.7) Let{s,t> = Sy and X = {5y, Then X|Z(X) = U,2).

Proof. Let x = st and Y = {Cp(x))>. Then F*(y) = Cy(x) is extraspecial
of width n — 2 > 2 and Y/Cy(x) = SU,_,(2) using 6.5 and 6.6. By 6.5,
|F*(C5(D))| < 3 and as (D) acts irreducibly on §, Cs(D) acts without fixed
points on § if C5;(N) # 1. Hence F¥(Y)Xx)/{x) = F*(Cp(x)/{x)). Thus by
minimality of G it suffices to show Y # X. Let z¥ € Cp(<s, t)). Then x € (s, t)
centralizes z * z¥, so [Q, x] centralizes z * z*. Thus

Co(<x, 29)Q4/Q" = Co<x, 2*))/Q n @

is the central product of n — 4 quaternion groups, so with 6.6 the action of x
on Q* is determined and in particular Q¥ n C(x) £ M.
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6.8) (1) Cp(r) < D(1).
2 IfreDand{r,t) = S;then ("> = (D(r) N D(t)) is a complement
to QY in {D(t)).

Proof. Of course zxt — {t} < D(t), so take se€ Cp(t) — z * ¢t. There
exists r € Cp(s) with (r, t) = S;. Set X = (z“"). Then X/Z(X) = U,(2)
by 6.7. Moreover ¢ centralizes Q N X = F*(Cx(z)), so as F¥*(Cx(z)) is self
centralizing in Aut (X), ¢ or ¢z centralizes X. Ast e 0,(C(tz)) by 5.9, [t, X] =
1. Thusse z¥ < D(t) and X = (D)/Q so X is a complement to Q7 in {D(¢)).

Define B(z) = (Jyep D(d).

(6.9) The relation z ~ a if and only if a € B(z) is an equivalence relation on
G
z,

Proof. Suppose z ~ a. Then a € D(d) for some d € D. Thus d € D(a) and
ze D(d)soa ~ z.

Suppose z ~ a ~ b. We must show z ~ b. Let ae D(d), de D. Then a,
z € D(d), so by 6.6 and 6.7, either a € D(z) or <{a, z) = S;. In the first case
clearly z ~ b, so assume {a, z) = S;. By symmetry we may take <{a, b) =~ S,.
By 6.7 there exists e € D(b) N a * d. Then e € D(z) and b € D(e), so z ~ b.

(6.10) B(z) is a set of 3-transpositions of {B(z)) = L. If z* € B(z) then
x e N(L).

Proof. This follows from 6.6 and 6.9.
6.11) B(z) = z%

Proof. Assume not. Set L = {B(z)) and X = Ng(B). Then X # G and
by 6.10, M < X, so by minimality of G, L = U,,,(2) and L = F*(X). We
first show z% N X = z*. Assume not.

Then there exists a = ze X with keG — X. Let Y = X n X* and
ae T e Syl,(Y). Pick ksothat |T|is maximal. Let T < S € Syl,(G). Without
loss we take T < S € Syl,(G) with (z) = Z(S). Cx(@) < Y,s0zeCs(a) < T
and hence z € Z(T). By symmetry we may take a e Z(T). Thus as {z) =
Cs(Q), Q £ Tand S # T. Let I be the collection of sets A(z") = B(z") " T
for which T < X*. Then Ng(T)/T acts semiregularly on I' — {A(z)} by
maximality of |T|. As this holds for each A € I" we conclude Ng(T) is transitive
on I and Ny(T)/T is strongly embedded in Ng(T)/T. Thus we may pick
k € Ng(T) with k? € X.

Claim a centralizes a pair of noncommuting members of B(z). Assume not.
Then

W = (B(z) n C(@)) < 0,(Cx(a)).

So W =2 Cx(a). aec Z(T) so W =T n B(z)). Let xe Ng(T) — T. Then
xe N(W). By 38, ae W, so a # a"e€ W and X, = {Cx(a), Cx(@®)> < Y.
But by 3.8, X, contains a Sylow 2-subgroup of X, contradicting S # T.
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So a centralizes noncommuting members of B(z). Conjugating by k, there is
b, ce B(a) n C(z) with <(b,c) = S;. Let x = (bo)*. CL(x)/Z(C(x)) =
U,.+,(2) by 6.7, so if u e B(z) n C(x) then F*(C({u, x))/{x) is extraspecial.
Hence by minimality of G, Cp(x) =2 Cgs(x), so Cg(x) < X. Thus Cg(bec) < X9.
Now Q = [Q, bc] * Cy(bc) and [, bc] = R = Cy(b) ® Cy(c) with

|Cr(]): Cr(b)/{z)| < 2.

Hence Q £ Y, we conclude [Q: Q@ n X9 = 4. We may pick Q n X? < T, so
a centralizes Q N X?. Let U be a bc-invariant complement to (Q N X9)/{z).
Then Co(Q N X% = U = Qg, so by 4.4, ¢t induces a transvection on Q.
However no element of Aut (U, ,(2)) induces a transvection §J by 3.9. So we
have shown z¢ N X = z%,

If z* € C(z) — {z} then C(zz") = N({z, z")) < X by 5.9. Now 3.3 in [1]
implies X is strongly embedded in G, a contradiction. This completes the proof
of 6.11.

(6.12) F*G) = U,,,().

Proof. By 6.10 and 6.11, z% is a set of 3-transpositions of L = F*(G).
F*(Cy(z)) is a 2-group and C,(z) has a U,(2) section, so by the main theorem of
[5], L = U,

This completes the proof of the main theorem.
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