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1. Introduction

A finite group G is said to be of characteristic 2 type if F*(CG(t)) is a 2-group
for each involution in G. It seems probable that in the near future the problem
of determining the finite simple groups will be reduced to determining the simple
groups of characteristic 2 type. The principal model for investigation of the
characteristic 2 type groups is Thompson’s work on N-groups. There Thompson
argues on abelian normal subgroups of 2-locals. As an extreme case, he must
consider the situation where, for some maximal 2-local M, abelian normal
subgroups of M have order at most 2. Hence Z(M) (z) is of order 2,
M CG(z), and F*(M) is an extraspecial 2-group. Since many of the sporadic
simple groups possess such centralizers, it seems likely that this will be a trouble-
some case in most suitably general classification problems.
Thompson’s analysis of this situation may be divided into two sections. In

Lemma 13.63 he proves that z is weakly closed in F*(M). The remainder of
Section 13 is then devoted to eliminating this case The following theorem
supplies this latter analysis in general.

THEOREM. Let G be a finite group and z an involution in G such that
F*(CG(z)) Q is an extraspecial 2-group of width at least 2. Then one of the
following hoM:

() z z().
(2) (z) F*(G) is isomorphic, to Us(2), the m-dimensional unitary group

over GF(2), or the second Conway group Co2.
(3) z 02(C(t)) for some involution Q. In particular F*(CG(t)) is not a

2-group, so G is not of characteristic 2 type.
(4) z is fused in G to some noncentral involution of Q.
The proof depends upon work of B. Fischer and F. Timmesfeld on groups

generated by {3, 4}-transpositions. See [6] or [1] for notation and termi-
nology. Certain results in Sections 4 and 5, in particular Lemma 5.12, may be
of independent interest. Co2 is identified using a result of F. Smith [14].
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2. A preliminary lemma

(2.1) Let L -L2(2") or Sz(2"), n > 2, and let V be an irreducible, L,
GF(2)-module. Let T Syl2(L) and S (T). Assume m([V, S]) < n + 1.
Then L - L2(2") and either

(1) V is the natural module for L, or
(2) n 2 and V is the natural module for O(2).

Proof. Let tS# and m m([V,t-I). If L Sz(2") then inverts an
element x of prime order p where p divides 2" 1 but not 2 1 for < 4n.
Thus re(IV, x-I) > 4n, so

rn > m([V, x, l) m([V, x])/2 2n.

Thus n + 1 > m([V, S]) > rn > 2n, a contradiction.
So L L2(2"). Let F= GF(2"), A Aut(F), and M the natural L,

F-module. Then

V(R)F= @ N"

for some irreducible L, F-module N. Moreover N (R)n M for some
B
_

A. This allows us to determine m. In particular as m <_ n + 1 we con-
clude either V is the natural module for L or n is even and V is the natural
module for 02(2"/2), or n 8 and V is induced by the permutation module
for L on 9 letters. In the last case re(V) 8 and IV, S] is a hyperplane of V,
contrary to hypothesis. In the second case IV, S] is of codimension n/2,
son 2.

(2.2) Let Q be a 2-subgroup of G (Q) with Q U(R) P where
U < Z(G), P is extraspecial, (Q)= (P)= (z), and Q < M C(z).
Assume M contains a Sylow 2-subgroup of G, z O2(G), and M is the unique
maximal subgroup of G containin# Q. Set V (z) and let K be the largest
normal subgroup of G contained in M. Then either

(1) IV" Cv(G)I 4 and G/K - S, or
(2) G/K A s and V/Cv(G) is the natural module for O(2).

Proof Set G G/K. As z 02(G) and M contains a Sylow 2-subgroup of
G, we conclude V is abelian, K C(V), and O2() 1. As (z) ,(Q) <
K, Q is elementary abelian. Hence as M is the unique maximal subgroup of G
containing Q, and as Q M,/ Nd(Q) >_ C5() for each Q. Also if
1 # 0.a then < C( c Qa) _< /, so by uniqueness of M, M M
and # M. Hence Q is a TI-set in . As is the unique maximal subgroup
containing and O2(6) 1, is strongly closed in (e.g., 2.14 in I,_16-1).
Hence by 3.3 in [1], . is strongly embedded in 6. Therefore by Bender’s
Theorem and uniqueness of M, 6- L2(2n), Sz(2n), or D2v for some odd
prime p.
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Let R Q c Kand Z Z(R). Then R U (R) (P c R)and U(Q V) <_
Z. Let n m(G), k m(U), and m + k m(Z). As P is extraspecial,
m <_ m(P/RcP) + n + 1. Set ff V/Cv(G). IV, Q] < VcQ <z,
som([ff, Q-l) < m < n + 1. Moreoverm(Z(Q)) k + 1 so

m(C(Q) c Iv, Q]U) <_ k + 1.

Suppose M D2p. Let x Q K invert y with of order p. Then

UV Cvv(y) (R) IV, y] and m([V, Q]) m([V, y, x]) m([ V, y])/2 i/2.

Also IV, Q] < Z(Q). Hence k + 1 > m(C(Q) c IV, Q]U) k + i/2, so
that 2, p 3, and IV/Cv(G)I 4.
So assume L2(2") or Sz(2"), n > 2. Let ’ be an irreducible submodule

of . Then m([I’,Q]) < m([,Q]) < n + 1, so by 2.1, - L2(2") and
either IS’ is the natural module for ( or n 2 and I’ is the natural module for
O-(2). Let x Q- K. Then x inverts an element y of odd order with
W Cv(G)(R) [W, y], so Cw(x)= Cv(G)(R) [W, y, x] and hence C(x)=
Cw(x)/Cv(G). In particular Q centralizes an element w in [W, Q] u, so
Z(Q) U(z) U(w) <_ uw and hence V (z) < W.

Suppose is the natural module for L2(2"). Then

U[V,Q] < C(Q) with m(U[V,Q]) >_ k + n > k + 1,

a contradiction. So n 2 and 17 is the natural module for O-(2). This
completes the proof of 2.2.

3. {3, 4} +-transpositions

Let G be a finite group. A set of {3, 4}+-transpositions is a G-invariant
collection D of involutions such that D generates G and for each a, b in D, ab
has order at most 4, and [a, b] e D when ab has order exactly 4. Groups
generated by {3, 4}+-transpositions have been classified by Timmesfeld. We
record some of his results.

(3.1) Assume O2(G) 1. Then D is partitioned into subsets Di, 1 <_ < r,
such that:

(1) [D,, Di] l fori # j.
(2)
(3) If a, b D with ab D then a is conjugate to b in G, and hence lie in the

same block

Proof. See 4.1.5 and 4.1.6 in [13].
(3.2) Assume G is transitive on D, O2(G) 1, and all numbersfrom 1 through

4 occur as an order ofa product oftwo elements ofD. Then G/Z(G) is isomorphic
to one of the following groups:

(1) L.(2),n >_ 3



350 MICHAEL ASCHBACHER

(2) Sp.(2), n > 6
(3) fi(2), n > 8
(4) U3(3)
(5) 304(2)
(6) F4(2)
(7) 2E6(2
(8) E6(2)
(9) E7(2)

(10) E8(2)

Moreover D is a class of root involutions of G.

Proof This is the main theorem of [12].
A set D of {3, 4}+-transpositions of G is a set of 3-transpositions of G if ab

has order at most 3 for each a, b in D.

(3.3) Assume D is a conjugacy class of3-transpositions ofG andL F*(G)
E(G). Then L/Z(L) is one of the followintt:

(1) An, and D is the set of transpositions.
(2) U,(2), Sp,(2), or f,(2), and O is the set of transvections.
(3) f,(3), and D is a set of reflections.
(4) F,, and D is uniquely determined.

Proof This is the main theorem of [5].

(3.4) Assume G H, F*(H)= L E(H), G is transitive on D, and
O2(H) 1. Let a D and assume P Cn(a) with P extraspecial. Then one

of the followin9 hold:

(1) P c D {a} and either P O2(Cz(a)) and L/Z(L)
3D4(2), 2E6(2), or E,(2), or H - G2(2) and P O2(Cn(a)).

(2) G/Z(G) - U,(2) and r*(Cn(a)) P is of width n 2.
(3) L - U3(3)andP - Qa.
(4) L L3(2)and P - D8.

(5) H g Sp6(2) and P - Q8 * Q.

Proof Without loss we take L simple and H < Aut (L) A. Assume
first a [b, c] for some b, c 6 D. Then by 1.2.2 in [12], <b, c> _< 02(CL(a))
Q. Moreover L is described in 3.2 and D is a class of root involutions.
Now Ca(a) is described in [3]. By inspection we find either (i) Q is the unique

extraspecial normal subgroup of Cn(a), or (ii) L g F4(2) or Sp,(2) and Cn(a)
has no normal extraspecial subgroup, or (iii) (3) or (4) holds, or (iv) H
Aut (U3(3)) G2(2) and P 02(Cn(a)), or (5) holds. Therefore the lemma
holds in this case.
So assume D is a set of 3-transpositions of G. Then the pair L, D is described

in 3.3. Ca(a) is described in [3] and [5]. By inspection 02(Cn(a)) is abelian
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unless G L U,(2), in which case Q is the unique nonabelian normal 2-
subgroup of Ca(a) and is extraspecial of width n 2. The proof is complete.

Let V be an n-dimensional orthogonal space over GF(2) with bilinear form
( ) and quadratic form f of sign e. Let H Aut (V) O(2). Recall
v V# is singular if f(v) O, and nonsinoular otherwise. U _< V is totally
singular if each point of U is singular.

(3.5) Let be an involution in H, let rn m([V, l), and let

v(t) {v e v: (v, v’) 0}.
Then:

(1) rn <_ n/2.
(2) m(V/V (t)) < 1 with equality ifm is odd.
(3) is fused to an involution s in H if and only if rn m([V, s]) and

m(V/V(t)) m(V/V(s)).
(4) IV, t]- Cv(t).

Proofi See Sections 7 and 8 in [3].
If is an involution in Hwe say is of type am if m([V, ]) m and V (t) V.

is of type b or c if m([V, t]) m, m(V/V(t)) 1, and m is odd or even,
respectively. By 3.5 the type of determines its conjugacy class in H.

(3.6) Let be an involution in H and U IV, t]. Then:

(1) If is of type am then U is totally singular, and there exists W < V with

m/2
w= 3 (w, w)

where Wi is of dimension 2 and sign -, and U [W, ].
(2) If is of type bm or c,, then U (Vo) @ Uo where (Vo) is a nonsingular

point and Uo is totally singular.

Proof. See Sections 7 and 8 in [3].

(3.7) Let a be an involution of type a2 in H, D aN, and G (D). Then:

(1) D is a conjugacy class of {3, 4}+-transpositions of G.
(2) Let X < Cn(a) with [Cv(a), X] <_ (u) for some u IV, a]. Then X is

abelian.
(3) If b D with ab D then IV, a, b] 0 and Cv((a, b)) Cv(a) c V,

v[V,b].
(4) If b D with (a, b) - $3 then [V, ab] W1 W2 with Wi of di-

mension 2 and sign and IV, a] c IV, b] O.

Proof See 11.9 in [3] for parts (1), (3) and .(4). Part (2) follows from an
easy calculation using the information in Sections 7 and 8 of [3].
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(3.8) Let G U,(2), n > 4, D the class of transvections in G, an involution
/n Aut (G), and W (C(t)). Assume W < 02(C(t)). Then:

(1) W and is determined up to conjugacy in G.
(2) If x N(W) C(t) then (C(t), C(tx)) contains a Sylow 2-subgroup

of G.

Proof By 19.9 in [3] if G then W - Sp,(2) or the centralizer of a
transvection in Sp,(2). In particular W is not a 2-group. Hence G. Represent
G on a unitary space U. By Section 6 in [3], [U, t] is a totally singular sub-
space of U and the class of is determined by m([U, t]). Moreover C(t) is
exhibited and, by inspection, since W is a 2-group we have rn In/2]. Let H
be the stabilizer in G of [U, t]. Then H is a maximal parabolic of G, O2(H)
C(W), and H acts as GL,,(4) on [U, t] with O2(H) the kernel of this repre-
sentation, is the product of rn members of D and hence lies in W. Moreover
C(t)/Oz(H) " GU,,(2) and corresponds to the centralizer in H/Oz(H of a
graph-field automorphism of/-//02(/-/). Again this follows from the form of
C(t) exhibited in Section 6 of [3]. Hence by the main theorem of [4-1, C(t)
is maximal in H. Finally by 10.6.1 in [3], (t Z(C(t)). Thus H
(C(t), C(tx)) for x H- C(t), and in particular contains a Sylow 2-
subgroup of G.

(3.9) Let G U,(2), n >_ 4, and let a be a transvection in G. Then no
element of Aut (G) induces a transvection on 02(C(a))/(a).

Proof Let Q O2(C(a)) and suppose induces a transvection on Q/(a).
C(a) is given explicitly in Section 6 of [3], and by inspection G. Now by
Section 19 in [3], C(t) - Sp,(2) or the centralizer of a transvection in Sp,(2),
so in particular 02(C(a)) c C(t) is abelian, a contradiction.

(3.10) Let H Aut (V) O’(2)and Sp6(2) G <_ H. Then"

(1) CH(G) is a 3’-group.
(2) Either G stabilizes a nonsingular vector of V or an element of order 5 in

G acts without fixed points on V

Proof. Let x be an element of order 7 in G. Cv(x) is of dimension 2 and
sign + and hence does not admit the faithful action of an element of order 3
in H. Moreover IV, x] is of dimension 6 and sign +, so x does not centralize
an element of order 3 in Aut (IV, x]) g Sa. Hence Ca(x) and then CH(G) is a
3’-group.

Suppose (2) is false. G permutes the set vH of 120 nonsingular vectors of V.
From the table on page 113 of [15], G has orbits of length 120 or 1, 63, 56 or
36, 28, 56. As (2) does not hold we are in the last case. Then G has a 2-transitive
orbit v of length 28. K Hv g Sp6(2) and by [15, p. 113], Gv g O-(2) is
determined up to conjugacy in both K and G. In particular we find Go has
orbits of length 1, 27, 2, 54, and 36. This forces H (G, K) to act on the K
orbit of length 56, a contradiction.
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4. Extraspecial generalized Fitting groups

In this section G is a finite group, z is an involution in G, M C(z), and
Q F*(M) is an extraspecial 2-group of width at least 2.

(4.1) (z > Ca(Q).

Proof. (z> z(o), so c(o)= cu(a)= C(F*(M))= Z(F*(M)= (z>.

(4.2) If S is a 2-subgroup of G containing Q, then (z> Z(S).

Proof. This is a consequence of 4.1.

(4.3) Let P be a subgroup of Q of index 2. Then P contains each involution
in C(P).

Proof. See 13.62 in [11 ].
(4.4) Let be a noncentral involution in Q. Then"

(1) is fused to z in G (/’and only if Co(t ) < Me for some g G M.
(2) If F*(C(t)) is a 2-group then z F*(C(t)).

Proof. Set P Co(t) If ze then clearly gG- M and P < Me

Moreover by 2.4 in [2-1, zQ. Suppose tz. tz is fused to in Q and
(z, t> Z(P), so z is weakly closed in Z(P), and hence by 4.3, also in C(P).
Let P < T e Syl=(C(t)). Then z Z(T), so if F*(C(t)) is a 2-group, we have
z in F*(Ca(t)). Moreover if P < Me then z C(P) c z {z }, so g M.

(4.5) Set . M/Q and ]ffl M/(z>. Then"

(1) The maps (, y) [x, y] andf(E) x2 are bilinear and quadraticforms
on O preserved by M. Hence 4 is a subgroup of the orthogonal group on
preserving these forms.

(2) Let x be an involution in M Q, k m(O/Ct2(x)), and r m(Z(Co.(x)).
Then, in the notation of Section 3, either

(i) E is of type a, k m, and r m + or
(ii) is of type bm or c,,, k rn + 1, r m, and x is fused to xz or
(iii) E is of type am, k m + 1, r m + l or rn + 2, and x is fused to zx.

Proof. The first remark is well known. Set rn m([(, x]). Then, in the
notation of Section 3, E is of type am, bin, or Cm. Let P CO.(x). Then m(Q/P)
m. If E is of type bm or Cm, then by 3.6 there exists a nonsingular vector in
[(, x]. Thus u is of order 4 and as xu is fused to u, x inverts u. Hence x is
fused to xz in (x,u>. Also IP’Ce(x)l 2, so k m + 1. Finally r
m(Z(P)) rn by 3.6.2.

So take E of type am. Then m(Z(P)) rn + 1 by 3.6. Hence if [P, x] 1
then (i) holds. Otherwise (x, u> - Da for some u P, so x is fused to xz in
(x, u>, and k rn + 1. By 3.6, there is a subgroup R of Q with

R Q.Q m/2*"’*Q*Q, s
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Q, Qa, and [Q,x] [R,x]. Thus Z(P) Pc R < C(x), and is of 2-
rank m + 1. Let P WZ(P) with Z(P) c W (z) and (v, z) Z(Ce(x)).
Then (v)Z(P) Z(CQ(x)) is of 2-rank m + or m + 2, completing the proof.

(4.6) Assume Q has width 2 and L F*(G) is simple. Then:

(1) L U3(3), U4(2), L4(3), U,(3), G2(3), As, Ag, M,2, J2, or J3.
(2) If z is weakly closed in Q then G - U4(2), or L4(3).

Proof First we claim G is of sectional 2-rank 4. By 4.2, M contains a
Sylow 2-subgroup T of G. By 4.5, M/Q acts as a subgroup of O](2) on Q/(z).
Hence T/Q is of sectional 2-rank at most 2. So if A/B is an elementary section of
T of rank 5 then (BQ c A)]B is of rank at least 3 and is centralized by AQ/BQ.
But no 4-group in O](2) centralizes a section of rank 3 in its corresponding
orthogonal space, so B 1 and A c Q - Ea. Now by 4.5, AQ/Q is a 4-group
in which each involution is of type a2. But no such 4-group exists.
So G is of sectional 2-rank 4. Now L is determined by the main theorem of

[7]. By 4.2, z a is the unique class of 2-central involutions of G so z L. Of
course F*(CL(Z)) < Q is a 2-group of order at most 32. Hence by inspection,
L is described in (1) or L L3(3), L2(16), Axo, All, M22, or M2a. Further
inspection establishes (1) and (2).

(4.7) Assume z 02(C(t))for each involution Q. Then one ofthefollowin9
hold:

(1) G- M.
(2) <z> =z.
(3) F*(G) <za> is simple.

Proof Assume not. Let U be a 4-group in Q and X O(G). For u U,
[z, Cx(u)] < O2(C(u)) n X 1,

soX= (Cx(u):uU#) < C(z) nX< O(C(z)) 1. SoX= 1.
Let Q < T Syl2(G). By 4.2, (z) Z(T). Set H (za) and C Ca(H).

IfzC then His abelian, so H< Q. Hence zz is fused to zg in Q, so
H# z a, and (2) holds. Therefore z C. But z is contained in every non-
trivial normal subgroup of M, so C 1.

Suppose Y O2(G) 1. Then z Z(Y), so H < C 1, a contradiction.
Thus Y 1 and G contains a component L. (z) Ca(Q) > (L’) c C(Q) #
1, soz(La). Thus H (La), so as C 1, H= (La). Let the anon-
central involution in Q. If L # L then K= LL C(t) - L. But as
H (La) we may pick L so that L [L, z] and hence

K [K, z] < [K, 02(C(t))] <_ 02(C(t)),
a contradiction. Thus fixes L. Hence Q f(Q) < N(L), so z (L) L.
Let J be the product of all components of H distinct from L. Then J < M, so
as Q F*(M), J 1. Thus H L. As C 1, H F*(G).
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(4.8) Let N be a minimal subject to Q <_ N z M and O2(N) # 1. Set
V (z) and let K be the largest normal subgroup ofN contained in M. Then
either

(1) IV[ 4, N/K $3, and V < Q, or
(2) N/K - A s and V is the natural module for Og (2).

Proof Let Q < T Syl2(N). By 4.2, (z) Z(T). O2(N) - 1, so
1 v Z(T)c O2(N)< (z) and hence z e O2(N). By minimality of N,
M c N is the unique maximal subgroup of N containing Q, and N (QU).
As (z) Z(T) and Nzg M, Cv(G) 1. Thus by 2.2 it remains to show
V _< Q if lVI 4. But in this case V centralizes a subgroup of index 2 in Q,
so the remark follows from 4.3.

(4.9) Assume Q is of width at least 3 and Q is a TI-set in G. Then M G.

Proof Assume G M. Then C(t) < Mforall tQ# andzis weakly
closed in Q, so by 4.7 and the Z*-theorem, F*(G) is simple and there exists

#G- Mwithz M. LetP QO c M, R Q M, and S Na(RP).
By 4.2, P Qo, so by Theorems 2 and 3 and 4.5 in [-1], R - P is abelian,
IQ" S[ _< 2 with f(S) R and IS] IRI 2 in case of equality, and Z
f(R) < Z(S). Therefore [Q" Ce(Z)[ < 2, so z E, and S 4: Q. Hence
R f(S) Z and [Q[ 2. This is impossible as Q is of width at least 3.

5. O(z)

We continue the hypothesis of Section 4. In addition assume z 02(CG(x))
for each x Q, Q has width n >_ 3, z O2(G), and G (QG). Set 2 M/Q
and / M/(z). By 4.5, is faithfully represented as a subgroup of the
orthogonal group on ( defined by the forms (if, ) Ix, y] and f(x) x2.
Hence we may use the notation and results of Section 3.

Let be the set of all subgroups H of G containing Q such that O2(H 1
and H ;g M. Let * be the set of minimal members of under inclusion.
Let E E(z) be the set of all conjugates z of z such that (Q, Qh) 2’* and
z <a’ah> z,zhis of order 5. Let D D(z) be the set ofzhEsuchthat
ZZ h Z G.

Throughout this section we assume z e E(z) and set H <Q, Qo> and
V <z t> <zn>. Let K be the largest normal subgroup of H contained
inM. SetP QOcM.

(5.1) (1) H/K - A5 and V is the natural module for O-(2).
(2) induces a2 on , Co(t ) Ca(t)/<z >, and ]Q" Ca(t)] 4.
(3) [Q, t] (Q c P)<z> with [Q c P[ 4.
(4) z c V zn z.tiftD.

Proof Part (1) follows from 4.8 and the fact that [z t[ 5. By part (1),

[Q’Ca(t)] 4 and Qc V z(ca(t)) (z)(R)(QQg) - Es
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Now (2) and (3) hold with 4.5. H has orbits zn and (tz)n on V*, yielding (4).

(5.2) F*(G) (za) is simple and G F*(G)Q.

Proof. The first remark follows from 4.7 and the hypothesis that z 02(G).
Now G (Q) F*(G)Q.

(5.3) (E c tQ) V.

Proof Assume tx E, x e Q. Let y Co(tX). Then [, y] [?, 33] 1,
so [1,33] 1. Hence by 5.1.2, It, y] 1, so It, x] 1. Thus Co(tX)
Co(t) c Co(x). But tx D, so Ifo(tx)l Ifo(t)l and hence

Co(tX) Co(t) Co(x).

Thusx Vc Q, sotxV.

(5.4) C(i) cI(t)Q/Q if D. In any case [C(/): Ct(t)Q/QI < 2.

5.2, 5.3, and a Frattini argument.

Let x M with [Q, t, x] 1. Then [t, x] 1.

As [Q, t, x] 1, [i, ] 1 and x centralizes the hyperplaneProof
Vc Q of V. As If, if] 1, xacts on V by 5.3. Thus if It, x] # 1 thenx
induces a transvection on V with axis V c Q. This is impossible since trans-
vections in O-(2) have axes not conjugate to V c Q.

(5.6) Let s D with (g, i) - 53. Then (s, t) 53.

Proof x (st)3Qandxtis fused tosor tin (s,t), so by 5.3, xV.
Similarly x(z.s). By 5.1 and 3.7.4, (z.s) V (z). Ifx zthen
tx tz z, against s D. Sox 1.

Let B be the set of involutions of] of type a2. (See Section 3). Then E
_

B.
By 3.7, is a set of {3, 4}/-transpositions of ].

(5.7) Suppose inverts a subgroup X ofodd order. Then IX < 3o

Proof As B is a set of {3, 4}-transpositions, . is an elementary abelian
3-group. Let X be a Sylow 3-group of the preimage of ., let y X, and let
Y (y). Then by 3.7.4, [O, Y] Qa*Q8 and [-Q,t] < [O, Y]. Thus
if x X, 0 [0., t] _< [0., Y] c [, x], so as x acts on [Q, Y], [O, x]
[Q, t, x-I [Q, Y]. It follows that X Y is of order 3.

(5.8) Let X be a P-mvariant subgroup of C’(t) with O(Z)E(Y,).
Then IX < 3, C(t) contains a Sylow 3-group X of the preimage of ", and if
IXl 3 then [Q, t, X] Q c P.

Proof By 5.4 we may choose X < C(t) to cover . Then [., P] < P, so
as X O(’X)E(X) is P-invariant, [, P] 1. Let x be an element of X of
odd order. Then Ix, P] < QcQ E4, so either [P,x] 1or [P,x]
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Q c P. Also Q" P 4 and x acts faithfully on Q, so if [P, x] then
P Qc C(x). This is impossible as Qc C(x) is extraspecial while
QcP <_ Z(P). So QcP [Q,t,x-l. As this holds for each elementxof
odd order in X#, Il -< 3.

(5.9) z 02(C(zt)) if D. If also is the only elementary normal
2-subyroup of C(I) then (t, z <a C(tz).

Proof. Let A z.t- (t,z}. Then zt6Qh for each zh6A. Thus by
hypothesis z h 02(C(zt)). Also zt is fused to ztz in Qh, so z is weakly closed
in Z(Qh t C(tz)) and then in C(Q c C(tz)) by 4.3. So zh is in the center of a
Sylow 2-subgroup of C(tz). Let F be the set of conjugates z such that zt QX.
It follows that A

_
F
_

Z(O2(C(tz))). Let U (F>. Then U < C(A) <
N(V), so [U, z] _< (tz>. As z is weakly closed in (tz, zX> for zX6 F,
[-U,z] 1. SetX= <zC<t’-)>. Then[U,X] 1. HenceX_< C(A)_< N(V),
so IX, z] <_ (tz>. In particular z 02(C(tz)). If also C(I)isas hypothesized
above then as U is an abelian normal subgroup of C(I), U _< (. By sym-
metry U <_ CQ(t)(t c e(z V. So C(zt) N(V)c C(tz) N((z, t>).

(5.10) Assume E D and let I (Q c N(V)> and C C (V). Then"

(1) I/C - /t 6.
(2) I is transitive on V#.
(3) tz for some x I c M, [P, Px] and P c P ).

Proof Let A =z.t- {z,t}. Calculating in H, ztsQn for zsA. Let
zt z. As zt Q, 2.4 in [2] implies Q c v (A). Thus P c Q < (A) <
Q. So

[P Q, Qy c M] <_ (tz) c Q 1.

That is P c Q < Z(Qyc M). We conclude from 3.5 that there exists
1 v (tz)(P c Q)andr 6 Qwith [z, r] v. Thenracts on ([Q, t], tz)=
V and z zv. As zv (zt)n we conclude (H, r ) < N(V) is transitive on V#.
Thus r 6 Qy < I and I is transitive on V. As H < I and C(z) acts on Q c v
we conclude I/C A6 and tz for some x I c M. P < C, so [P, P] <
PcPX < [QO, tz] [Q,t], so [P,P] 1. Also (i) Z(P), so
PcP* <>.

(5.11) Assume 1 # X IX, t] is a P-invariant subgroup of odd order. Then"

(1) X is extraspecial of order 27 and PZ - SL2(3). n 3.
(2) IfX M then G - Us(2).

Proof As is contained in every nontrivial normal subgroup of P and acts
faithfully on X, P acts faithfully on X. Hence X is not cyclic, so by 5.7, does
not invert X. As inverts the P-invariant subgroup [Z()), t] we conclude
[Z(),t] I. So by 5.8, Z Z(X) C2(t) is of order 3. Now tinverts
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X/Z, so as (B) is a set of {3, 4}-transpositions, X/Z is an elementary abelian
3-group. Thus Z () and X is extraspecial.

Let X be a Sylow 3-subgroup of the preimage of X. Let Z _< Y < X with
Igl 9, Then Y Z (R) [Y, t]. Set Y [Y, t]. Then Q [Q, Y]
Co(Y1) and by 3.7, [Q, YI-] Qs* Qs. By 5.8, [Q,t,Z] Q cP, so as
[Q, Y1] [Q, t, Y1], [Q, Y1] [Q, Y, z]. x is transitive on the three
subgroups Yi of order 3 in Y distinct from Z, so [Q, Yi] Q8 * Q8 for each i.
As [Q, Y] [Q, Y, z], [Q, Y1, Y] Q8 for/= 3, 2. Thus

[Q, Y] <[Q, Y]" < < 3> [Q, Y1][Q, Yz] - Q8*Q8*Q8.

Moreover [Q, Y] is X-invariant, so as Z acts faithfully on [Q, Y], so does X.
Hence IXI 27. As Pacts faithfully on X, IPI < 8, so n 3. Thus Q
[Q, Y] and then P Qa.
Next Co(t)Z/Q P - SL2(3) so ZP SL2(3). Let Mo QXPZ. Then

the isomorphism class ofMo is determined and M0 contains a Sylow 2-subgroup
T of H. X acts transitively on the noncentral involutions of Q. Moreover all
involutions in tQ are in V. Hence all involutions in T are fused into V in M.
As there are two H classes of involutions in V with representatives z and zt,
these are representatives for the G classes of involutions in T.
Assume X M. X does not admit Q8 * Q8 so by 5.10.3, D. Also as the

normalizer of X in Og(2) contains o as a subgroup of index 2, IM: Mol < 2.
X acts irreducibly on (, so by 5.2, G is simple. IfM Mo then M is isomorphic
to the centralizer of a transvection in U5(2), so by [10], G - U(2), a con-
tradiction. So IM: Mol 2.

Let 8 be an involution in M Mo. M is transitive on involutions in aMo
and [(, a] C.(a), so a is transitive on involutions in (. Thus we pick
to be an involution and r is transitive on involutions in o. Nfi()
XPZ(6), so we may pick a to act on X and centralize t. Next a centralizes an
element x of order 3 in X Z and

W C(a) c Ix, Q](x, t) - Z2 x $4.

Moreover Co(x)<a> -Co(x)<a>Oz,3(Mo)/O2,3(Mo) is a Sylow 2-group of
M/02, a(M) and hence semidihedral. Thus we may pick a to be an involution,
M.is transitive on involutions in aMo, and W C(a) c Mo. As G is simple and
all involutions in T are fused to z or zt, by Thompson transfer, a is fused to z
or zt in G.
Next O2(C(/)) P with Ct(t) irreducible on P/<i> so by 5.9, C(zt) <

N(<z, t>) _< H<a>. In particular for u z or zt, if U < C(u) with U A4,
then O2(U) < O2(C(u)). Therefore [Co(a), x] < 02(C(a)).
Now a acts on z as a transposition (s, r). Let B be a Sylow 3-group of

Cn(<s, r>). Then a Sylow 2-subgroup of H<a> c N(B) is of the form
<aa, s> (R) <v> where <ax, s> - D8 and Ka Kay. Thus we may choose
a aa N(B), and a centralizes an element b Be acting as (z, t, t’) on
z.t. But now [Co(a), x, b] is not a 2-group, contradicting [Co(a), x] <
Oz(C(a)).
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(5.12) Let L
following hold:

(1)
()
0)
(4)
()
(6)

Then F*(C-(E)) has order at most 3 and one of the

G U(2).
G Sz the sporadic Suzuki group or Cot, the largest Conway group.
L/Z(L) - Un(2), n > 4, P < L, and D E.
E/Z(E) - ,,+ 2(2). Moreover D E, P O2(Cr()), and D c P {t }.
(pt) G2(2),P Qs* Qs, n 4, D EandDcP {t}.
G.CO2

Proof By 3.1, / is partitioned into subsets Bi such that [-B, Bj] 1 for
4: j, (B) is transitive on B and if ?,,/ with 6/ then 6/ is conjugate

to in (B) and hence lies in the same orbit B as 6. Choose notation so that

E B1 w...w B, and iB1.
Let L <B>.
By 5.8, [F*(C(E))I < 3. By 5.11, IF*(E)I > 3. We conclude E Ex

and E B. Then by 5.11 either L E(L) or G Us(2), and we may assume
the former. IftDletR P. If e D then by 5.10 there exists x M with

tz. In this case letR PP. By 5.10, [P,P] 1 andPcP= (>.
Thus in any case with 5.4, g C() and g is extraspecial. As IF*(C(E))I < 3,
E F*(LR). Hence one of the conclusions of 3.4 holds. Notice Q-
Qs * Q8 * P by 3.7.4.
Assume first that D. Then . P. P, x C(I). In particular K, is

of width at least 2 so neither 3.4.3 nor 3.4.4 hold. In 3.4.5, n 3 while
@6(2) : 06(2). Moreover O2(C()) leaves P and P invariant and hence
does not act irreducibly on /< >. This forces gE isomorphic to Era(2), G2(2),
U,(2), or fff(2). If E - Lm(2), m > 4, then Cr()/g has 2 nonequivalent
irreducible submodules ./<> on g/(> and g is abelian. Hence Cr()
O2(C()) does not act on P. If Eg G2(2 then there are precisely two
proper O2(Cr()) invariant extraspecial subgroups of g and both are invariant
under C(). So this case is out. We are left with (i) EK, U(2) or L#(2) and
P Qs, or (ii) E f(2) and P Qs*Qs. As Q Qs*Qs*P,
Q (Qs)a, k 3 or 4 in (i) or (ii), respectively. Now in (i), E is a subgroup
of O(2) Aut (U4(2)), so E U,(2) f-(2). Thus in either case E -f]n(2). E acts irreducibly on so by 5.2, G is simple. By Theorem 2 in [17],

E. Now by I-8] and [9-1, G is isomorphic to Sz or COl in (i) or (ii),
respectively.

This completes the case q D. In the remaining cases, E D. Let X be a
subgroup of order 3 in Cn(<t, z>). If [P, ] 1 then as z and are inter-
changed in Nn(X), [P,X] PcQ so [Q,X]- Qs*Qs. In particular
[Q, X, L] 1 whereas [Q, x; t] 1. So [P, ] 1. Therefore

(5.12.7) 03(C-()/PC(E)) # 1.

This eliminates 3.4.4. If 3.4.3 holds, Q (08)3 whereas 7 divides the order
of U3(3) but not O-(2). In 3.4.5, n 4, so (6) holds by [14] and 3.10. Here
use Corollary 1 in [17] to show M does not fix a singular point of .
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Finally assume 3.4.1 holds. 5.12.7 implies E/Z(E) f,(2) or G2(2).
P has width n 2 while the isomorphism class of P is determined by 3.4.1.
This allows us to calculate n by inspection. By 3.4.1 there exists g e B P
distinct from i. It remains to show (z. b)c P is nonempty. Bi e B so by
3.7.3, [O,t,b-] 0. Thus by 5.1.2, [-Q,t,b] 1, so by 5.5, I-b,t] 1.
Hence b xy, x Co.(t ), y P. y is an involution so as tl)(P) c Q 1,
y is an involution. Similarly x2 1, so I-x, y] 1. If u Co-((b, t)) C(x)
then z rx, u] [y, u] QO, a contradiction. So Co-((b, t)) <_ Co-(x). But
by 3.7.3, Co-((b, t)) Co-((b, v)), v [Q, t], so x [Q, t][Q, b]. As
[Q,t] < P[Q,b] we may take x[Q,b] and then y bxb[Q,b] <
(z b). Thus either y D c P or y zd, d z b, and we may assume the
latter. Now if E is not L4(2), there is no normal elementary abelian 2-subgroup
of C(i) properly containing i, so by 5.9, (z, d) (QO c C(y))(z), a con-
tradiction. So E - L,(2). As IX, P] 1, X is semiregular on . This is
impossible as a conjugate of inverts X whereas m([(, l) 2. (Argue as in
3.10 to get F*(.) E so that X < L.)

(5.13) Let s e D with [g, i] 1. Then [Q, t, s] It, s] 1.

Proof. If [Q, t,s] 1 then I-t, s] 1 by 5.5, so assume i-Q, t, s]
(u) - 1. Then u sr, r z s. But now we choose u with

s q Oz(C(u) c H(s)),

against 5.9.

6. Proof of the main theorem

In this section, G is a counter example of minimal order to the main theorem.
Thus z is an involution in G, M CG(z), Q F*(M) is extraspecial of width
n > 2, z is weakly closed in Q with respect to G, G - M, and z 02(CG(t)) for
each Qa. We continue the notation of Section 5. By 4.7 and minimality
of G:

(6.1)
(6.2)

F*(G) (z) is simple and G F*(G)Q.
n>_3.

Proof See 4.6.2.

(6.3) is nonempty.

Proof Assume is empty. By 4.9 there exists 9 G M with Q c Qg
1. Let u be an involution in Q c Qg. As z is weakly closed in Q, u q z. Thus
P Co.(u) is of index 2 in Q and by 4.4, C(u) M. By symmetry,
C(u) M. Let N be a minimal subject to P < N < C(u) and N g M. Let
V (zN) and let K be the largest normal subgroup ofN contained in M. As z
is weakly closed in Q, z is weakly closed in Z(P) (u, z) and hence also in
CG(P) by 4.3. Let P < T SyI2(N). We conclude z Z(T). By minimality
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of N, N (P) and M N is the unique maximal subgroup of N containing
P. We may choose 9 N M. Set z. By 2.2 either IV" Cv(N)I 4 and
N/K - $3 or N/K - As and V/Cv(N) is the natural module for O(2). If
x Co.(t) P, then as u Q, z [-x, u-] Qa, a contradiction. So Co.(t ) < P.

Suppose N/K -$3. Then [Q" Co(t)l- 4 and (u, z) < Z(Co.(t)), so by
4.5, induces a2 on ( and Z(Co.(t)) Z E8 with I-Q, t] < z. Suppose
z (z)(Q c QO, and set U (t)Z. Then U contains [Q, U] and [-Qg, U],
so H (Q, Qg)= _< N(U). Hence H d/f, contrary to assumption. So
Q Q (u). Then (QgcM)/(u) - (QaM)Q/Q acts on ( with
[C0(t), Qgc M] < (), so by 3.7.2, (Qgc M)/(u) is abelian. This is
impossible as Q has width n > 3 and [Qg" Q c M[ 4.
So N/K - As. Then (u)[V, P-] W < Z(Co.(t)) with re(W) >_ 4, so by

4.5, induces a2 on , W Z(Co.(t)) is of rank 4, and is fused to tz. Now
W (u)V Q and tz is fused into W (z) in N, contradicting z weakly
closed in Q.

(6.4) Let H d/g*, 9 G H, and z. Then H (Q, QO),zn is of
order 5 and tz z G.

Proof Let K be the largest normal subgroup of H contained in M and
V (zG). As 6 Q, 4.8 implies H (Q, QO), H]K - As, and V is the natural
module for O-(2). Now tz is fused into Q (z) in H, so tz z.

6.4 establishes the hypothesis of Section 5. Continuing the notation estab-
lished there we take zgD, H= (,), V (z.t), and P
M. By 5.12.

<O> U,,(2), n >_ 4, P < <>, and IF*(C(O))I 3.
D is a set of 3-transpositions of <D>.

Proof. By 6.5, O is a set of 3-transpositions of (O), so the result follows
from 5.6 and 5.13.

(6.7) Let (s, t) $3 and X (zC(S). Then X]Z(X) - U,(2).

Proof. Let x st and Y (Co(x)). Then F*(y) Co.(x) is extraspecial
of width n 2 > 2 and Y/Ca(x) SU,_2(2) using 6.5 and 6.6. By 6.5,
[F*(C(O))[ < 3 and as () acts irreducibly on , C(O) acts without fixed
points on ) if C(.) 4: 1. Hence F*(Y)(x)/(x) F*(Ct(x)/(x)). Thus by
minimality of G it suffices to show Y X. Let zk Co((s, t)). Then x (s, t)
centralizes z zk, so [Q, x] centralizes z z k. Thus

CO.((x, zk))Qk/Qk
_

ca((x zk))/Q Q

is the central product of n 4 quaternion groups, so with 6.6 the action of x
on k is determined and in particular c C(x) L M.
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(6.8) (l) Co(t)
_

D(t).
(2) Ifr D and (r, t) $3 then (z c(’)) (D(r) c D(t)) is a complement

to QO in (D(t)).

Proof. Of course z {t }
_

D(t), so take s e Co(t) z t. There
exists r e Co(s) with (r, t) $3. Set X (zC(’t)). Then X/Z(X) - U,(2)
by 6.7. Moreover centralizes Q c x F*(Cx(z)), so as F*(Cx(z)) is self
centralizing in Aut (X), or tz centralizes X. As e 02(C(tz)) by 5.9, It, X]
1. Thus s e zx D(t) and X (D)/Q so X is a complement to QO in (D(t)).
Define B(z) Ud o D(d).

(6.9) The relation z a if and only if a e B(z) is an equivalence relation on
Z G"

Proof. Suppose z a. Then a e D(d) for some d e D. Thus d e D(a) and
z e D(d) so a z.
Supposez a b. We must showz b. LetaD(d),dD. Thena,

z D(d), so by 6.6 and 6.7, either a D(z) or (a, z) - $3. In the first case
clearly z b, so assume (a, z) - $3. By symmetry we may take (a, b) $3.
By 6.7 there exists e D(b) a d. Then e D(z) and b D(e), so z b.

B(z) is a set of 3-transpositions of (B(z)) L. If z B(z) then

Proof This follows from 6.6 and 6.9.

(6.11) B(z) z.
Proof Assume not. Set L (B(z)) and X Na(B). Then X G and

by 6.10, M < X, so by minimality of G, L U,+/(2) and L F*(J(). We
first show z c X zx. Assume not.
Then there exists a zkX with kG- X. Let Y XXk and

a T Sylz(Y ). Pick k so that IT[ is maximal. Let T <_ S Syl2(G). Without
loss we take T < S Sylz(G) with (z) Z(S). Cx(a) < Y, so z Cs(a) < T
and hence z Z(T). By symmetry we may take a Z(T). Thus as (z)
Cs(Q), Q T and S - T. Let F be the collection of sets A(zh) B(z) c T
for which T < Xh. Then Ns(T)/T acts semiregularly on F- {A(z)} by
maximality of IT 1. As this holds for each A e F we conclude Na(T) is transitive
on F and Nx(T)/T is strongly embedded in No(T)/T. Thus we may pick
k No(T)with k2 e X.

Claim a centralizes a pair of noncommuting members of B(z). Assume not.
Then

W (B(z)c C(a)) < 02(Cx(a)).

So W Cx(a). a Z(T) so W (TomB(z)). LetxNs(T) T. Then
xN(W). By 3.8, aW, so a- axW and Xo (Cx(a),Cx(a)) <__ Y.
But by 3.8, Xo contains a Sylow 2-subgroup of X, contradicting S 4: T.
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So a centralizes noncommuting members of B(z). Conjugating by k, there is
b, c B(a) c C(z) with (b, c) $3. Let x (bc)k. C,(x)/Z(CL(x))
U,+2(2) by 6.7, so if u B(z) c C(x) then F*(C((u, x))/(x) is extraspecial.
Hence by minimality of G, Cz,(x) Co(x), so CG(x) < X. Thus CG(bc) < X.
Now Q [Q, bc] Co,(bc) and [, bc] C(b) (R) Ck(c) with

ICi(b): Cs(b)/(z )l < 2.

Hence Q g Y, we conclude [Q: Q c x[ 4. We may pick Q x < T, so
a centralizes Q c x. Let /7 be a bc-invariant complement to (Q x)/(z).
Then Co.(Q c X) U -Q8, so by 4.4, induces a transvection on (.
However no element of Aut (Un+2(2)) induces a transvection by 3.9. So we
have shown z c X zx.
IfzhC(z)- {z) then C(zz) N((z, zn)) <_ Xby 5.9. Now 3.3 in [1]

implies X is strongly embedded in G, a contradiction. This completes the proof
of 6.11.

(6.12) F*(G) - U,+ 2(2).

Proof By 6.10 and 6.11, z is a set of 3-transpositions of L F*(G).
F*(Cz(z)) is a 2-group and C(z) has a U,(2) section, so by the main theorem of
[5], L - U,+ 1(2).

This completes the proof of the main theorem.
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