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The investigation of extensions in the theory of ergodic actions of locally
compact groups was undertaken by the author in [26]. In particular, we
considered the notion of extensions with relatively discrete spectrum, and saw
how the classical von Neumann-Halmos theory of transformations with
discrete spectrum could be generalized to the case of extensions. In this paper,
which is a sequel to [26], we study those actions which can be built up from a
point by taking extensions with relatively discrete spectrum and inverse limits.
We shall say that such actions have generalized discrete spectrum.
A similar construction is well known in topological dynamics. In [4],

Furstenberg introduced the notion of an isometric extension of a continuous
transformation group, and called an action quasi-isometric if it could be built
up from a point by taking isometric extensions and inverse limits. The main
result of [-4] is the striking theorem that among the minimal transformation
groups, the quasi-isometric ones are precisely those that are distal. Thus, one
obtains a description of the structure of an arbitrary minimal distal trans-
formation group, and using this, one can answer a variety of questions about
such groups.
The structure of extensions with relatively discrete spectrum was described in

Theorem 4.3 of [26]. Examination of the conclusion of this theorem shows that
extensions with relatively discrete spectrum are a reasonable measure-theoretic
analogue of Furstenberg’s isometric extensions. Thus, we can consider actions
with generalized discrete spectrum as a measure-theoretic analogue of the
quasi-isometric transformation groups. Parry has described, at least for actions
of the integers, a measure-theoretic analogue of the topological notion of
distallity [20]. It is not difficult to generalize Parry’s definition to arbitrary
group actions, and now the question arises as to whether one can prove a
measure-theoretic analogue of Furstenberg’s theorem. We prove such a
theorem below. It asserts that among the nonatomic ergodic actions, those with
a separating sieve (as Parry called his actions) are precisely those with generalized
discrete spectrum. Using this theorem, one sees immediately, for example, that
any minimal distal action preserving a probability measure has generalized
discrete spectrum.
Though there are formal similarities between the proof of our theorem and

Furstenberg’s proof, the proofs are basically quite different. Our proof depends
upon, among other things, generalizing the concepts of weak mixing and the
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Cartesian product action to extensions; this leads to the notions of relative
weak mixing and the fibered product. In addition, we make use of a general
existence theorem for factors proved in [26]. These notions are all of inde-
pendent interest and prove useful in other circumstances. Furstenberg’s proof
rests heavily on topological notions that are not available in the measure-
theoretic context.

Given any specific class of actions, one would, of course, like to know which
members of this class have generalized discrete spectrum. One class of actions
that has attracted considerable attention is the set of affine actions on compact
abelian groups. An algebraic criterion for affine transformations to have some
nontrivial discrete spectral part was established by Hahn [6], and was extended
(along with much of the other theory of affine transformations) to affine actions
of a general locally compact abelian group by Wieting [24]. We extend the
Hahn-Wieting analysis to establish an algebraic criterion for an affine extension
to have some nontrivial relative discrete spectrum. This has two interesting
consequences. First, we are able to give an algebraic criterion for an affine
action to have generalized discrete spectrum. Second, in the case of a trans-
formation, it enables us to clarify the relationship between generalized discrete
spectrum and quasi-discrete spectrum.

Transformations with quasi-discrete spectrum were introduced by von
Neumann and Halmos, and first studied systematically by Abramov [1]. The
inductive definition of quasi-discrete spectrum can be shown to be a special case
of the definition of generalized discrete spectrum. The nilflows considered by
Auslander, Green, and Hahn [2] show, however, that not every transformation
with generalized discrete spectrum has quasi-discrete spectrum. However, using
the algebraic criterion of the preceding paragraph, we show that every totally
ergodic affine transformation with generalized discrete spectrum actually has
quasi-discrete spectrum. Combined with a result of Abramov, this yields a new
characterization of (totally ergodic) transformations with quasi-discrete
spectrum, as precisely those that are equivalent to affine transformations with
generalized discrete spectrum.
The results of this paper depend heavily on the framework established in [26].

For ease of reference, we have begun this paper with Section 7, all references to
Sections 1-6 being to those in [26]. For any unexplained notation the reader is
also referred to [26]. The organization of the paper is as follows. Section 7
discusses relative weak mixing and applications of the general existence theorem
for factors appearing in Section 2. Section 8 contains the central result, namely
the measure-theoretic analogue of the Furstenberg structure theorem. The
proof depends heavily on the results of Section 7. Section 9 considers some
examples and general properties of actions with generalized discrete spectrum.
The connections between affine actions, quasi-discrete spectrum, and generalized
discrete spectrum mentioned above are proved in Section 10. This section
concludes with a new proof, based on the results of Section 6, of the Abramov-
Wieting existence theorem for actions with quasi-discrete spectrum [-_1], [24].
Some of the main results of this paper were announced in [25].
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7. Relative weak mixing

In preceding sections, we have examined the properties of extensions with
relatively discrete spectrum. We now turn to questions involving the appearance
or nonappearance of such extensions in various situations.

THEOREM 7.1. Suppose X is a Lebesgue G-space. Let H L2(X) be the
closed subspace 9enerated by the finite-dimensional G-&variant subspaces of
L2(X). Then there exists a factor G-space Y of X such that H L2(y) (and
hence Y has discrete spectrum).

Proof It is well known that forf L2(X), f H if and only if { Uofl# G}
is precompact in L2(X), where Uo is the natural representation of G on L2(X).
Let B {A = X IA is measurable, and 7.A H}.

LEMMA 7.2. B is an invariant a-field of subsets of X.

7.A H, so X- A 6 B. If A B, and AProof If A B, 7.X-A
are mutually disjoint, then

and as/(U 7 A i) < 1,

n

and so A B since H is closed. B is clearly G-invariant and hence it
suffices to see that B is closed under finite intersections. So suppose A, D B
and 9, h G. Then

(A D). g A (A D) h

[(X- AgDg)Ahm Dh] [AgDg (X- Ah Dh)]

[(X- Ag) Ah Dh] w [(X- Dg)Ah Dh]

lag Dg (X Ah)] lAg Dg (X- Dh)]

Thus
(Ag A Ah) w (Dg A Dh).

As a set in a metric space is precompact if and only if every sequence has a
Cauchy subsequence, to see A D B, it suffices to show that if gi G, then

7.(a o)0, has a Cauchy subsequence. Since {7.ao} and {7.oo} are precompact,
there exists a subsequence 9, such that ZAo,, and Zoo,, are Cauchy, and it follows

easily from the inequality above that 7.(A O)0,. is also.
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We now return to the proof of the theorem. It suffices to show thatfe Lz(x)
is measurable with respect to B if and only iff H. Iff is measurable with
respect to B, then fis the limit in L2(X) of finite linear combinations of charac-
teristic functions of sets in B, and hence f H. To see the converse, first note
that f e H if and only iff e H, and hence it suffices to show the converse for
real valued functions. Let e R and A {x e X If(x) < t}. It suffices to
show that A e B, i.e., the orbit of Za is precompact. Suppose not. Then there
exists e > 0 and a sequence g G such that

i.e.,
p(Ag A Agj) >_ e2.

Since p(A) < 1, it is easy to see that there exists some 5 > 0 and a set D c

X- A such that (i) #(D) >_ 1 p(A) e2/4, i.e., p((X- A) D) < e2/4
and (ii)f(x) _>_ + 6 for every x e D. Now since p(Agi A Agj) > e,2, we can
assume

p(Ag, c (X- Ag)) > 2/2.

We have Dg X Agi and p((X Ag) Dgj) < 82/4 by the G-invariance
of p, and hence p(Ag c Dg;) >_ 2/4. For x Ag Dg, we have

-) < t,(Uo,-f)(x) f(xo,
since xg A.

Similarly, (Uo_tf)(x) > + 6 by (ii) above. Thus

(O’- f UJ-lf)2 > 62(2/4)’
g Dgj

and hence

IIU,,,-f- Uo,-,fll > &/2,

Since this holds for every i, j, the orbit offis not precompact, which contradicts
the assumption thatf H.

This theorem was established in the case G Z by Krengel [-15, Theorem
22].
The above theorem required no assumptions of ergodicity. When the action

is ergodic, the following theorem provides a significant generalization; the proof
gives a new proof of Theorem 7.1 in the ergodic case.

THEOREM 7.3. Let (: X Y be a G-factor map. Let H c L2(X) be the
closed subspace generated by the G-invariant fields offinite dimensional spaces,
where L2(X) is considered as a Hilbert bundle over Y. (We suppose X is ergodic.)
Then there exists an essential set X’ c X, a G-space Z, and a sequence offactor
G-maps X’ Z Y whose composition is d?, such that LE(z) H (and hence,
Z has relatively discrete spectrum over Y).
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We begin the proof with the following"

LEMMA 7.4. Let X be an ergodic G-space. Suppose H c G is a countable
dense subgroup, and f: X--, R is a Borel function such that for each h H,
f(xh) f(x) almost everywhere. Thenf is constant on a conull set.

Proof If not, there exist e, geR such that A {xle_<f(x)_<fl} has
positive measure less than 1. But f(xh) f(x) almost everywhere implies for
each h, ga(x) ZA(Xh) almost everywhere. Thus, Uh(/.A) ZA in L2(X), and
since U is continuous and H c G dense, ZA is G-invariant in L2(X). This implies
A is null or conull, which is a contradiction.

LEMMA 7.5. Let V Hr be a G-invariantfield ofsubspaces of the Hilbert
bundle LZ(x) * LZ(Fr), such that dim Hr n < for almost all y Y.
Suppose fi e LZ(x) such that (i) 11(/3.11 -< for every y (here, (fi)r fi Fr);
(ii) for almost all y e Y, {(ft)r}i= is an orthonormal basis of Hr. Then
eachfi L(X)

Proof Let be the natural cocycle representation; we can assume [l(y, g)[I <
1 for all (y, g). Let

aij(y, g) (z(y, g)(fg)ro
Then aij(y, ) is Borel, [ai(yg)[ <_ 1 by (i) above, and for each g, aii(y, ) is a
unitary matrix for almost all y. Choose H to be a countable dense subgroup
of G, and define

Oj(x) sup aij(dp(x), g)fi(x)
glt i=

This exists since [aij(y, 9)[ -< 1 and is Borel since H is countable. Now let
h H. Then

Oj(xh) sup aij(gp(x)h, g)fi(xh)
oH i=1

But for almost all x,

f(xh) (Ji)g(x)h(Xh) [(b(x),

=[aki(dP(x)’h)(f)g’()l(X)k
] a,(4(x), h)A(x).
k

So for almost all x,

O(xh) sup
oeH

ak,(dp(x), h)a,j(dp(x)h, g)fk(x)
k

akpk(x), hg)f(x)
k=l

O(x).
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Thus, by Lemma 7.4, 0j is constant on a conull set. For almost all x,

Oj(x) >_ aij(dp(x), e)fi(x) If(x)l,

Thus for each j, If-(x)l is bounded on a conull set, i.e., f. e L(X).

Proof of Theorem 7.3. Let A {f L(X) If is contained in a G-invariant
field of finite dimensional subspaces}. It is straightforward to check that A is
a subspace of L(X), closed under complex conjugation, and multiplication by
elements of L(Y). We claim it is also closed under multiplication. Let f,
h A, f V Hi(y), h W H2(y), V, W G-invariant, dim Hi(y) <
m. Letfi(x) e Lz(x) such that {(fi)y}i is an orthonormal basis of Hi(y) almost
everywhere, and h(x) L2(X) such that {(hj)y}j is an orthonormal basis of
H2(y) almost everywhere. Since f e V, h e W, there exist Borel functions
ai(y), bi(y) such thatf(x) Z ai(ck(x))fi(x) and h(x) Z b(dp(x))h(x) almost
everywhere. For almost all y, [[f[[2 Zi lai(y)[ 2, so

la,(y)l z _< Ilfrll 2 Ilfll2,

Thus, each ai L(Y), and similarly, bj L(Y). Now f. h i,j (ai d?).
(bj dp)fihj, so by the remarks above, to see thatfh e A, it suffices to see that

fih A. We have fihj L(X) by Lemma 7.5, and hence (changing functions
on a null set if necessary), for each y Y, (fi)y(hj)y L2(Fy). Let Z(y) be the
subspace of LZ(Fr) spanned by {(fi)r(h)r}i,j. To see thatfihj e A, it suffices to
see that Z Z(y) is G-invariant, and for this, to see that for a given i, j, #,

Uo(fh) Z. Let

and

(Uofi)(x) , ak,(d?(x))fk(X)
k

almost everywhere,

(Uohi)(x)= bpj(dp(x))hp(x) almosteverywhere,
p

where aki, bp are Borel functions on Y. Since Uof L(X), we see as above
that aki(Y) L() and similarly that bpj L(). Thus,

Uo(fihj)(x) (Uofi)(Uohj)(x) , aki((x))bp((x))fk(X)hp(x) Z.
k,p

Using the same technique in a somewhat simpler setting, one can prove the
following companion to Theorem 7.3.

TIaEOREM 7.6. Let dp: X Y be a factor map of ergodic G-spaces. Let
H L2(X) be the closed subspace 9enerated by the G-invariant fields of one
dimensional subspaces. Then there exists an essential set X’ c X, a G-space Z’,
and a sequence offactor maps X’ --+ Z’ Y whose composition is d?, such that
H I(Z’). (Hence Z’ has relatively elementary spectrum.) If Z is as in
Theorem 7.3, then B(Z’) B(Z) = B(X), so Z’ is also a factor of Z.
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Theorem 7.3 says that if Y is a factor of X, then the subspace of L2(X) which
corresponds to the discrete part of the spectrum of the natural (Y, G) cocycle is
given by L2(Z), where Z is a space "between" X and Y. We now turn to the
question of when the natural cocycle representation has (nontrivial) finite
dimensional subrepresentations. If Y {e}, this will be the case if and only if
the space X x X is not ergodic [19, Proposition 1]. When Y 4: {e}, we shall
see below that the relevant consideration is the ergodicity of the fibered product
X x X. It will be convenient to consider a somewhat more general question,
namely the ergodicity of the fibered product X x y Z, where Y is a factor of
both X and Z. [We note that X x Z is a G-invariant subset of X x Z under
the product action, and it is straightforward to check that the measure on
X x r Z defined in Section 1 is G-invariant.]

LEMMA 7.7. Let d? X Y be a factor G-map of ergodic G-spaces. Then the
natural cocycle representation contains the identity one-dimensional cocycle
exactly once.

Proof L2(y) c L2(X) is a G-invariant field of one-dimensional spaces and
e restricted to L2(y) is the identity. Now suppose V * V(y) is a one-
dimensional G-invariant field, and that restricting e(y, 9) to V gives us a cocycle
equivalent to 1. Then there exist maps U(y): V(y) C such that U(y) is
unitary almost everywhere and for each 9, U(y)e(y, 9)U(yg) -1 1 almost
everywhere. Letf j* fr,f L2(X), wherefr U(y)-l(1) almost everywhere.
Then

((y, g)f)(x) ((y, g)U(yg)-’(1))(x) (U(y)-’(1))(x) fr(x)
almost everywhere. But by definition of , ((y, g)f)(x)= f(xg) almost
everywhere. By the ergodicity of X,fis essentially constant soft C for almost
all y. Sincef is a basis of V (y) almost everywhere, V L2(y).

THEOREM 7.8. Let (X, It), (Z, v), (Y, m) be ergodic Lebesgue G-spaces and
dp X Y, Z Y G-factor maps. Then X Z is an ergodic G-space if
and only if the natural cocycle representations (which we denote x and z) do not
have a common finite dimensional subcocycle representation other than the
identity.

Proof (i) We suppose that x and Zz have a finite dimensional cocycle in
common. Then it is easy to see that there exist Borel functions f(x), h(z),
aj(y, g) such that:

(a) For almost all y, (f), (f2),..., (f,), are mutually orthogonal;
(ha),..., (h,), 1 are mutually orthogonal.

(b) For each g, (a(y, g)) is a unitary matrix for almost all y.
(c) For each g and almost all x,

f(xg) a(dp(x), g)f(x) and hj(zg) a,((z), g)h(z).
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Now define O(x, z) ’=lfi(x)hi(z). Then 0 L(X X r Z) by Lemma 7.5
and it follows from (a) that 0 _1_ in L2(X r Z). Further, for each g and almost
all (x, z) X r Z, we have

O(xg, zg) f(xg)h(zg)

j aij((x), g)aij((z), g)fi(X)hk(Z)).
Since (x) if(z), we obtain, using (b),

O(xg, zg) Z 6,A(x)&(z O(x, z ).
i, k

Thus 0 is nonconstant and essentially G-invariant, which shows X v Z is not
ergodic.

(ii) We now show the converse. If X r Z is not ergodic, choose
L(X r Z) to be nonconstant and G-invariant. For each y Y, define

T: L2(b-l(y)) -- L2(I/I-l(y))
by

(Tr2)(z) { O(x, z)2(x) dly(x).
do

Then {Tr} is a Borel field of compact linear operators, and T * Ty is a
bounded linear operator, T: L2(X) L2(Z). Letting U and W be the natural
representations of G on L2(X) and L2(Z) respectively, we claim that T is an
intertwining operator for U and W. It suffices to see that for each 9 G,
Trx(Y, g) z(Y, g)Tro for almost all y. If 2 6 L2(b l(yg)), then

(To zx(y, g)2)(z) f4,-1(,)

On the other hand,

O(x, z)(zx( y, g)2)(x) dlay(x)

O(x, z)2(xg) d,uy(x).

(z(Y, g) TyoX)(z ) ( Tro2)(zg)

4- ’(yo)
O(w, zg)2(w) dltyo(w)

f,_ lo,)

O(xg, zg)2(xg) dlay(x).
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Since 0 is G-invariant, this becomes o-,(y)O(x, z)2(xg)dly(x) and comparing
with the equation above, we see that T is an intertwining operator. Now let

*Tr. ThenA T*T Tr
AUo T*TUo T*WoT UoT*T UoA.

Thus A is a self-intertwining operator for U, and A * Ar, where Ar
Tr Ty is compact and self-adjoint. Let 21(y) sup {clc is an eigenvalue of
Ar}. Then 21(y) is Borel and hence, if V(y)= {v LZ(ck-(y))lAr(v)=
2a(y)v}, then {Vx(y)} is a subbundle of LZ(x) over Y. Since for each g,

x(Y, g)-Arx(Y, g) At0
for almost all y, we have 2(yg) 21(y) (for each g and almost all y). By
ergodicity of Y, this implies 2 is constant on a conull set. Hence V1

Va(y) is G-invariant. Now let

22(y) inf {cl c is an eigenvalue of Arl V(y)},
and

V2(y) {v V(y)-lAr(v) /.2(y)v}.

As above, 22 is essentially constant and Vz Vz(y) is a G-invariant sub-
bundle. Continuing inductively, using the spectral theorem for compact self-
adjoint operators, we can obtain (after suitable relabelling) the following
decomposition" there exist real numbers 2o 0, 2i -- 0, 1,..., and G-
invariant subbundles of LZ(x), V S@ Vi(Y), 0,..., such that"

(i) LZ(x) io V and
(ii) Vi(y) {v LZ(b -a(y))[Ar(v)

for almost all y. Thus Vo ker (A). Since A T’T, we also have Vo
ker (T). If > 0, V is a finite-dimensional G-invariant field. So T(V) will be
a finite dimensional G-invariant subfield of LZ(Z), and the hypothesis of the
theorem together with Lemma 7.7 show that T(V) LZ(Y). Since this holds
for each i, we have T(Lz(X)) LZ(Y), i.e., for almost all y, Tr(LZ(dp-(y))
C = LZ(-l(y)). It follows that for almost all y, O(x, z) is essentially inde-
pendent of z. But then the G-invariance of 0 and the ergodicity of X imply 0
is essentially constant. This is a contradiction and completes the proof.

DEFINITION 7.9. If X Y is a factor G-map of ergodic G-spaces, call X
relatively weakly mixing over Y if X , X is ergodic.

When Y {e}, this is just the usual notion of weak mixing.
Theorem 7.8 has the following corollaries.

COROLLARY 7.10. X is relatively weakly mixin9 over Y if and only if the
natural Y G cocycle representation contains no finite dimensional subcocycle
representations other than the identity.
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COROLLARY 7.11. X is relatively weakly mixing over Y if and only ifX r Z
is ergodic for every ergodic extension Z of Y.

COROLLARY 7.11. IfX is relatively weakly mixing over Y, so is X r X.

Proof If Z is an ergodic extension of Y, then (X r X)r Z
X r (X r Z). Two applications of Corollary 7.11 imply (X r X) r Z
is ergodic, and it follows from the same corollary that X r X is relatively
weakly mixing over Y.

8. Generalized discrete spectrum and separating sieves

If X is an ergodic extension of Y, we have considered the notion of X having
relatively discrete spectrum over Y. We now consider a more general class of
extensions, which we shall call extensions with generalized discrete spectrum
over Y. Loosely, these will be extensions built up from Y by the operations of
taking extensions with relatively discrete spectrum, and taking inverse limits.
Formally, this is done in the same way as Furstenberg’s notion of quasi-
isometric extension of a continuous flow is built up by isometric extensions and
limits [4; Definition 2.4]. Thus, some formal aspects of what follows will be
similar to those in [4]. Later, we shall discuss the relationship between the
content of [4] and the content of the results of this section.
We begin with some remarks on inverse limits of G-spaces. Let r/ be a

countable ordinal. Suppose for each ordinal < q we have a Lebesgue G-
space X and.for each pair of ordinals a < 7 < r/a factor G-map q5w: X X
such that for any triple fl < a < r/, the diagram

commutes Now suppose X is a G-space, X’ c X essential, and for each we
have a factor map p" X’ Xr such that for any a, 7 the following diagram
commutes"

Then we call {X, pr, Xr, bw} an ordered system of factors of X. We say that
X inj lim Xr if LZ(x) <, LZ(xr) or equivalently, B(X) is the a-algebra
generated by B(Xr). We also point out that X can be characterized in terms
of {Xr} by a universal property.

q
PROPOSITION 8.1. If Y is a Lebesgue G-space and there exist factor maps
Y Xr such that all diagrams
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commute, then there exists an essential set ’such that
c Y, and afactor G-map Y’

commutes. Any two suchfactor maps agree on a conull set. If also (in addition
to X) has this property, then X and X are essentially isomorphic.

Proof We have maps B(X)--. B(Y). Under the metric d(A,B)=
/(A A B), these spaces are complete metric spaces and the maps are isometric.
Since the maps are compatible, we have an isometry Us B(xr) B(Y) and
as B(Xr) is dense in B(X), this extends to an isometry B(X) B(Y). Since
G acts on B(X) and B(Y) by isometries, the map B(X) B(Y) is a G-map.
Thus, by Proposition 2.l, there is an essential set Yo C Y and a factor G-map
0: Yo X’ inducing the Boolean G-map B(X) B(Y). For each ;, pro 0
qr on an essential Y = Yo. Since r/ is a countable ordinal, Y’ Y is
essential, and 01 Y’: Y’ X’ is the required map. The remaining assertions
are straightforward.

PROPOSITION 8.2. /fX inj lim X and each Xr is ergodic, so is X.

Proof If X is not ergodic, there exists f L2(X), f _1_ C, J’= 0 such that

Uof=f for every gG. Now LZ(x) C [,.JLZ(Xr) C. So if Pr is
orthogonal projection onto L2(Xr) C, then Prf 0 for some . But since
LZ(xr) C is G-invariant, Pr commutes with all Uo and this implies Pf is
also G-invariant, contradicting the ergodicity of X.

PROPOSITION 8.3. If X inj lim X, then there exists a conull set Z X
such that x, y Z implies there exists such that p(x) pr(y).

Proof We first give an alternative description of inj lim X. Namely, let

W={(x)I-IXlck(x)=x frally’a1"
Then W is a standard Borel space, and by the Kolmogorov consistency theorem
[21; Theorem 5.1], admits a probability measure for which W inj lim X,
where W - X is just projection on Xr. Since W clearly satisfies the require-
ments from the Proposition, the result now follows from Proposition 8.1.
We now introduce extensions with generalized discrete spectrum.

DEFINITION 8.4. Let X, Y ergodic Lebesgue G-spaces, and X an extension of
Y. We say that X has generalized discrete spectrum over Y if there exists a
countable ordinal r/, and an ordered system of factors (Xr, < r/) ofX such that,
calling X X,

(i) Xo Y,
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(ii) For each ; < r/, X+a has relatively discrete spectrum over X (and is a
nontrivial extension of X),

(iii) If ,/ <_ q is a limit ordinal, then X inj lim X, a < 7-
If the factors X can be chosen so that X+ has relatively elementary spectrum
over X, we shall say that X has simple generalized discrete spectrum over Y.
If Y {e}, we shall omit the phrase "over {e}."

In light of the structure theorem (4.3) and Corollary 4.6, one has a description
of the structure of any action with generalized or simple generalized discrete
spectrum. The question now arises as to what conditions on a G-space will
imply that it has generalized discrete spectrum, or more generally, generalized
discrete spectrum over a given factor. We will show that there is a very satis-
factory answer to this question. The following definition generalizes a notion
due to Parry [20]. It was originally introduced by him as a measure-theoretic
analogue of a distal transformation.

DEFINITION 8.5. Let b: X Y a factor G-map of ergodic G-spaces, and let
$1 = $2 = be a sequence of Borel sets in X such that (S,) > 0,/(S,) 0.
Then {S,} is called a separating sieve over Y if for every countable set N c G,
there exists a conull set A c X such that x, y e A, b(x) b(y), and for each
n, xg,, yg, S, for some g, e N, implies x y. {S,} will be called a separating
sieve if it is a separating sieve over {e}.

An immediate but important property of separating sieves is the following.

PROPOSITION 8.6. Suppose X Y Z arefactor G-maps, and that {S,} is a
separating sieve for X over Z. Then it is also a separating sieve for X over Y.

We now state the main result of this section.

THEOREM 8.7. If X is an ergodic extension of Y, then X has generalized
discrete spectrum over Y ifand only ifX is either atomic or has a separating sieve
over Y.

Before proving this theorem, we make some remarks on the relationship of
this theorem to Furstenberg’s work in topological dynamics. There are numer-
ous analogies between topological dynamics and ergodic theory. (See [5], for
example.) An extension of a Lebesgue G-space Y of the form x, K/H can
be considered a measure-theoretic analogue of Furstenberg’s topological notion
of isometric extension (see [4-] for this and other related concepts mentioned
below), and in light of the structure theorem (Theorem 4.3), an action with
generalized discrete spectrum is analogous to a quasi-isometric flow. The main
theorem of [4] asserts that among the minimal flows, the quasi-isometric ones
are exactly the distal flows. As Theorem 8.7 asserts, when Y {e}, that the
actions with generalized discrete spectrum are the actions with a separating
sieve (trivial cases aside), we can view this theorem as the measure-theoretic
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analogue of Furstenberg’s structure theorem. Despite some formal similarities,
the proofs are basically quite different. The difficult part of Furstenberg’s proof
makes heavy use of the Ellis semigroup and its properties for minimal distal
flows, which is not available in the measure-theoretic situation. Our proof
makes use of the results of Section 7.
We begin the proof of Theorem 8.7 with some lemmas.

LEMMA 8.8. If Y is nonatornic and has relatively discrete spectrum over an
atomic factor Z, then Y has a separating sieve.

Proof Since Z is atomic and ergodic, it is essentially transitive, and hence
we can assume Z G/Go for some closed subgroup Go c G. Any G/Go G
cocycle is cohomologous to a strict one [23, Lemma 8.26], and for a strict
cocycle into a compact group K, (z, [k])g (zg, [k](z, g)) defines not only
a near action of G on Z K/H, but an action. Thus by the structure theorem,
discarding invariant null sets, we can assume Y Z K/H for a strict co-
cycle , and that the factor map Y Z is given by projection of Z
onto Z. Since Y is nonatomic, so is K/H, and we can choose a decreasing se-
quence of open neighborhoods U of [e] in K/H such that U, {[e]} and
p(U) 0. Choose an atom Zo Z; we claim {Zo} U is a separating sieve
for Z K/H. If

(z, [ka])g,, (z2, [kz-])g {Zo} U for some g, e G,

then zg,, Zzg Zo implies z z2. Further,

[kl](g(Z1, g,) e U,, [kz]a(z, g,) [k]a(zz, g,) e U,
implies [ka] [k2], by the existence of a K-invariant metric on K/H.

LEMMA 8.9. Suppose b’X Y, O’Y- Z are factor G-maps of ergodic
G-spaces such that (i) X has relatively discrete spectrum over Y, and (ii) Y has a
separating sieve {S,} over Z. Then X has a separating sieve over Z.

Proof By the structure theorem, we can sssume X Y K/H and that
b(y, [k]) p(y, [k]) almost everywhere (here p(y, [k]) y). Choose a
decreasing sequence of open neighborhoods U of [e] in K/H such that 0 U
{[e]}, and let S, S, x U,. Then , is decreasing and p(,) 0, p(,) > 0.
We claim that S, is a separating sieve for X over Z. Let N be a countable subset
of G, and A Y as in the definition of a separating sieve for Y over Z (see
Definition 8.5). For each g e N, let

A o {(y, [k])I (y, [k])g (yg, [k](y, g))},
and

Then Ao

{(y, [k]) (y, [k’]) y}.

and A are conull, and hence so is

A’ 0 Aoccp-’(A).
aeN
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Now suppose (y,, [k,]), (Y2, [k2]) A’ with 0o (Yl, [kl]) 0o b(y2, [k2]).
Since A’ c ., 0(yl) 0(y2). If we also have (Yi, [ki])gn Sn, 1, 2 where
g,N, then Yi’9,S, since A’ Ao. As A’ p-X(A), y, y2A, and
since S, is a separating sieve for Y over Z, it follows that yx Y2. Furthermore,
we have [k]a(y,, g,) U,, and [k2](Y1, 9,) [k2]a(y2, g,) U,. Since
K/H admits a K-invariant metric, [k] [k2]. This completes the proof.

LEMMA 8.10. Suppose X, Y, X, X2,. are ergodic G-spaces, and that there
exist factor maps p," X X, and 0" X, Y such that

commutes for each n, p. Suppose further that there exists a conull set Z c X
such that x, y e Z, x y implies there exists no such that p,o(x) P,o(Y)" Then

each X, has a separatin sieve over Y, so does X.

Proo We recall that if A, B are sets of positive measure in an ergodic
G-space, then there exists e G such that A B has positive measure.

Let {S}, be a separating sieve for X over Y. Because X is ergodic, we can
choose g e G such that if

A p;’(S)"
i=l

then #(An) > 0. Now let Sx Ax and define S, inductively as follows" choose

hn G such that #(Sn- A,’hn) > 0, and let S, S_ Anh Then S,
is a decreasing sequence of sets of positive measure, and #(S,) 0, since

Sn Anhn p(S ,g ,hn),

and #x(SJ) 0 (where # is the measure on Xa). We now claim that {S,} is a
separating sieve for X over Y. Let N G be countable, and for each i, let
N n=i Nh(g)-" Let B X be the corresponding null set for the
separating sieve over Y, {S} (i.e., given N). Now let B X be B
p(B) Z. Then B is conull. Suppose x, y B, with p(x)= p(y)
(where p O,p,, which is independent of n), and that xg,, yg, Sn for some
gnSN" en i_< n, let h gnh(g)- , and h h when > n. So

hNiforeachi,n. Now for eachi, andn i,

xh Xgnh ’(g)- S.h; ’(g)- = A.M)- = p; ’(S),

i.e., p(x)h S when n i; from this it follows that p,(x)h S for all (i, n).
Similarly, p(y)h S for all (i, n). But since x, y B, p(x), p(y) B i, we have
pi(x) p(y), and this holds for all i. Hence, since x, y Z, x y, and this
completes the proof.

We are now ready to prove half of Theorem 8.7.
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Proof of Theorem 8.7 (Part One). We suppose that X has generalized dis-
crete spectrum over Y, and that X is not atomic. We claim it has a separating
sieve over Y. We consider two cases.

Case 1. Y is not atomic. Then consider the set S {7 < r/lX has a
separating sieve over Y}. Since Y is not atomic, 0 e S. If 7 e S, and 7 < r/,
then 7 + eSby Lemma 6.9. If7 is alimit ordinal, then Xr injlimX,
a < 7- If each a e S, it follows by Lemma 8.10 and Proposition 8.3 that 7 e S.
(Recall that r/is a countable ordinal.) Thus r/e S by transfinite induction.

Case 2. Y is atomic.
We consider two subcases"

Let T {7 -< is atomic}. Let qo sup T.

(a) r/o e T. Then r/o < r/, X,o+l is not atomic, and it follows from Lemma
8.8 that X,o+l has a separating sieve. Following the argument of Case 1, we
conclude that X does also.

(b) r/o T. Then r/o is a limit ordinal and X,o inj lim Xr, 7 e T. Since
each X is atomic, it has discrete spectrum and hence so does X,o. Thus X,o
has a separating sieve by Lemma 8.8 (take Z {e}), and again one can use the
argument of Case to complete the proof.
Given the results of Section 7, we shall see that the essence of what remains

to prove the converse assertion of Theorem 8.7 is the following lemma. This
lemma generalizes a result of Parry [20, Theorem 3-1 by adapting his argument
to the case at hand.

LEMMA 8.11. If c" X Y is a (nontrivial) factor map of ergodic G-spaces,
and X has a separatin9 sieve over Y, then X is not relatively weakly mixin9
over Y.

Proof. Let _H be a countable dense subgroup of G. Let {S,} be a separating
sieve for X over Y, and let A X be a conull set for the sequence H as in
Definition 8.5. It is easy to check that

{(x, y)[x, y e A, qS(x) 4(Y), and x9,, Y9, e S, for some sequence g, e H}

(S, xS.)g- A xA.
n=l oeH

Saying that {S,} is a separating sieve over Y means, given the choice of A, that
this set is contained in the diagonal D X x r X. Since is not an essential
isomorphism, ( xr )(D) 1. If ( x r )(D)> 0, then D is a nonnull
nonconull invariant set, so X xr X is not ergodic. In the case when
( x r )(D) 0, we must have
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since A xrA is conull. Since /(S,) > 0, we have (/ r/t)(S, rS,) > 0,
and thus for some n, we must have

O< (p y p)(Hg (Sn Y Sn)g- 1) <1"

But this is an H-invariant Borel set. Since the natural representation of G on
LZ(x y X) is continuous and H is dense, UoH (S, S,)9 -1 must be
essentially G-invariant, which shows that X r X is not ergodic.

Proof of Theorem 8.7 (Part Two). If X is atomic, it has discrete spectrum-,
so we suppose that X has a separating sieve over Y. We consider the collection
c of factor spaces Z of X with generalized discrete spectrum over Y, together
with an ordered system of factors of Z, {p., Z, a}, satisfying Definition 8.4.
We identify systems which are isomorphic modulo invariant null sets. Let r/z
be the ordinal such that Z Z,z. We define an ordering on the set cg as follows.
Given {Z, p, Z, b,} and. {Z’, p, Z, b}, define Z < Z’ if r/z _< r/z and
for all y, a _< r/z, Z Z, p7 b,=, b b modulo G-invariant null
sets. We claim any totally ordered subset 7-c cg has an upper bound. Let
S {r/z Z e T}. If S has a maximal element, clearly T does also. If not, let
r/ sup S. Since for each a < y < r/ we have closed subspaces L2(Z,)
L2(Z) of L2(X), and L2(X) is separable, r/ must be a countable ordinal. Let
Z, inj lim Z, Z e T. It is clear that Z, is in cg and is an upper bound for T.
By Zorn’s lemma, there exists a maximal element Z cg. We claim Z X
(modulo invariant null sets). Suppose not. Then by Proposition 8.6, X has a
separating sieve over Z. It follows from Lemma 8.11 that X is not relatively
weakly mixing over Z. By Corollary 7.10 the natural (Z, G) cocycle on LZ(X)
has nontrivial finite dimensional subcocycle representations, and by Theorem
7.3, there exists a factor space Z’ of X such that Z’ has relatively discrete
spectrum over Z. But then we clearly have Z’ e cg and Z - Z’, contradicting
the maximality of Z. Thus Z X, and X has generalized discrete spectrum
over Y.
We remark that the above proof shows the following"

COROLLARY 8.12. Suppose Y is a factor G-space of an ergodic space X, and
thatfor any G-space Zfor which there is a sequence offactor G-maps X’ Z - Y
(X’ X essential, and the composition the original factor map) we have X not

relatively weakly mixin9 over Z. Then Xhas 9eneralized discrete spectrum over Y.

9. Examples and further properties

An ergodic extension with a relative separating sieve can be viewed as a
measure-theoretic analogue of the topological notion of distal extension. We
recall the definition of the latter. Let X and Y be compact metric spaces on
which G acts continuously, and b: X- Y a continuous surjective G-map.
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X is called a distal extension of Y if x, y X, b(x) b(y), and d(xg,, yg,) - 0
for some sequence g, G implies x y. The following is immediate.

PROPOSITION 9.1. Suppose X & a distal extension of Y, that X & minimal [4],
and that X has nonatomic G-invariant ergodic probability measure l. Then X
has a separating sieve over Y, and hence generalized discrete spectrum over Y.

Proof X minimal implies every open set has positive measure; if U is a
decreasing sequence of open sets whose intersection is a point, it is trivial to
check that {U} is a separating sieve over Y. The remaining statement is just
Theorem 8.7.

COROLIAR 9.2. A minimal distal action preserving an ergodic probability
measure has generalized discrete spectrum.

We consider a specific example to illustrate this corollary. For assertions not
proven below, see [2].

Example 9.3. Let N be the nilpotent Lie group consisting of matrices of
the form

M= 1
0

where x, y, z e R. For notational convenience, we denote M by [x, y, z]. Let
D c N be the discrete subgroup consisting of matrices M such that x, , z are
integers. Then N/D is compact and has an N-invariant probability measure.
The commutator subgroup is IN, N] {Me Nix y 0}, and the
quotient N/DIN, N] is a torus. It is easy to see that the functions g,,(M)
exp (27rinx) and h,(M)= exp (27riny) factor to functions on N/DIN, N]
when n is an integer, and {h,gj},, j) z2 is an orthonormal basis of IJ(N/D[N, N]).
Now let A N be a matrix of the form [a, b, 0] where a, b, 1 are rationally
independent. Then A(t) [ta, tb, 1/2abt 2] is the 1-parameter subgroup in N
with A(1) A and [M]t [mA(t)] defines an action of R on N/D which is
measure preserving. By 1-2, Theorem IV 3, Theorem V 4.2, and Corollary V
4.5] this action is ergodic, minimal and distal. It is immediate that for each
(j, n) Z 2, ggh, is an eigenfunction of the flow, and by [2, Theorem V 4.2-1,
constant multiples of these are the only eigenfunctions. Thus IJ(N/D[N, N])
LZ(N/D) is the closed subspace generated by the finite dimensional R-invariant
subspaces. Now let f,(M)= exp (27tin(z- y[x])) where [x-] is the largest
integer < x. Then the closed subspace of IJ(N/D) generated by
is all of LZ(N/D). Now

Ix, y, z]A(t) Ira + x, tb + y, 1/2abt 2 + tbx + z].
So

(gjh,f)([x, y, z]A(t)) O(t, x, y) exp (27tijx) exp (2riny) exp (2zik(z y[x]))
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where

O(t, x, y)= exp (2rci(jta + ntb + kabt2/2 + ktbx + ky[x]
k(tb + y)[ta + x])).

Thus
(yjhnA)([x, y, z]A(t)) O(t, x)(gih,.L)(,[x, y, z]).

But for each t, (x, y) - O(t, x, y) is in L(N/D[N, N]). Thus for each (j, n, k) e
Z 3, /ik,f is contained in a 1-dimensional field of subspaces over N/DIN, N]
that is R-invariant. Since these functions generate I(N/D), N/D has relatively
elementary spectrum over N/DIN, N], and N/D has simple generalized discrete
spectrum. In this case, the ordinal r/ 2.

Example 9.4. We remark that for continuous G-actions, the condition of
having a separating sieve is more general than being distal. This follows from
an example of Kolmogorov of a continuous, ergodic, measure-preserving flow
on the torus with discrete spectrum, but no continuous eigenfunctions [see 27].
This flow thus has a separating sieve, but we claim it is not distal. Since every
open set has positive measure, and the flow is ergodic, it is also regionally
transitive i-2, p. 57]. If it were distal, it would be pointwise almost periodic
[3, Theorem 1], and hence minimal [2, p. 57]. But minimal distal flows have
continuous eigenfunctions [4].
Example 9.5. Another class of actions with generalized discrete spectrum

are those with quasi-discrete spectrum. In the case where G Z, these were
first studied systematically by Abramov [1]. Subsequently, Wieting has con-
sidered these actions when G is an arbitrary locally compact abelian group. We
review Wieting’s definition. Let G be a locally compact abelian group and X a
Lebesgue G-space. We suppose that X is totally ergodic, i.e., that {Z e G* [Z
is a subrepresentation of Uo on LZ(x)} is torsion free. Let E0 S (=circle)
and define E,, n > 1, inductively by

E, {f e L(X) lf(x)l 1 and Uof/f e E,_ V 9 e G}.

If E U,o E, generates LZ(X), then X is said to have quasi-discrete spectrum.
We show that this implies that X has generalized discrete spectrum. It is clear
that E, is an increasing sequence of G-invariant multiplicative subgroups of the
group of functions of absolute value 1 on X. Generalizing a result of Abramov
[1, 7], Wieting showed [24, Theorem P] that if f, 9 e E are not constant
multiples of one another, they are perpendicular. Now the finite linear com-
binations of elements of E, form a G-invariant *-subalgebra of L(X). By
Corollary 2.2, there exists a sequence of factors X, of X

X, X,_ -.... X Xo {e}

such that E, is an orthonormal basis, together with constant multiples, of
L2(X,), and

Lz(X) U LZ(X,)
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Iff e E,, then (Uof)If e E,_ and thus (Uof)/f is a function on X,_ for each
g e G. Therefore, each f e E, is contained in a 1-dimensional G-invariant field
over X,_ 1, and since E, generates L2(X,), X, has relatively elementary spectrum
over X,_ 1. Thus, X has simple generalized discrete spectrum, and the ordinal
r/x _< o9, the first infinite ordinal.
We remark that even when G Z and the ordinals are finite, not every G-

space with simple generalized discrete spectrum has quasi-discrete spectrum.
If we restrict the R-action of Example 9.3 to the integers, the resulting Z-action
is still ergodic (this follows from [2, Theorem V 4.2]) and has generalized dis-
crete spectrum. However, it cannot have quasi-discrete spectrum since it embeds
in an R-action [8, Theorem 4.1]. We shall examine in Section 10 the question
of how one distinguishes the transformations with quasi-discrete spectrum
within the class of transformations with generalized discrete spectrum.
When G Z or R, any transitive action (preserving a probability measure)

has discrete spectrum. For more general groups, this statement is, of course,
no longer true. The following proposition describes when a transitive action
has generalized discrete spectrum.

PROPOSITION 9.6. Let H c G be a closed subgroup such that G/H has finite
invariant measure. Then the action ofG on G/H has generalized discrete spectrum
([and only ifthere exists a countable ordinal .q, and a collection ofclosed subgroups
of G, H H, < rl, such that:

(i) Ho G, H, H; if a : 7, then H H.
(ii) The action ofH on He/He+ has discrete spectrum.
(iii) If is a limit ordinal, H < H.
Proof As every factor of a transitive action is transitive, and is determined

by a (conjugacy class of a) closed subgroup, the proof is readily reduced to
demonstrating the following statement: If H c K c G (so G/H G/K), then
G/H has relatively discrete spectrum over G/K if and only if the action of K on
K/H has discrete spectrum. Now (G/K, G) cocycles correspond to representa-
tions ofK [23, Theorem 8.27], and the natural G/Kcocycle representation on the
Hilbert bundle LZ(G/H) will correspond to the representation of K on the fiber
over [e] in I(G/H), i.e., to the natural representation of K on I(K/H). Under
this correspondence, the (G/K, G) cocycle has discrete spectrum if and only if
the representation of K does also.

Example 9.7. An example of a transitive action with generalized discrete
spectrum is the action of a connected, simply-connected nilpotent Lie group on
a nilmanifold. If N is such a group, and D N a uniform, discrete subgroup,
the proof of [2, Theorem IV.3] shows that N acts distally on N/D. ([2, Theorem
IV.3] states that a one-parameter subgroup of N acts distally on N/D, but an
examination of the proof shows that the assumption that the elements of N
considered lie in a 1-parameter subgroup was never used.) By Corollary 9.2,
this action has generalized discrete spectrum.
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We remark that the structure of N/D given by Definition 8.4 (or Proposition
9.6) gives a corresponding decomposition of LZ(N/D) into mutually orthogonal
G-invariant subspaces. A thorough study of the decomposition of L2(N/D)
has been made by Moore [-18], Richardson [22], and Howe [13]. It would be
interesting to see how the decomposition above fits into their scheme.
Another question that arises is to describe which subgroups of a given group,

say in particular, which lattice subgroups, define homogeneous spaces with
generalized discrete spectrum. One might then try to obtain an understanding
of the decomposition of Lz of the homogeneous space, based upon the Lz-
decomposition defined via Definition 8.4.

If G is an abelian group, and X is a transitive G-space, every irreducible
(X, G) cocycle representation is one-dimensional. This is because such cocycles
correspond to the representations of the stability group of the action. It is thus
perhaps somewhat surprising to find that if X is not transitive, there may exist
irreducible cocycle representations of dimension greater than one, even if G is
abelian. In [17] (see also [14]), Mackey gives an example of an ergodic G-space
X, with G abelian, and a minimal cocycle : X G - K, where K K, and
K is compact but not abelian. Thus, by Proposition 3.12, there exist irreducible
(X, G) cocycle representations that have dimension greater than one. Equiv-
alently, there exist extensions of X with relatively discrete but not relatively
elementary spectrum over X. In virtual group terms, a virtual subgroup of an
abelian group can have nonabelian "homomorphic images."

In topological dynamics, there is another example of nonabelian phenomena
arising from an abelian situation. If G acts continuously on a compact metric
space X, let b(g) denote the homeomorphism of X corresponding to g G.
Let E(G, X) be the closure of qS(G) in Xx under the topology of pointwise
convergence. E(G, X) can be shown to be a semigroup (under composition)
i-4, p. 484] and is called the Ellis semigroup of the action. Now even if G (and
hence qS(G)) is abelian, E(G, X) may not be.
We now point out in the consideration of distal actions, the occurrence of

these types of nonabelian phenomena are related.

PROPOSITION 9.8. Suppose G is a locally compact abelian group, and X is a
compact metric space, minimal and distal under a continuous G-action, and
supporting an ergodicprobability measure. IfE(G, X) is abelian, then Xhas simple
generalized discrete spectrum.

Proof This follows from [28, Theorem 1.2], once one notices that restricted
to each fiber, Image (P) is one-dimensional. (Notation as in [28].) One can
see this from the definition of P ([28, p. 18]), and the fact that I E(G, X)
is abelian.
We now turn to consideration of the properties of factors of actions with

generalized discrete spectrum.
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LEMMA 9.10. Suppose X--. Y Z are factor G-maps and that X has
generalized discrete spectrum over Z. Then Y is not relatively weakly mixing
over Z.

Proof Let {X 7 -< r/} be the factors of X showing that X has generalized
discrete spectrum over Z. Consider

S {7 < t/I (L2(X) O L2(Z)) _L (L2(y) O L2(Z))}.
Assuming that Y is a nontrivial extension of Z, r/ S. Let cr be the first ordinal
not in S. It follows from property (iii) of Definition 8.4 that cr is not a limit
ordinal. Hence, cr 1 exists, and is a maximal element of S. Let us denote

X-I by W. By Proposition 1.5, we have a factor map X W x z Y such
that the following diagram commutes:

XWxzY Z

Now projection of L(N x z Y) into L(X) is a G-map commuting with
multiplication by L(V). Furthermore, since S, the image of L( x z Y)
in L(X) is not contained in L(W). Since X has relatively discrete spectrum
over W, it follows that W x z Y must have some discrete spectrum over W;
i.e., (N Xz Y) x(N x z Y) is not ergodic. But it is easy to see that this
space is isomorphic to W xz Y xz Y, which is thus not ergodic. If Y is
relatively weakly mixing over Z, then so is Y x z Y (Corollary 7.12), and then
W x z Y x z Y would be ergodic (Corollary 7.11). Thus Y is not relatively
weakly mixing over Z.

THFORN 9.1 1. If X Y Z are factor G-maps, and X has eneralized
discrete spectrum over Z, so does Y.

Proof. By Corollary 8.12, it suffices to show that if Y Yo Z are factor
maps, then Y is not relatively weakly mixing over Yo. But if X has generalized
discrete spectrum over Z, it also has generalized discrete spectrum over Yo by
Theorem 8.7 and Proposition 8.6. The result now follows by Lemma 9.10.

COROLLARY 9.12. A factor of an action with generalized discrete spectrum
also has generalized discrete spectrum.

We remark that the analogous result holds for distal actions [4, Theorem
3.3], and for transformations with quasi-discrete spectrum [-8, Corollary 2.8].

COROLLARY 9.13. Thefibered product of two extensions of a G-space Y does
not have generalized discrete spectrum over Y if one of the factors is relatively
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weakly mixing over Y. In particular, the product of two G-spaces will not have
generalized discrete spectrum if one of them has continuous spectrum.

PROPOSITION 9.14. If T is an vertible transformation such that the associated
Z-action has generalized discrete spectrum, then T has entropy O. More generally,
a Z" action with generalized discrete spectrum has 0 joint entropy [24].

Proof By Theorem 8.7, if the space is not atomic, the action has a
separating sieve, and an argument of Parry [20] (see also [24, Theorem N])
shows that the entropy is zero.

10. Applications to affine actions and quasi-discrete spectrum

We now consider how the above theory applies to a special class of actions,
namely affine actions on compact abelian groups. Affine transformations have
been studied by various authors [6], [! 1], and much of this theory has been
generalized to affine actions of arbitrarily locally compact abelian groups by
Wieting [24]. Theorem 10.7 below gives an algebraic criterion for an affine
action to have generalized discrete spectrum. When G Z, we go on to show
in Theorem 10.10 that every totally ergodic affine transformation on a compact
connected abelian group with generalized discrete spectrum actually has quasi-
discrete spectrum. In light of Abramov’s results [1], this enables us to dis-
tinguish the class of totally ergodic transformations with quasi-discrete spectrum
as the class (up to isomorphism) of totally ergodic affine transformations on
compact, connected, abelian groups with generalized discrete spectrum.
We recall the central notions of the theory of affine actions r6], [24]. Let

G be a locally compact abelian group and X a compact abelian group. A
homeomorphism O:X X is called affine if it is of the form b(x) xoA(x),
where A: X X is an automorphism, and Xo X. If G acts continuously on
X, by affine homeomorphisms, we will call X an affine G-space. Then, for each
x X, g G, we can write x.g xo(g)’A(g)(x), where xo(g) X and
A(g) Aut (X). The map A:G Aut (X) is a continuous homomorphism,
and Xo: G X is a continuous crossed homomorphism with respect to A; i.e.,

xo(gh) xo(g)" [A(g)(xo(h))].

Conversely, given A and Xo, satisfying the above, they define an affine action.
We will thus identify affine actions with pairs (Xo, A). If X and Y are affine
G-spaces, we shall call X an affine extension of Y if there exists a surjective
G-homomorphism b:X Y.

PROPOSITION 10. I. Suppose the affine actions of G on X and Y are given by
(Xo, A), (Yo, B) respectively. Then a surjective homomorphism q X Y is a
G-map if and only if d?(xo(g)) Yo(g) and c A(g) B(g) .

If A: X X is an automorphism, let A*: X* - X* be the induced auto-
morphism of dual groups.
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PROPOSITION 10.2. Suppose (Xo, A) is an affine action of G on X, and suppose
D X* is an A(G)*-invariant subgroup. Let c’X Y D* be the map
induced by inclusion. Let ,’G Aut (Y) be the map (g)= (A(g)*I D)*
and Yo(g) p(xo(g)). Then (Yo, ) is an affine action of G on Y, and p is then
a G-map.

A criterion for determining when a given ergodic affine G-space is weakly
mixing was established for Z-actions by Hahn !-6, Corollary 3], and subsequently
extended to arbitrary abelian group actions by Wieting [24, Theorem HI. An
extension of this analysis will enable us to determine when an ergodic affine
extension is relatively weakly mixing, and more generally, when it has relatively
generalized discrete spectrum. We begin with some preparatory lemmas.

If qS" X Y is a surjective homomorphism, let K ker qS. Let/K,/x, /r
be the Haar measures. Choose a Borel section 0" Y X for qS. The following
lemma is then straightforward.

LEMMA 10.3. y /y /K" O(y) is a decomposition of Itx with respect to Itr
over the fibers of 49.
We have an induced map qS*" Y* X* that is injective, and we shall identify

* with its image in X*. Then the inclusion K X induces an isomorphism
X*/Y * K*.

LEMMA 10.4. Iff, g X* andf g in X*/Y*, then fr _L gr for each y Y
(where fr f] d?- l(y)).

Proof Let fo =flK. Since fg in X*/Y*, fo go which implies
fo _L go. Hence fo" 0(Y) -1 _L go" O(Y)- in L2(b-l(y),/2r) for each y Y.
But for x b-(y),

(fo O(y)- )(x) f(xO(y)- ) fr(x)f(O(y)- ).
Similarly,

(o O(y)- )(x) (x)(Oy)- ).
It follows immediately that fr / g.
With b as above, ’X X Y defined by if(x, z)= c(x)c(z)- is a

surjective homomorphism, and ker k X r X. Thus, X r X is a compact
abelian group. We give a realization of its dual.

LEMMA 10.5. Let s" X*/Y * X* be a section (not necessarily homomorphic)
of the natural projection p" X* X*/Y*, with s([1]) 1. Then the map

T" * s(X*/r*) s(X*/*)--, (x r x)*

defined by T (h, f, g) h(f r g) is a bjection.

Proof. We note first that the range of T is clearly contained in (X r X)*.
From Lemma 10.4, it follows that the T-images of distinct elements are orthog-
onal, and hence that T is injective. We now claim T is surjective. Any



578 ROBERT J. ZIMMER

character ofX xrXis of the form 2 x fllX xrXwhere 4, fleX* [10,
24.12]. We can write 2 his(p(2)) and fl h2s(p(fl)) where hi e Y*. Then
we have

2 x fl]X x r X hlh2(s(p(2)) x r s(p(fl)))

showing surjectivity.
Now suppose that the homomorphism b:X --, Y is an extension of ergodic

affine G-spaces, where G is locally compact and abelian. The following result
is a partial generalization of [6, Corollary 3] and [24; Theorem H-].

THEOREM 10.6. X is relatively weakly mixing over Y if and only if every
nonidentity element in X*/* has an infinite orbit under A(G)* (where the action
on X is given by (Xo, A)).

Proof (i) Suppose fX*/Y*, f 1 and that f has a finite orbit, say
f f, f2, f, under A(G)*. Then the closed subspace of L2(X) generated by

{ = hif hi L(Y)}
is a G-invariant finite dimensional subbundle of L2(X) over Y, that is not equal
to L2(y). Thus X is not relatively weakly mixing by Corollary 7.10.

(ii) Conversely, suppose every nonidentity element in X*/Y* has infinite
orbit. We claim X x r X is ergodic. Let the affine action of G on Y be given
by (Yo, B). The action of G on X x r X is also affine, say (z0, C). If every
nontrivial orbit in (X x r X)* under C(G)* is infinite, X x r X is ergodic by
[24; Theorem C]. (See also [6, Theorem 1] when G Z.) So suppose
/(X x rX)* has a finite orbit. By Lemma 10.5, 2 h.(fx rk), for
h Y*, f, k s(X*/Y*). Now for # G,

(*) C(9)*(2) C(9)*(h (f r k)) B(9)*h(A(9)*f r A(y)*k).

We claim that 2 having a finite orbit implies that f and k have finite orbits in
X*/Y*. To see this, suppose C(9)’2 4. Now A(9)*f fo and A(9)*k
flko where , fl Y* andfo, ko s(X*/Y*). Equation (,) implies

C(g)*(2) flB(g)*h(fo r ko),

and since C(g)*2 2, we have

B(g)*h(fo r ko) h(f r k).

By Lemma 10.5, f fo, k ko. Thus, C(g)*) 2 implies A(g)*f f and
A(g)*k k in X*/Y*, showing that f and k have finite orbits in X*/Y*. By
the hypothesis of the theorem, f k 1 in X*/Y*, and since s(1) 1,
f k 1. This is turn, via equation (.) implies that h has a finite orbit under
B(G)*. By [24, Theorem C] (see also 1-6, Theorem 4]), the ergodicity of Y
implies that there is 9 e G such that h(yo(g)) # 1. Since 2 h, it readily
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follows that 2(Zo(g)) 1, and by [24, Theorem C] ([6, Theorem 4]), that
X r X is ergodic.
Theorem 10.6 provides an algebraic criterion for determining when an affine

extension is relatively weakly mixing. We now establish an algebraic criterion
for determining when an affine extension has relatively generalized discrete
spectrum.

THEOREM 10.7. Suppose d? X - Y is an affine extension. Then thefollowing
are equivalent.

(a) X has generalized discrete spectrum over Y.
(b) There exists a countable ordinal , a collection of compact abelian groups

X, q < , and for each q < a < , a surjective, noninjective homomorphism
d?,: X X, such that:

(i) For p < tl < a, dpp dp,pdp.
(ii) Xo Y, X X and d?o d?.
(iii) Each X, is an affine G-space and d?, is a G-map.

* has a finite orbit under A(G)*. (Here dual(iv) Every element of X+ /Xn
groups are identified with their images under the induced embeddings.)

(v) If rl is a limit ordinal, X, inj lim<, X.
(c) There exists a countable ordinal and a collection of A(G)* invariant

subgroups D, of X*, t < such that:

(i) Do Y*,D X*.
(ii) a < q implies D D,.
(iii) Every element of D,+ /D, hasfinite orbit under A(G)*.
(iv) If r is a limit ordinal, D, (J< D.

Proof. (b) (a) It suffices to see that X,+I has relatively discrete spectrum
over X,. This follows from condition (b)(iv), as in the proof of (i) of Theorem
10.6.

(b) = (c) Let D. * *.(x.).
(c)(b) Let X, D,*, and for a < r/, let ,’X,-oX be the map

induced by the inclusion D D,. X, is an affine G-space by Proposition 10.2,
and the remaining assertions follow easily.

(a) = (c) Let {D, Itl < } be a maximal collection of subgroups satisfying
the conditions of (c), with the possible exception of the condition D X*.
This exists by Zorn’s lemma, as in the proof of Theorem 8.7. Let Z D.
Then by Proposition 10.2, Z is an affine G-space, and there are G-homo-
morphisms

x

__
z

_
y

such that qSzba b. We claim Z X. Suppose not. Now X has relatively
generalized discrete spectrum over Y, and hence also over Z by Theorem 8.7
and Proposition 8.6. In particular X is not relatively weakly mixing over Z.
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By Theorem 10.6, there existsfe X*,fq Z*, such that the orbit offin X*/Z*
under A(G)* is finite. Let D+1 {h e X* orbit of h under A(G)* in X*/Z*
is finite}. Then D+1 is an A(G)*-invariant subgroup of t’*, and D+1 De.
By the definition of De+ 1, we see that {D, r/ _< } is not maximal, which is a
contradiction. Thus Z X.

We now use Theorem 10.6 to prove that when G Z, any totally ergodic
affine transformation with generalized discrete spectrum actually has quasi-
discrete spectrum. We begin with a lemma that is a small modification of
Abramov’s uniqueness theorem for transformations with quasi-discrete spectrum
[1]. (See also [7; Theorem 3]).

LEMMA 10.8. Let K and X be compact metric spaces, each with a probability
measure, positive on open sets. Let S and T be totally ergodic measure-preserving
homeomorphisms of K and X respectively. Suppose that S and T have quasi-
discrete spectrum, with quasi-eigenfunction groups Es and Er such that:

(i) Es c C(K), Er c C(X).
(ii) The linear spans [Es] and [Er] are uniformly dense in C(K) and C(X)

respectively.
(iii) The system of quasi-eigenvalues of S and T are equivalent [1], [7].

Then there exists a homeomorphism 4): 1" K such that Sdp dp T.

Proof Under the assumption that the systems of quasi-eigenvalues are
equivalent, Abramov constructs [1; proof of uniqueness theorem] (using
somewhat different notation) a unitary map V: L2(K) L2(1"), such that:

(i) VIEs is a group isomorphism Es Er.
(ii) T*V VS*, where T*, S* are the induced maps in L2.

It follows as in [9; p. 47] or [24; proof of Theorem A], that V (L(K)) L (X)
and that V is an isometry of these Banach spaces. In particular, V:[Es]
[Er] is an involutive, multiplicative isometry (since open sets have positive
measure) of dense *-subalgebras of C(K) and C(1"), and hence is an involutive
multiplicative isometry C(K) C(1"). It follows that there is a homeo-
morphism b: 1" Ksuch that b* V: C(K) C(1"). Since T*qS* qS*S*,
we also have qT Sb.

COROLLARY 10.9. Let T be a totally ergodic affine transformation of a

compact abelian group X, with quasi-discrete spectrum, and whose group of
quasi-eigenfunctions consists of the constant multiples of elements of X*. Then
T is totally minimal [7].

Proof By [7; Theorem 4 and Corollary to Theorem 7], there exist S and K
such that all the hypotheses of Lemma 10.8 are satisfied and such that S is
totally minimal. The conclusion ofLemmal0.8 implies that T is totally minimal.
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THEOREM 10.10. A totally eryodic transformation has quasi-discrete spectrum

if and only if it is isomorphic to a totally ergodic affine transformation on a
compact, connected abelian 9roup with 9eneralized discrete spectrum.

Proof (i) Any totally ergodic transformation with quasi-discrete spectrum
is isomorphic to an affine transformation on a compact, connected abelian
group by a theorem of Abramov [1], and it has generalized discrete spectrum
by Example 9.5.

(ii) Conversely, let T (a, A) be a totally ergodic affine transformation of
a compact connected abelian group X, and assume that T has generalized
discrete spectrum. Consider the set s of all quotient groups Y of X on which T
induces an affine transformation Ty on Y, such that Ty is minimal. We can
order s by setting Y > Z if Z is in turn a quotient of Y. If {Y,} is a totally
ordered collection in s, we claim inj lim is again in sO. T will induce a
transformation on inj lim Y, by Proposition 10.2, since the dual (inj lim Y)*
10 Y* is A*-invariant. Furthermore, T(injlimYD is minimal by the remark
of Furstenberg [5; p. 28] that the inverse limit of minimal transformations is
minimal. By Zorn’s lemma, has a maximal element Y. Now Ty is a minimal
affine transformation on a compact connected abelian group Y. Since Y is
connected, Ty is actually totally minimal [7; p. 310]. It follows from the theorem
of [12] that for each n, T], has quasi-discrete spectrum, and by [11; Theorem 3]
that the quasi-eigenfunctions of T], are exactly the multiples of elements of Y*.
To prove the theorem, it suffices to show X Y. Suppose not. Since X has

generalized discrete spectrum, it has generalized discrete spectrum over Y, and
hence is not relatively weakly mixing over Y. By Theorem 10.6, there exists

f X*,fq Y*, such thatfhas a finite orbit under A* in X*/Y*. Hence, there
is an integer n such that (A*)"(f) =_ fin X*/Y*. Let B be the subgroup of X*
generated by Y*, f, A’f,..., (A*)"-lf Then B is invariant under A*, and for
each element h B, (A")*h =_ h in X*/Y*. Let Z B*. By Proposition 10.2,
we have an induced affine transformation Tz on Z. Furthermore, for h e B,
(T")*h c2h, where c e S and 2 e Y* (here S is the unit circle). Since T], has
quasi-discrete spectrum with quasi-eigenfunctions S. Y*, this implies that
T) also has quasi-discrete spectrum. Since each element of B is a quasi-
eigenfunction, and T) is totally ergodic (being a factor of the totally ergodic
transformation T"), the quasi-eigenfunctions of Z are exactly the elements of
S" B [1, 1.7]. By Corollary 10.9, T) is totally minimal, which implies that Tz
is totally minimal. Since Z -- Y, this contradicts the maximality of Y. Hence
X Y. Therefore, T is minimal on X, and by the theorem of [12], T has
quasi-discrete spectrum.
We conclude this section with another application, in a somewhat different

direction, to quasi-discrete spectrum. Namely, we show how the existence
theorem (6.4) can be applied to give a new proof of Abramov’s existence
theorem for transformations with quasi-discrete spectrum [1, paragraph 3-1.
This theorem has been generalized by Wieting [24, Theorem S] to actions of a



582 ROBERT J. ZIMMER

locally compact abelian group, and it is in this context that we shall work. We
begin by recalling in more detail (see Example 9.5) Wieting’s definition of quasi-
discrete spectrum [24, 3.1]. Let G be locally compact and abelian, and X a
Lebesgue G-space. We assume the action is totally ergodic; i.e., one of the
following equivalent [24, p. 83] statements holds:

(i) The point spectrum is torsion free.
(ii) If H G is a subgroup such that G/H is finite, then H acts ergodically

on X.

Let F F(X)= {f: X C fBorel, If(x)] 1}, with functions identified
if they agree almost everywhere. F is an abelian group under pointwise multi-
plication, and G acts naturally on F by (f. q)(x) f(x7), for f e F, g G. If
7: G --. F, y is called a crossed-homomorphism if 7(9192) (91)((92)9a). Let

F F(X) {,: G F(X) I), is a crossed homomorphism}.

Then F is an abelian group under pointwise multiplication, and h G acts on
F by (7" h)(9) 7(9)" h, where the right side is the action of h on F. Define
the map Q: F --. F by Q(f)(9) (f" 9)If It is easy to check that Q is a G-
homomorphism. The kth order quasi-eigenfunctions are defined inductively as
follows:

Eo {f F If is constant}, Ek (f F[ Q(f)(9) Ek-1 for each 9}.

A totally ergodic G-space X is said to have quasi-discrete spectrum if E Ek
generates L2(X) as a closed subspace. The order of X is the first integer k such
that Ek Ek+ if this exists, and is otherwise.

Bk Q(Ek) is called the group of kth order quasi-eigenvalues. B Bk
is a G-invariant subgroup of F(X) and the existence theorem is meant to answer
the following question: Given an abelian group A on which G acts by homo-
morphisms, and an increasing sequence of G-invariant subgroups Ao =
A1 ’: " A such that A A,, when does there exist a totally ergodic
G-space with quasi-.discrete spectrum such that Ak is (up to compatible iso-
morphisms) the group of kth order quasi-eigenvalues?

Before answering this, we need one more concept. Because G acts ergodically
on X, ker (Q) Eo, which is divisible. Thus, there exists a homomorphic
section of Q, i.e., a homomorphism 4:B E such that Q(4(,)) y for all
e B. Now Q((b.9)) Q(d?(b)’9) for all b, 9, so there is a constant c(b, 9)

such that

c(b, ) (b) 9
(b9)

It is easy to check that c is a cocycle, and that it is multiplicative, i.e.,

c(bxb2, 9) c(b, 9)c(b2, 9).

We call the cocycle defined by the section b.
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Wieting’s generalization of Abramov’s theorem is"

THEOREM 10.11. (Wieting, Abramov). Let A be a torsion free abelian group
on which G acts by homomorphisms. For each n, let

A, {a e A ]N(91)’..." N(g,)(a) 1, for all gl, g. G},

where N(g)" A A is defined by N(g)(a)= (a "g)/a. Suppose further that
there exists a multiplicative cocyele c" A x G --, U(1) (= circle) such that the

G*corresponding map Co A1 --* (= dual of G) defined by co(a)(g) c(a, g) is
injective. Then there exists a totally ergodic G-space X with quasi-discrete
spectrum, and a G-isomorphism ’A --, B such that (A,) B,. Moreover,
the cocycle

d’B G-, U(1), d(b,g) c(-l(b),g)

is the cocycle defined by a section.

Proof We claim it suffices to construct a sequence of G-spaces {X.} so that
the following conditions are satisfied.

(1) There exists a factor G-map p," X, --, X,_ (n > 2). We note that this
induces maps F(X,_I)-* F(X,) and F(X,_I)- F(X.), both of which we
denote by p,*.

(2) X, has quasi-discrete spectrum of order n. Let B" be the group of all
quasi-eigenvalues on X., E" the eigenfunctions. We further suppose that
p,*" B"-1 B,"_ is an isomorphism, where B,"_ is the group of (n 1)st
order quasi-eigenvalues on X,.

(3) There exist G-isomorphisms ," A, -, B" such that

An-1 - Bn-1

A B

commutes.

(4)

(a)

There exists a homomorphism qn" Bn

Q n is the identity.

E" such that"

B" 4," E"
commutes.

(c) If d," B" x G U(1) is defined by d.(b, g) c( l(b), g), then d, is
the cocycle defined by the section b.
In the case where the order of A is n < then X is the space, ,, the maps,
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required in the theorem. (By the order of A, we mean the first integer n such that
A, A,+I.) If order (A)= , let X= injlimX,, and q,:XX, the
associated factor map. It follows easily that X is totally ergodic, has quasi-
discrete spectrum, and using [24, Theorem P], it is clear that the group of nth
order quasi-eigenvalues on X is q ,*(B"). The compatibility conditions (3) and
(4b) allow one to construct a suitable isomorphism and section. Thus, it
remains to show that such a sequence of spaces X, exists. We proceed in-
ductively and begin by constructing X1. From the hypothesis of the theorem,
co(A1) is a countable subgroup of G*, and by Corollary 6.5, there exists a G-
space X1 with discrete spectrum, and this spectrum is co(A 1). We can naturally
identify co(A 1) with B 1, and let 1:A1 B the corresponding isomorphism.
It is easy to check that for any section 1 B1 El. The cocycle defined by b
is just c(-;l(b), 9). We now assume X1,..., X, have been constructed
satisfying the above conditions. We let

F, {F(X,)I(9)E" for eachgG}.

Step 1. We begin by defining a homomorphism : A,+I F,. We first
note that if aA,+l, ((a’g)/a)A, for each 9G. For aA,+l, define
(a) e F, by

It is immediate that is a homomorphism. We now derive some other properties
of that we will need.

(i) Ifa A., p(a)

Proof By the inductive assumption (4c), for a A,, we have

c(a, g) b,(,(a)) .#.
,(,(a) g)

Thus,

O(a)(g) .(.(a))" g
.(.(a))

so p(a) .(a).

Q(dp,,(a))(9)= b,(a)(9)

(ii) isaG-map, i.e., /(a. h) (a)’hforaA,+l,hG.

Proof It suffices to see that

(a. h) (a). h

if(a) if(a)
and since ((a.h)/a) A,, it suffices to see by (i) that

(g) for all g 6 G.
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Now
9(a). h

(g)
d/(a)(g), h

(a) d/(a)(g)

Thus it suffices to show that

Q(O(a)(9))(h)

The left side is

(a.h)((ahg)(_a)_c ,o 4.4,.
a (-’h)(a’9)J

A similar expression can be derived for the right side of equation (**), and thus,
it suffices to see that

(a.h )(a.gh)C ,g C
a a

Since c is multiplicative, this means c(a, h)c(ah, g) c(a, g)c(ag, h). But this
follows from the cocycle identity and the commutativity of G.

(iii) is injective.

Proof If(a) 1, then

is constant for each 9. This implies

1.

Since , is injective, (a.g)/a 1, which implies a A1. So (a) ,(a) 1,
and thus a 1.
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(iv) Let F._ {y e F(X) (g) e EZ_ (-- group of quasi-eigenfunctions
of X. of order n 1)}. Then 0(A.+ 1) c F._ B".

Proof For each g e G, let M(g): F --+ F be defined by M(g)(7) (7"9)/7.
It is easy to check that for 7 e F,_ and gl,..., g, G, M(91),..., M(9,)(7)
1. Since is an injective G-map, it is clear that if O(a) e F,_I, then a e A,.
The result follows.

Step 2. We now construct the space X,+ and verify the inductive con-
ditions. Let S be the set of equivalence classes of one-dimensional cocycle
representations of (X,, G). For each ,/e F(X,), we have an associated element
[%] S, defined by %(x, g) /(g)(x). Furthermore, this map : F(X,) --+ S
is a homomorphism. By Corollary 6.5, there exists an ergodic extension
X,+I, p,+I:X,+I--+ X, with relatively elementary spectrum such that the
natural (X,, G) cocycle representation on LZ(x,+I) is equivalent to

(i) We now claim *P,+I(O(A,+I)) = Q(F(X,+I)). Let 7 e ,(A,+I), and
choose anyfe Lz(x,+ 1) such that [fix)[ 1, andf is in the subspace of LZ(x)
corresponding to 0. Defining fl: X, x G C by

fl(p.+ ,(x), ) f (x),

we see that fl is a cocycle cohomologous to . Thus, there exists a Borel
function 0: X, U(1) such that fl(x, y) O(x)%(x, 9)0(x9) -1 (all 9, almost
all x e X,). Then a simple calculation shows

O((0 p,+ 1) "f) *P,+ 10/).

(ii) Let D Q-I(p.,+I(O(A,+I))). It is clear that D is a G-invariant sub-
group of F(X,+ 1). Thus, the finite linear combinations of elements of D form
a G-invariant *-subalgebra of L(X,+ 1). By Corollary 2.2, there exists a factor
G-space Z of X,+I such that the closed subspace spanned by D in LZ(x,+ 1) is
LZ(z). Clearly, p,+* I(E") c D, so we have a sequence of factor maps X,+I --+

Z --+ X, (modulo invariant null sets) whose composition is p,+l. For each
e O(A,+ 1), the function (0 p,+ 1)(f) constructed above is in both D and the

one-dimensional field (over X,) corresponding to [%]. From this it follows that
this field must be contained in LZ(z). Since the union of these fields spans
LZ(x,+ 1), we have LZ(z) L2(X,+ 1). We thus know that D spans Lz(x,+ 1).
Since qt(A,+ 1) c F,, it follows that X,+ has quasi-discrete spectrum. Because
O(A,+ 1) m F._ B" (see (,iv) above), it follows that elements of

Q-l(p,.+ 1((A,+1 A,)))

are (n + 1)st order but not nth order quasi-eigenvalues. By [24, Theorem P],
D contains all quasi-eigenfunctions. Defining ’,+1 P,*+I , it is easy to
see that the inductive assumptions (1), (2), (3) hold. It remains only to construct
a section b,+ B"+ --+ E"+ satisfying (4).
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Q. E,+ B,+ has a divisible kernel, and Pn+* ln(Pn+ 1)- 1. B,+
,+1 B,+ Byis a homomorphic section of Q defined on the subgroup B,

on+l[10, A.8] it follows that this extends to a homomorphic section ,+
E"+. Thus, (a) and (b) of (4) are satisfied. To verify (c), apply p,*+l to
equation (,). We obtain

,+ l(a)(g) c(a, g)n+ ln+ (V)
Since b,+ is a section of Q, we can write this as

bn+ (tn+ l(a)) g
c(a, g)

Hence

c(a, g) c.+ ,(.+ ,(a)) g

b.+,(.+,(a) .g)
This completes the proof.
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