M-PROJECTIVE AND STRONGLY *M*-PROJECTIVE MODULES

BY

K. VARADARAJAN¹

Introduction

Given a module M over a ring R, G. Azumaya [1] introduced the dual notions of M-projective and M-injective modules. These concepts have actually led M. S. Shrikhande to a study of hereditary and cohereditary modules [5]. More recently Azumaya, Mbuntum and the present author obtained necessary and sufficient conditions for the direct sum $\bigoplus_{\alpha \in J} A_{\alpha}$ of a family of modules to be M-injective [2]. While R-injective modules are the same as injective modules over R, the class of R-projective modules in the sense of Azumaya in general is larger than the class of projective R-modules. In this paper we introduce the notion of a strongly M-projective module and the associated notion of a strong M-projective cover. Next we investigate strong M-projective covers. We show that if every module possesses a strong M-projective cover then $R/\mathfrak{A}(M)$ is (left) perfect, where $\mathfrak{A}(M)$ is the annihilator of M. If $R/\mathfrak{A}(M)$ is perfect, we show that every R-module A with $t_M(A) = 0$ possesses a strong M-projective cover, where

$$t_M(A) = \{x \in A \mid f(x) = 0 \text{ for all } f \in \text{Hom } (A, M) \}.$$

Another application of the ideas here is the result that if $\mathfrak{A}(M) = 0$, then an *R*-module *B* is strongly *M*-projective iff *B* is projective. In particular if *R* is (left) perfect and $\mathfrak{A}(M) = 0$, then an *R*-module *B* is *M*-projective iff *B* is actually projective. Since $\mathfrak{A}(R) = 0$, we can regard this result as a generalization of the "known" result that when *R* is perfect an *R*-module is *R*-projective iff it is projective. It will be interesting to characterise the rings with the property that *R*-projective modules are the same as the projective modules over *R*.

1. Preliminaries

Throughout this paper R denotes a ring with $1 \neq 0$, R-mod the category of unital left modules. All the modules we deal with are unital left modules. M denotes a fixed object in R-mod. We recall briefly the concepts of M-projective and M-injective modules introduced by G. Azumaya and state two results due to him [1].

DEFINITION 1.1. A module P is called M-projective if given any eipmorphism $\phi: M \to N$ and any $f: P \to N$, there exists a $g: P \to M$ such that $\phi \circ g = f$.

Received July 2, 1975.

¹ Research done while the author was partially supported by a NRC grant.

An *M*-injective module is defined dually.

DEFINITION 1.2. An epimorphism $\psi: A \to B$ is called an *M*-epimorphism if there exists a map $h: A \to M$ such that ker $\psi \cap \ker h = 0$.

M-monomorphisms are defined dually.

PROPOSITION 1.3. [1] Let $P \in R$ -mod. Then the following statements are equivalent.

(1) *P* is *M*-projective.

(2) Given any M-epimorphism $\psi: A \to B$ and any $f: P \to B$, there exists a $g: P \to A$ such that $\psi \circ g = f$.

(3) Every M-epimorphism onto P splits.

The dual of this proposition characterises *M*-injective modules.

DEFINITION 1.4. $C_p(M)$ is the class of all *M*-projective modules, $C_i(M)$ is the class of all *M*-injective modules. For any $A \in R$ -mod,

 $C^{p}(A) = \{M \in R \text{-mod} \mid A \text{ is } M \text{-projective}\}$

and

 $C^{i}(A) = \{M \in R \text{-mod} \mid A \text{ is } M \text{-injective}\}.$

PROPOSITION 1.5. [1] (1) $C_p(M)$ is closed under the formation of direct sums and direct summands.

(2) $C_i(M)$ is closed under the formation of direct products and direct factors.

(3) $C^{p}(A)$ is closed under submodules, homomorphic images and formation of finite direct sums. If A has a projective cover, $C^{p}(A)$ is closed under the formation of arbitrary direct products (and hence arbitrary direct sums as well).

(4) $C^{i}(A)$ is closed under submodules, homomorphic images and arbitrary direct sums.

In this paper the term R-projective module will be used to denote a module which is R-projective in the sense of Definition 1.1. As has already been pointed out in [2] the class of R-projective modules in general is larger than the class of projective R-modules.

LEMMA 1.6. Let $A \in C_p(M)$, $K \subset A$ and $i: K \to A$ the inclusion. If

$$i^*$$
: Hom $(A, M) \rightarrow$ Hom (K, M)

is the zero map then $A/K \in C_p(M)$.

Proof. Write B for A/K and let $\eta: A \to B$ denote the canonical quotient map. Let $\phi: M \to N$ be any epimorphism and $f: B \to N$ any map. Since $A \in C_p(M)$, there exists a map $g: A \to M$ such that $\phi \circ g = f \circ \eta$. Now, $g \circ i = i^*(g) = 0$. Hence g induces a map $\bar{g}: B \to M$ satisfying $\bar{g} \circ \eta = g$. It is clear that $\phi \circ \bar{g} = f$.

Recall that an epimorphism $\alpha: A \to B$ is called minimal if Ker α is small in A.

LEMMA 1.7. Any minimal M-epimorphism $\alpha: A \to B$ with $B \in C_p(M)$ is an isomorphism.

Proof. By (3) of Proposition 1.3, α splits. Thus ker α is a direct summand of A. Since ker α is small in A we see that ker $\alpha = 0$.

LEMMA 1.8. Let

$$0 \longrightarrow K \xrightarrow{i} A \xrightarrow{\phi} B \longrightarrow 0$$

be exact with i(K) small in A. If $B \in C_p(M)$, then i^* : Hom $(A,M) \rightarrow$ Hom (K, M) is the zero map.

Proof. Let $f \in \text{Hom}(A, M)$. Writing L for $K \cap \ker f$ we get an exact sequence

 $0 \longrightarrow K/L \xrightarrow{\tilde{\iota}} A/L \xrightarrow{\bar{\phi}} B \longrightarrow 0$

where \bar{i} and $\bar{\phi}$ are induced by *i* and ϕ respectively. If $\bar{f}: A/L \to M$ is induced by f, it is clear that ker $\bar{f} \cap$ ker $\bar{\phi} = 0$. Thus $\bar{\phi}: A/L \to B$ is an *M*-epimorphism. Moreover $\bar{i}(K/L)$ is small in A/L. Lemma 1.7 now implies that $\bar{\phi}$ is an isomorphism and hence K/L = 0. Thus, L = K and $i^*(f) = f \circ i = f/K = 0$.

2. Strongly M-projective modules

Given any set J and any $A \in R$ -mod, we write A^J for the direct product $\prod_{\alpha \in J} A_{\alpha}$ and $A^{(J)}$ for the direct sum $\bigoplus_{\alpha \in J} A_{\alpha}$, where $A_{\alpha} = A$ for each $\alpha \in J$. The annihilator of A will be denoted by $\mathfrak{A}(A)$.

DEFINITION 2.1 A module A is called strongly M-projective if $A \in C_p(M^J)$ for every indexing set J.

Trivially every projective module is strongly *M*-projective for every $M \in R$ -mod. From the second half of (3) of Proposition 1.5 we get the following as an immediate consequence.

LEMMA 2.2 Let $A \in C_p(M)$. If A possesses a projective cover, then A is strongly M-projective.

DEFINITION 2.3. A submodule K of A is said to be M-independent in A if given any $x \neq 0$ in K, there exists an $f \in \text{Hom}(A, M)$ such that $f(x) \neq 0$.

If K = 0, the condition stated in Definition 2.3 is emptily satisfied. Also if $L \subset K \subset B \subset A$ and K is M-independent in A, then trivially L is seen to be M-independent in B.

DEFINITION 2.4. A homomorphism $f: A \rightarrow B$ is called *M*-independent if ker f is *M*-independent in *A*.

LEMMA 2.5. Let $\phi: A \to B$ be an *M*-independent epimorphism and $L = \ker \phi$. Then ϕ is an M^L -epimorphism. *Proof.* For any $x \neq 0$ in L let $f_x: A \to M$ be such that $f_x(x) \neq 0$. Let $f_0: A \to M$ be the zero map. Let $h: A \to M^L$ be defined by $h(a) = (f_x(a))_{x \in L}$. Then ker $h \cap \ker \phi = 0$.

For any $A \in R$ -mod, let $t_M(A) = \{x \in A \mid f(x) = 0 \text{ for all } f \in \text{Hom } (A, M)\}$. Then $t_M(R) = \mathfrak{A}(M)$. It is clear that A is M-independent in itself if and only if $t_M(A) = 0$.

DEFINITION 2.6. An object $A \in R$ -mod is called *M*-independent if $t_M(A) = 0$.

Remark 2.7. (a) Given $x \in A$ with $x \notin t_M(A)$, there exists an $f: A \to M$ with $f(x) \neq 0$. Since $f/t_M(A) = 0$, we get an induced map $\overline{f}: A/t_M(A) \to M$. Clearly $\overline{f}(x + t_M(A)) \neq 0$. Thus $A/t_M(A)$ is *M*-independent in itself. In otherwords $t_M(A/t_M(A)) = 0$. For any $g: A \to B$ it is clear that $g(t_M(A)) \subset t_M(B)$. Thus t_M is a radical on *R*-mod in the sense of Bo-Stenström [6, Chap 1]. However, t_M is neither left exact, nor idempotent. For instance consider $t = t_{Z_p}$ on *Z*-mod, where $Z_p = Z/pZ$. Then t(Z) = pZ, $t(pZ) = p^2Z$. Thus

$$t(Z) \cap pZ = pZ \neq p^2Z = t(pZ).$$

Also $t(t(Z)) = p^2 Z \neq t(Z)$. This is just to impress upon the reader that *M*-projectivity and *M*-injectivity can not in general be "subsumed" under "torsion theories".

(b) When M is injective t_M is the radical associated to a hereditary torsion theory on R-mod.

It is easily seen that every $A \in R$ -mod is *M*-projective iff *M* is semi-simple iff every $A \in R$ -mod is *M*-injective. The next theorem gives conditions under which every $A \in R$ -mod is strongly *M*-projective.

THEOREM 2.8. The following statements are equivalent.

- (1) Every R-module is strongly M-projective.
- (2) Every cyclic R-module is strongly M-projective.
- (3) $R/\mathfrak{A}(M)$ is a semisimple Artinian ring.
- (4) M^{J} is a semisimple *R*-module for every indexing set *J*.

Proof. (1) \Rightarrow (2) is trivial.

(2) \Rightarrow (3). Any left ideal of $R/\mathfrak{A}(M)$ is of the form $I/\mathfrak{A}(M)$ with I a left ideal of R satisfying $I \supset \mathfrak{A}(M)$. Let $\eta: R/\mathfrak{A}(M) \rightarrow R/I$ denote the quotient map. Then ker $\eta = I/\mathfrak{A}(M)$. Since $R/\mathfrak{A}(M)$ is M-independent in itself it follows that $I/\mathfrak{A}(M)$ is M-independent in $R/\mathfrak{A}(M)$. If we write K for $I/\mathfrak{A}(M)$, from Lemma 2.5 it follows that η is an M^K -epimorphism. Assumption (2) implies that $R/I \in C_p(M^K)$. An application of (3), Proposition 1.3 shows that $\eta: R/\mathfrak{A}(M) \rightarrow$ R/I splits in R-mod and hence in $R/\mathfrak{A}(M)$ -mod. Thus $I/\mathfrak{A}(M)$ is a direct summand of $R/\mathfrak{A}(M)$ as an $R/\mathfrak{A}(M)$ -module.

(3) \Rightarrow (4). Since $\mathfrak{A}(M)M^J = 0$ (for any indexing set J) we can regard M^J as an $R/\mathfrak{A}(M)$ -module. The R-submodules of M^J are the same as the $R/\mathfrak{A}(M)$

submodules of M^J . The semisimplicity of $R/\mathfrak{A}(M)$ implies that M^J is semisimple as an $R/\mathfrak{A}(M)$ -module and hence as an R-module also.

(4) \Rightarrow (1) is trivial.

Remark 2.9. $M = \bigoplus_p Z_p$ (direct sum over all the primes p) is an example of a semisimple Z-module for which $Z/\mathfrak{A}(M) = Z$ is not semisimple.

PROPOSITION 2.10. If every M-independent R-module is injective then $R/\mathfrak{A}(M)$ is a semisimple ring.

Proof. Since $R/\mathfrak{A}(M)$ is *M*-independent, any left ideal of $R/\mathfrak{A}(M)$ being a submodule of $R/\mathfrak{A}(M)$ is *M*-independent, and hence injective as an *R*-module. Thus every left ideal of $R/\mathfrak{A}(M)$ is an *R*-direct summand and hence an $R/\mathfrak{A}(M)$ direct summand of $R/\mathfrak{A}(M)$.

LEMMA 2.11. For any $A \in R$ -mod we have $\mathfrak{A}(M)A \subset t_M(A)$.

Proof. Trivial.

Remark 2.12. If A is any M-independent R-module, from Lemma 2.11 we see that $\mathfrak{A}(M)A = 0$. Hence A can be regarded as an $R/\mathfrak{A}(M)$ -module in a natural way. If $R/\mathfrak{A}(M)$ is semisimple Artin (as a ring) then A is injective as an $R/\mathfrak{A}(M)$ -module. But in general A need not be injective as an R-module. Thus the converse of Proposition 2.10 is not true. For instance let $M = Z_p$ in Z-mod and $A = Z_p$. Then $\mathfrak{A}(M) = pZ$ and $Z/\mathfrak{A}(M) = Z_p$ is a field. Also $t_M(Z_p) = t_{Z_p}(Z_p) = 0$. However Z_p is not injective as a Z-module.

When M is an injective R-module the converse of Proposition 2.10 is valid.

PROPOSITION 2.13. Let M be an injective R-module such that $R/\mathfrak{A}(M)$ is a semisimple ring. Then any M-independent R-module is injective

Proof. Let A be any M-independent R-module. Let I be any left ideal in R and $f: I \to A$ any map. We will show that $f(I \cap \mathfrak{A}(M)) = 0$ using the fact that M is an injective R-module. Suppose on the contrary $f(\lambda) \neq 0$ for some $\lambda \in I \cap \mathfrak{A}(M)$. Since $t_M(A) = 0$ we can find a $g: A \to M$ with $g(f(\lambda)) \neq 0$. Since M is injective, there exists an $h: R \to M$ such that $h \mid I = g \circ f$. Then $0 \neq g(f(\lambda)) = h(\lambda) = h(\lambda \cdot 1) = \lambda h(1) = 0$ since $\lambda \in \mathfrak{A}(M)$ and $h(1) \in M$. This contradiction shows that $f(I \cap \mathfrak{A}(M)) = 0$.

Thus f induces a map $\overline{f}: I/I \cap \mathfrak{A}(M) \to A$. Clearly \overline{f} is an $R/\mathfrak{A}(M)$ -map. The semisimplicity of $R/\mathfrak{A}(M)$ implies that \overline{f} can be extended to an $R/\mathfrak{A}(M)$ homomorphism $\theta: R/\mathfrak{A}(M) \to A$. If $\eta: R \to R/\mathfrak{A}(M)$ is the canonical quotient map, then it is clear that $\theta \circ \eta: R \to A$ is an R-homomorphism extending $f: I \to A$. Thus A is an injective R-module.

Combining Propositions 2.10 and 2.13 we get the following:

COROLLARY 2.14. When M is injective, each of the statements (1), (2), (3), (4) of Theorem 2.8 is equivalent to (5) stated below:

(5) Every M-independent R-module is injective.

K. VARADARAJAN

3. Strong *M*-projective covers

DEFINITION 3.1. A minimal epimorphism $\alpha: A \rightarrow B$ is called a strong *M*-projective cover if

- (1) A is strongly M-projective and
- (2) α is *M*-independent (in the sense of Definition 2.4)

As in the case of projective covers, strong M-projective covers do not exist in general. Conditions for existence will be investigated presently. But before that we will prove the essential uniqueness of a strong M-projective cover when it exists.

LEMMA 3.2. Suppose $\alpha: A \to B$ is a strong M-projective cover and $\pi: P \to B$ an epimorphism with P strongly M-projective. Then there exists an epimorphism $h: P \to A$ satisfying $\alpha \circ h = \pi$.

Proof. Let $L = \ker \alpha$. Since α is *M*-independent, from Lemma 2.5 we see that α is an M^L -epimorphism. Since $P \in C_p(M^L)$, by (2) of Proposition 1.3 we get a map $h: P \to A$ satisfying $\alpha \circ h = \pi$. Since π is onto, we get Imh + L = A. The smallness of L in A gives Imh = A.

PROPOSITION 3.3. Suppose $\alpha_1: A_1 \to B$, $\alpha_2: A_2 \to B$ are any two strong *M*-projective covers of *B*. Then there exists an isomorphism $h: A_1 \to A_2$ such that $\alpha_2 \circ h = \alpha_1$.

Proof. By Lemma 3.2, there exists an epimorphism $h: A_1 \to A_2$ satisfying $\alpha_2 \circ h = \alpha_1$. If $K_1 = \ker \alpha_1$, $K = \ker h$ from $\alpha_2 \circ h = \alpha_1$ we immediately get $K \subset K_1$. Hence K is M-independent in A_1 and is also small in A_1 . Lemma 2.5 now implies that h is a minimal M^K -epimorphism. Since $A_2 \in C_p(M^K)$, an application of Lemma 1.7 yields that h is an isomorphism.

We next show that any $B \in R$ -mod which possesses a projective cover automatically admits a strong *M*-projective cover. We will actually indicate a method of constructing a strong *M*-projective cover of *B* from a given projective cover of *B*.

THEOREM 3.4. Suppose B has a projective cover $\pi: P \to B$. Let $L = \ker \pi$ and

$$T = \{x \in L \mid f(x) = 0 \text{ for all } f \in \text{Hom } (P, M)\}.$$

Let $\alpha: P/T \to B$ be the map induced by π . Then $\alpha: P/T \to B$ is a strong M-projective cover of B.

Proof. If $i: T \to P$ denotes the inclusion of T in P, from the very definition of T we have i^* : Hom $(P, M) \to$ Hom (T, M) to be the zero homomorphism. By Lemma 1.6 we see that $P/T \in C_p(M)$. Clearly T is small in P. Hence the canonical quotient map $\eta: P \to P/T$ is a projective cover of P/T. Lemma 2.2 now yields $P/T \in C_p(M^J)$ for every set J. It is easily seen that L/T is M-independent in P/T. In addition L/T is small in P/T. This proves that $\alpha: P/T \to B$ is a strong *M*-projective cover of *B*.

COROLLARY 3.5. If R is left perfect (resp. semiperfect) every module (resp. cyclic module) over R possesses a strong M-projective cover.

PROPOSITION 3.6. Suppose $M \in R$ -mod satisfies $\mathfrak{A}(M) = 0$. Then $B \in R$ -mod is strongly M-projective iff B is projective.

Proof. The implication \Leftarrow is trivial. As for the implication \Rightarrow , let B be strongly M-projective. Let

 $0 \longrightarrow K \xrightarrow{i} F \xrightarrow{\phi} B \longrightarrow 0$

be an exact sequence in *R*-mod with *F* free. Let $\{e_{\alpha}\}_{\alpha \in J}$ be as basis for *F*. Suppose $0 \neq x \in k$. Then $x = \sum \lambda_{\alpha} e_{\alpha}$ with at least one $\lambda_{\alpha} \neq 0$. Since $\mathfrak{A}(M) = 0$ there exists a $g_{\alpha}: R \to M$ with $g_{\alpha}(\lambda_{\alpha}) \neq 0$. Then $h: F \to M$ given by $h \mid Re_{\alpha} = g_{\alpha}$, $h \mid Re_{\beta} = 0$ for $\beta \neq \alpha$ clearly satisfies $h(x) \neq 0$. Thus *K* is *M*-independent in *F*. By Lemma 2.5, ϕ is an M^{K} -epimorphism. Since $B \in C_{p}(M^{K})$, by (3) of Proposition 1.3 we see that ϕ splits. Hence *B* is projective.

COROLLARY 3.7. Let $M \in R$ -mod be such that $\mathfrak{A}(M) = 0$. Suppose B is an R-module possessing a projective cover. Then B is projective iff B is M-projective.

Proof. We have only to prove the implication \Leftarrow . This is immediate from Lemma 2.2 and Proposition 3.6.

Any *R*-module *B* satisfying $\mathfrak{A}(M)B = 0$ can be regarded as an $R/\mathfrak{A}(M)$ -module. In particular this is the case if $t_M(B) = 0$ by Lemma 2.11.

LEMMA 3.8. Suppose $B \in R$ -mod satisfies $\mathfrak{A}(M)B = 0$. Then B is strongly M-projective iff as an $R/\mathfrak{A}(M)$ -module B is projective.

Proof. From $\mathfrak{A}(M)M^J = 0$ we see that M^J is an $R/\mathfrak{A}(M)$ -module, (whatever be the indexing set J). Also it is clear that for any $A \in R$ -mod satisfying $\mathfrak{A}(M) = 0$, the R-submodules of A are the same as the $R/\mathfrak{A}(M)$ -submodules of A. It follows from this comment that B is strongly M-projective in R-mod iff B is strongly M-projective in $R/\mathfrak{A}(M)$ -mod. The annihilator $\mathfrak{A}_{R/\mathfrak{A}(M)}(M)$ of M as an $R/\mathfrak{A}(M)$ -module is clearly seen to be zero. Lemma 3.8 now follows from Proposition 3.6.

THEOREM 3.9. The following statements are equivalent.

(1) Every $B \in R$ -mod satisfying $\mathfrak{A}(M)B = 0$, possesses a strong M-projective cover (in R-mod).

(2) $R/\mathfrak{A}(M)$ is left perfect.

Proof. (1) \Rightarrow (2). Let $B \in R/\mathfrak{A}(M)$ -mod. Then B regarded as an R-module satisfies $\mathfrak{A}(M)B = 0$. Let $\alpha: A \to B$ be a strong M-projective cover of B in R-mod. Let $K = \ker \alpha$. From $\alpha(\mathfrak{A}(M)A) \subset \mathfrak{A}(M)B = 0$ we see that

 $\mathfrak{A}(M)A \subset K$. Hence α induces a map $\overline{\alpha}: A/\mathfrak{A}(M)A \to B$. Now, $A/\mathfrak{A}(M)A$ is an $R/\mathfrak{A}(M)$ -module and ker $\overline{\alpha}: K/\mathfrak{A}(M)A$ is small in $A/\mathfrak{A}(M)A$. Thus $\overline{\alpha}$ is a minimal epimorphism in $R/\mathfrak{A}(M)$ -mod. If $i: \mathfrak{A}(M)A \to A$ denotes the inclusion, it is clear that

$$i^*$$
: Hom $(A, M) \to \operatorname{Hom}_R(\mathfrak{A}(M)A, M)$

is zero. Hence for any indexing set J, the map i^* : Hom_R $(A, M^J) \rightarrow$ Hom_R $(\mathfrak{A}(M)A, M^J)$ is zero. Since A is strongly M-projective as an R-module, applying Lemma 1.6 we see that $A/\mathfrak{A}(M)A$ is strongly M-projective in R-mod. Now Lemma 3.8 implies that $A/\mathfrak{A}(M)A$ is a projective $R/\mathfrak{A}(M)$ -module. Thus $\bar{\alpha}: A/\mathfrak{A}(M)A \rightarrow B$ is a projective cover of B in $R/\mathfrak{A}(M)$ -mod. This proves that $R/\mathfrak{A}(M)$ is left perfect.

(2) \Rightarrow (1). Let $B \in R$ -mod be such that $\mathfrak{A}(M)B = 0$. Let $\pi: P \to B$ be a projective cover of B in $R/\mathfrak{A}(M)$ -mod. Then P is an $R/\mathfrak{A}(M)$ -direct summand and hence an R-direct summand of $\bigoplus_{\alpha \in S} R/\mathfrak{A}(M)$ for some set S. If $i: \mathfrak{A}(M) \to R$ denotes the inclusion, clearly i^* : Hom_R $(R, M) \to$ Hom_R $(\mathfrak{A}(M), M)$ is zero and hence

$$i^*$$
: Hom_R $(R, M^J) \rightarrow$ Hom_R $(\mathfrak{A}(M), M^J)$

is zero for every set J. Since R is free it is strongly M-projective in R-mod. By Lemma 1.6 we see that $R/\mathfrak{A}(M)$ is strongly M-projective in R-mod. From (1) of Proposition 1.5 it follows that P is strongly M-projective in R-mod.

Now $R/\mathfrak{A}(M)$ is *M*-independent. From this it follows immediately that $\bigoplus_{\alpha \in S} R/\mathfrak{A}(M)$ and hence *P* are *M*-independent. If $K = \ker \alpha$, then *K* is *M*-independent in *P* (by the comments following Definition 2.3). Thus $\pi: P \to B$ is a strong *M*-projective cover of *B* in *R*-mod.

Obvious modifications in the proof of Theorem 3.9 yield:

THEOREM 3.10. The following statements are equivalent.

(1) Every cyclic $B \in R$ -mod satisfying $\mathfrak{A}(M)B = 0$ possesses a strong M-projective cover as an R-module.

(2) $R/\mathfrak{A}(M)$ is semiperfect.

PROPOSITION 3.11. The following statements are equivalent.

(1) The direct product $\prod_{\alpha \in J} B_{\alpha}$ of any family B_{α} of strongly M-projective *R*-modules with $\mathfrak{A}(M)B_{\alpha} = 0$ for all $\alpha \in J$ is strongly M-projective.

(2) $(R/\mathfrak{A}(M))^J$ is strongly M-projective for every indexing set J.

(3) $R/\mathfrak{A}(M)$ is left perfect, and any finitely generated right ideal of $R/\mathfrak{A}(M)$ is finitely related.

Proof. Immediate consequence of Theorem 3.3 of [4] and Lemma 3.8.

References

- 1. G. AZUMAYA, M-projective and M-injective modules (Unpublished).
- 2. G. AZUMAYA, F. MBUNTUM AND K. VARADARAJAN, On M-projective and M-injective modules, Pacific Math, vol. 59 (1975), pp. 9–16.

- 3. H. BASS, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc., vol. 95 (1960), pp. 466–488.
- 4. S. U. CHASE, Direct products of modules, Trans. Amer. Math. Soc., vol. 97 (1960), pp. 457-473.
- 5. M. S. SHRIKHANDE, On hereditary and cohereditary modules, Canadian J. Math., vol. 25 (1973), pp. 892–896.
- 6. Bo-STENSTRÖM, *Rings and modules of quotients*, Lecture Notes in Math., vol. 237, Springer-Verlag, N.Y., 1971.

THE UNIVERSITY OF CALGARY CALGARY, ALBERTA