M-PROJECTIVE AND STRONGLY M-PROJECTIVE MODULES

BY
K. Varadarajan ${ }^{1}$
Introduction

Given a module M over a ring R, G. Azumaya [1] introduced the dual notions of M-projective and M-injective modules. These concepts have actually led M. S. Shrikhande to a study of hereditary and cohereditary modules [5]. More recently Azumaya, Mbuntum and the present author obtained necessary and sufficient conditions for the direct sum $\oplus_{\alpha \in J} A_{\alpha}$ of a family of modules to be M-injective [2]. While R-injective modules are the same as injective modules over R, the class of R-projective modules in the sense of Azumaya in general is larger than the class of projective R-modules. In this paper we introduce the notion of a strongly M-projective module and the associated notion of a strong M-projective cover. Next we investigate strong M-projective covers. We show that if every module possesses a strong M-projective cover then $R / \mathfrak{H}(M)$ is (left) perfect, where $\mathfrak{M l}(M)$ is the annihilator of M. If $R / \mathfrak{H}(M)$ is perfect, we show that every R-module A with $t_{M}(A)=0$ possesses a strong M-projective cover, where

$$
t_{M}(A)=\{x \in A \mid f(x)=0 \text { for all } f \in \operatorname{Hom}(A, M)\}
$$

Another application of the ideas here is the result that if $\mathfrak{A l}(M)=0$, then an R-module B is strongly M-projective iff B is projective. In particular if R is (left) perfect and $\mathfrak{A}(M)=0$, then an R-module B is M-projective iff B is actually projective. Since $\mathfrak{N H}(R)=0$, we can regard this result as a generalization of the "known" result that when R is perfect an R-module is R-projective iff it is projective. It will be interesting to characterise the rings with the property that R-projective modules are the same as the projective modules over R.

1. Preliminaries

Throughout this paper R denotes a ring with $1 \neq 0, R$-mod the category of unital left modules. All the modules we deal with are unital left modules. M denotes a fixed object in R-mod. We recall briefly the concepts of M projective and M-injective modules introduced by G. Azumaya and state two results due to him [1].

Definition 1.1. A module P is called M-projective if given any eipmorphism $\phi: M \rightarrow N$ and any $f: P \rightarrow N$, there exists a $g: P \rightarrow M$ such that $\phi \circ g=f$.

[^0]An M-injective module is defined dually.
Definition 1.2. An epimorphism $\psi: A \rightarrow B$ is called an M-epimorphism if there exists a map $h: A \rightarrow M$ such that ker $\psi \cap \operatorname{ker} h=0$.
M-monomorphisms are defined dually.
Proposition 1.3. [1] Let $P \in R$-mod. Then the following statements are equivalent.
(1) P is M-projective.
(2) Given any M-epimorphism $\psi: A \rightarrow B$ and any $f: P \rightarrow B$, there exists a $g: P \rightarrow A$ such that $\psi \circ g=f$.
(3) Every M-epimorphism onto P splits.

The dual of this proposition characterises M-injective modules.
Definition 1.4. $\quad C_{p}(M)$ is the class of all M-projective modules, $C_{i}(M)$ is the class of all M-injective modules. For any $A \in R$-mod,

$$
C^{p}(A)=\{M \in R-\bmod \mid A \text { is } M \text {-projective }\}
$$

and

$$
C^{i}(A)=\{M \in R-\bmod \mid A \text { is } M \text {-injective }\} .
$$

Proposition 1.5. [1] (1) $\quad C_{p}(M)$ is closed under the formation of direct sums and direct summands.
(2) $\quad C_{i}(M)$ is closed under the formation of direct products and direct factors.
(3) $C^{p}(A)$ is closed under submodules, homomorphic images and formation of finite direct sums. If A has a projective cover, $C^{p}(A)$ is closed under the formation of arbitrary direct products (and hence arbitrary direct sums as well).
(4) $C^{i}(A)$ is closed under submodules, homomorphic images and arbitrary direct sums.

In this paper the term R-projective module will be used to denote a module which is R-projective in the sense of Definition 1.1. As has already been pointed out in [2] the class of R-projective modules in general is larger than the class of projective R-modules.

Lemma 1.6. Let $A \in C_{p}(M), K \subset A$ and $i: K \rightarrow A$ the inclusion. If

$$
i^{*}: \operatorname{Hom}(A, M) \rightarrow \operatorname{Hom}(K, M)
$$

is the zero map then $A / K \in C_{p}(M)$.
Proof. Write B for A / K and let $\eta: A \rightarrow B$ denote the canonical quotient map. Let $\phi: M \rightarrow N$ be any epimorphism and $f: B \rightarrow N$ any map. Since $A \in C_{p}(M)$, there exists a map $g: A \rightarrow M$ such that $\phi \circ g=f \circ \eta$. Now, $g \circ i=i^{*}(g)=0$. Hence g induces a $\operatorname{map} \bar{g}: B \rightarrow M$ satisfying $\bar{g} \circ \eta=g$. It is clear that $\phi \circ \bar{g}=f$.

Recall that an epimorphism $\alpha: A \rightarrow B$ is called minimal if $\operatorname{Ker} \alpha$ is small in A.

Lemma 1.7. Any minimal M-epimorphism $\alpha: A \rightarrow B$ with $B \in C_{p}(M)$ is an isomorphism.

Proof. By (3) of Proposition 1.3, α splits. Thus ker α is a direct summand of A. Since ker α is small in A we see that $\operatorname{ker} \alpha=0$.

Lemma 1.8. Let

$$
0 \longrightarrow K \xrightarrow{i} A \xrightarrow{\phi} B \longrightarrow 0
$$

be exact with $i(K)$ small in A. If $B \in C_{p}(M)$, then $i^{*}: \operatorname{Hom}(A, M) \rightarrow$ Hom (K, M) is the zero map.

Proof. Let $f \in \operatorname{Hom}(A, M)$. Writing L for $K \cap \operatorname{ker} f$ we get an exact sequence

$$
0 \longrightarrow K / L \xrightarrow{i} A / L \xrightarrow{\bar{\Phi}} B \longrightarrow 0
$$

where i and $\bar{\phi}$ are induced by i and ϕ respectively. If $\bar{f}: A / L \rightarrow M$ is induced by f, it is clear that $\operatorname{ker} \bar{f} \cap \operatorname{ker} \bar{\phi}=0$. Thus $\bar{\phi}: A / L \rightarrow B$ is an M-epimorphism. Moreover $\bar{i}(K / L)$ is small in A / L. Lemma 1.7 now implies that $\bar{\phi}$ is an isomorphism and hence $K / L=0$. Thus, $L=K$ and $i^{*}(f)=f \circ i=f / K=0$.

2. Strongly M-projective modules

Given any set J and any $A \in R$-mod, we write A^{J} for the direct product $\prod_{\alpha \in J} A_{\alpha}$ and $A^{(J)}$ for the direct sum $\oplus_{\alpha \in J} A_{\alpha}$, where $A_{\alpha}=A$ for each $\alpha \in J$. The annihilator of A will be denoted by $\mathfrak{A}(A)$.

Definition 2.1 A module A is called strongly M-projective if $A \in C_{p}\left(M^{J}\right)$ for every indexing set J.

Trivially every projective module is strongly M-projective for every $M \in R$ mod. From the second half of (3) of Proposition 1.5 we get the following as an immediate consequence.

Lemma 2.2 Let $A \in C_{p}(M)$. If A possesses a projective cover, then A is strongly M-projective.

Definition 2.3. A submodule K of A is said to be M-independent in A if given any $x \neq 0$ in K, there exists an $f \in \operatorname{Hom}(A, M)$ such that $f(x) \neq 0$.

If $K=0$, the condition stated in Definition 2.3 is emptily satisfied. Also if $L \subset K \subset B \subset A$ and K is M-independent in A, then trivially L is seen to be M-independent in B.

Definition 2.4. A homomorphism $f: A \rightarrow B$ is called M-independent if ker f is M-independent in A.

Lemma 2.5. Let $\phi: A \rightarrow B$ be an M-independent epimorphism and $L=\operatorname{ker} \phi$. Then ϕ is an M^{L}-epimorphism.

Proof. For any $x \neq 0$ in L let $f_{x}: A \rightarrow M$ be such that $f_{x}(x) \neq 0$. Let $f_{0}: A \rightarrow M$ be the zero map. Let $h: A \rightarrow M^{L}$ be defined by $h(a)=\left(f_{x}(a)\right)_{x \in L}$. Then ker $h \cap \operatorname{ker} \phi=0$.

For any $A \in R$-mod, let $t_{M}(A)=\{x \in A \mid f(x)=0$ for all $f \in \operatorname{Hom}(A, M)\}$. Then $t_{M}(R)=\mathfrak{2 l}(M)$. It is clear that A is M-independent in itself if and only if $t_{M}(A)=0$.

Definition 2.6. An object $A \in R$-mod is called M-independent if $t_{M}(A)=0$.
Remark 2.7. (a) Given $x \in A$ with $x \notin t_{M}(A)$, there exists an $f: A \rightarrow M$ with $f(x) \neq 0$. Since $f / t_{M}(A)=0$, we get an induced $\operatorname{map} \bar{f}: A / t_{M}(A) \rightarrow M$. Clearly $\bar{f}\left(x+t_{M}(A)\right) \neq 0$. Thus $A / t_{M}(A)$ is M-independent in itself. In otherwords $t_{M}\left(A / t_{M}(A)\right)=0$. For any $g: A \rightarrow B$ it is clear that $g\left(t_{M}(A)\right) \subset t_{M}(B)$. Thus t_{M} is a radical on R-mod in the sense of Bo-Stenström [6, Chap 1]. However, t_{M} is neither left exact, nor idempotent. For instance consider $t=t_{Z_{p}}$ on Z-mod, where $Z_{p}=Z / p Z$. Then $t(Z)=p Z, t(p Z)=p^{2} Z$. Thus

$$
t(Z) \cap p Z=p Z \neq p^{2} Z=t(p Z)
$$

Also $t(t(Z))=p^{2} Z \neq t(Z)$. This is just to impress upon the reader that M-projectivity and M-injectivity can not in general be "subsumed" under "torsion theories".
(b) When M is injective t_{M} is the radical associated to a hereditary torsion theory on R-mod.

It is easily seen that every $A \in R$-mod is M-projective iff M is semi-simple iff every $A \in R$-mod is M-injective. The next theorem gives conditions under which every $A \in R$-mod is strongly M-projective.

Theorem 2.8. The following statements are equivalent.
(1) Every R-module is strongly M-projective.
(2) Every cyclic R-module is strongly M-projective.
(3) $R / \mathfrak{Q}(M)$ is a semisimple Artinian ring.
(4) M^{J} is a semisimple R-module for every indexing set J.

Proof. (1) $\Rightarrow(2)$ is trivial.
(2) \Rightarrow (3). Any left ideal of $R / \mathfrak{H}(M)$ is of the form $I / \mathfrak{A}(M)$ with I a left ideal of R satisfying $I \supset \mathfrak{A}(M)$. Let $\eta: R / \mathfrak{A}(M) \rightarrow R / I$ denote the quotient map. Then ker $\eta=I / \mathfrak{H}(M)$. Since $R / \mathfrak{H}(M)$ is M-independent in itself it follows that $I / \mathfrak{H}(M)$ is M-independent in $R / \mathfrak{H}(M)$. If we write K for $I / \mathfrak{A}(M)$, from Lemma 2.5 it follows that η is an M^{K}-epimorphism. Assumption (2) implies that $R / I \in C_{p}\left(M^{K}\right)$. An application of (3), Proposition 1.3 shows that $\eta: R / \mathfrak{A}(M) \rightarrow$ R / I splits in R-mod and hence in $R / \mathfrak{A}(M)$-mod. Thus $I / \mathscr{A}(M)$ is a direct summand of $R / \mathfrak{Q}(M)$ as an $R / \mathfrak{A}(M)$-module.
(3) \Rightarrow (4). Since $\mathfrak{A l}(M) M^{J}=0$ (for any indexing set J) we can regard M^{J} as an $R / \mathfrak{A}(M)$-module. The R-submodules of M^{J} are the same as the $R / \mathfrak{H}(M)$
submodules of M^{J}. The semisimplicity of $R / \mathfrak{A}(M)$ implies that M^{J} is semisimple as an $R / \mathfrak{A l}(M)$-module and hence as an R-module also.
(4) $\Rightarrow(1)$ is trivial.

Remark 2.9. $\quad M=\oplus_{p} Z_{p}$ (direct sum over all the primes p) is an example of a semisimple Z-module for which $Z / \mathfrak{H}(M)=Z$ is not semisimple.

Proposition 2.10. If every M-independent R-module is injective then $R / \mathfrak{H}(M)$ is a semisimple ring.

Proof. Since $R / \mathfrak{H}(M)$ is M-independent, any left ideal of $R / \mathfrak{A}(M)$ being a submodule of $R / \mathfrak{A}(M)$ is M-independent, and hence injective as an R-module. Thus every left ideal of $R / \mathfrak{H}(M)$ is an R-direct summand and hence an $R / \mathfrak{H}(M)$ direct summand of $R / \mathfrak{A}(M)$.

Lemma 2.11. For any $A \in R-\bmod$ we have $\mathfrak{H}(M) A \subset t_{M}(A)$.
Proof. Trivial.
Remark 2.12. If A is any M-independent R-module, from Lemma 2.11 we see that $\mathfrak{G}(M) A=0$. Hence A can be regarded as an $R / \mathfrak{H}(M)$-module in a natural way. If $R / \mathfrak{H}(M)$ is semisimple Artin (as a ring) then A is injective as an $R / \mathscr{H}(M)$ module. But in general A need not be injective as an R-module. Thus the converse of Proposition 2.10 is not true. For instance let $M=Z_{p}$ in Z-mod and $A=Z_{p}$. Then $\mathfrak{A}(M)=p Z$ and $Z / \mathfrak{H}(M)=Z_{p}$ is a field. Also $t_{M}\left(Z_{p}\right)=$ $t_{Z_{p}}\left(Z_{p}\right)=0$. However Z_{p} is not injective as a Z-module.

When M is an injective R-module the converse of Proposition 2.10 is valid.
Proposition 2.13. Let M be an injective R-module such that $R / \mathfrak{H}(M)$ is a semisimple ring. Then any M-independent R-module is injective

Proof. Let A be any M-independent R-module. Let I be any left ideal in R and $f: I \rightarrow A$ any map. We will show that $f(I \cap \mathfrak{Q}(M))=0$ using the fact that M is an injective R-module. Suppose on the contrary $f(\lambda) \neq 0$ for some $\lambda \in I \cap \mathfrak{A}(M)$. Since $t_{M}(A)=0$ we can find a $g: A \rightarrow M$ with $g(f(\lambda)) \neq 0$. Since M is injective, there exists an $h: R \rightarrow M$ such that $h \mid I=g \circ f$. Then $0 \neq g(f(\lambda))=h(\lambda)=h(\lambda \cdot 1)=\lambda h(1)=0$ since $\lambda \in \mathfrak{H}(M)$ and $h(1) \in M$. This contradiction shows that $f(I \cap \mathfrak{Q}(M))=0$.

Thus f induces a map $\bar{f}: I / I \cap \mathfrak{A}(M) \rightarrow A$. Clearly \bar{f} is an $R / \mathfrak{A}(M)$-map. The semisimplicity of $R / \mathfrak{A}(M)$ implies that \bar{f} can be extended to an $R / \mathfrak{H}(M)$ homomorphism $\theta: R / \mathfrak{H}(M) \rightarrow A$. If $\eta: R \rightarrow R / \mathfrak{H}(M)$ is the canonical quotient map, then it is clear that $\theta \circ \eta: R \rightarrow A$ is an R-homomorphism extending $f: I \rightarrow A$. Thus A is an injective R-module.

Combining Propositions 2.10 and 2.13 we get the following:
Corollary 2.14. When M is injective, each of the statements (1), (2), (3), (4) of Theorem 2.8 is equivalent to (5) stated below:
(5) Every M-independent R-module is injective.

3. Strong M-projective covers

Definition 3.1. A minimal epimorphism $\alpha: A \rightarrow B$ is called a strong M-projective cover if
(1) A is strongly M-projective and
(2) α is M-independent (in the sense of Definition 2.4)

As in the case of projective covers, strong M-projective covers do not exist in general. Conditions for existence will be investigated presently. But before that we will prove the essential uniqueness of a strong M-projective cover when it exists.

Lemma 3.2. Suppose $\alpha: A \rightarrow B$ is a strong M-projective cover and $\pi: P \rightarrow B$ an epimorphism with P strongly M-projective. Then there exists an epimorphism $h: P \rightarrow A$ satisfying $\alpha \circ h=\pi$.

Proof. Let $L=\operatorname{ker} \alpha$. Since α is M-independent, from Lemma 2.5 we see that α is an M^{L}-epimorphism. Since $P \in C_{p}\left(M^{L}\right)$, by (2) of Proposition 1.3 we get a map $h: P \rightarrow A$ satisfying $\alpha \circ h=\pi$. Since π is onto, we get $\operatorname{Imh}+L=A$. The smallness of L in A gives $\operatorname{Imh}=A$.

Proposition 3.3. Suppose $\alpha_{1}: A_{1} \rightarrow B, \alpha_{2}: A_{2} \rightarrow B$ are any two strong M-projective covers of B. Then there exists an isomorphism $h: A_{1} \rightarrow A_{2}$ such that $\alpha_{2} \circ h=\alpha_{1}$.

Proof. By Lemma 3.2, there exists an epimorphism $h: A_{1} \rightarrow A_{2}$ satisfying $\alpha_{2} \circ h=\alpha_{1}$. If $K_{1}=\operatorname{ker} \alpha_{1}, K=\operatorname{ker} h$ from $\alpha_{2} \circ h=\alpha_{1}$ we immediately get $K \subset K_{1}$. Hence K is M-independent in A_{1} and is also small in A_{1}. Lemma 2.5 now implies that h is a minimal M^{K}-epimorphism. Since $A_{2} \in C_{p}\left(M^{K}\right)$, an application of Lemma 1.7 yields that h is an isomorphism.

We next show that any $B \in R$-mod which possesses a projective cover automatically admits a strong M-projective cover. We will actually indicate a method of constructing a strong M-projective cover of B from a given projective cover of B.

Theorem 3.4. Suppose B has a projective cover $\pi: P \rightarrow B$. Let $L=\operatorname{ker} \pi$ and

$$
T=\{x \in L \mid f(x)=0 \text { for all } f \in \operatorname{Hom}(P, M)\}
$$

Let $\alpha: P / T \rightarrow B$ be the map induced by π. Then $\alpha: P / T \rightarrow B$ is a strong M projective cover of B.

Proof. If $i: T \rightarrow P$ denotes the inclusion of T in P, from the very definition of T we have $i^{*}: \operatorname{Hom}(P, M) \rightarrow \operatorname{Hom}(T, M)$ to be the zero homomorphism. By Lemma 1.6 we see that $P / T \in C_{p}(M)$. Clearly T is small in P. Hence the canonical quotient map $\eta: P \rightarrow P / T$ is a projective cover of P / T. Lemma 2.2 now yields $P / T \in C_{p}\left(M^{J}\right)$ for every set J. It is easily seen that L / T is M-inde-
pendent in P / T. In addition L / T is small in P / T. This proves that $\alpha: P / T \rightarrow B$ is a strong M-projective cover of B.

Corollary 3.5. If R is left perfect (resp. semiperfect) every module (resp. cyclic module) over R possesses a strong M-projective cover.

Proposition 3.6. Suppose $M \in R-\bmod$ satisfies $\mathfrak{A l}(M)=0$. Then $B \in R-\bmod$ is strongly M-projective iff B is projective.

Proof. The implication \Leftarrow is trivial. As for the implication \Rightarrow, let B be strongly M-projective. Let

$$
0 \longrightarrow K \xrightarrow{i} F \xrightarrow{\phi} B \longrightarrow 0
$$

be an exact sequence in R-mod with F free. Let $\left\{e_{\alpha}\right\}_{\alpha \in J}$ be as basis for F. Suppose $0 \neq x \in k$. Then $x=\sum \lambda_{\alpha} e_{\alpha}$ with at least one $\lambda_{\alpha} \neq 0$. Since $\mathfrak{H}(M)=0$ there exists a $g_{\alpha}: R \rightarrow M$ with $g_{\alpha}\left(\lambda_{\alpha}\right) \neq 0$. Then $h: F \rightarrow M$ given by $h \mid R e_{\alpha}=g_{\alpha}$, $h \mid R e_{\beta}=0$ for $\beta \neq \alpha$ clearly satisfies $h(x) \neq 0$. Thus K is M-independent in F. By Lemma 2.5, ϕ is an M^{K}-epimorphism. Since $B \in C_{p}\left(M^{K}\right)$, by (3) of Proposition 1.3 we see that ϕ splits. Hence B is projective.

Corollary 3.7. Let $M \in R$-mod be such that $\mathfrak{A}(M)=0$. Suppose B is an R-module possessing a projective cover. Then B is projective iff B is M-projective.

Proof. We have only to prove the implication \Leftarrow. This is immediate from Lemma 2.2 and Proposition 3.6.

Any R-module B satisfying $\mathfrak{A}(M) B=0$ can be regarded as an $R / \mathfrak{A}(M)$ module. In particular this is the case if $t_{M}(B)=0$ by Lemma 2.11.

Lemma 3.8. Suppose $B \in R-\bmod$ satisfies $\mathfrak{G}(M) B=0$. Then B is strongly M-projective iff as an $R / \mathfrak{A}(M)$-module B is projective.

Proof. From $\mathfrak{A}(M) M^{J}=0$ we see that M^{J} is an $R / \mathfrak{H}(M)$-module, (whatever be the indexing set J). Also it is clear that for any $A \in R$-mod satisfying $\mathfrak{O}(M)=0$, the R-submodules of A are the same as the $R / \mathfrak{A}(M)$-submodules of A. It follows from this comment that B is strongly M-projective in R-mod iff B is strongly M-projective in $R / \mathfrak{A}(M)$-mod. The annihilator $\mathfrak{A}_{R / \mathscr{Q}(M)}(M)$ of M as an $R / \mathfrak{H}(M)$-module is clearly seen to be zero. Lemma 3.8 now follows from Proposition 3.6.

Theorem 3.9. The following statements are equivalent.
(1) Every $B \in R$-mod satisfying $\mathfrak{A}(M) B=0$, possesses a strong M-projective cover (in R-mod).
(2) $R / \mathfrak{H}(M)$ is left perfect.

Proof. (1) \Rightarrow (2). Let $B \in R / \mathfrak{A}(M)$-mod. Then B regarded as an R-module satisfies $\mathfrak{A}(M) B=0$. Let $\alpha: A \rightarrow B$ be a strong M-projective cover of B in R-mod. Let $K=\operatorname{ker} \alpha$. From $\alpha(\mathfrak{H}(M) A) \subset \mathfrak{A}(M) B=0$ we see that
$\mathfrak{H}(M) A \subset K$. Hence α induces a map $\bar{\alpha}: A / \mathfrak{H}(M) A \rightarrow B$. Now, $A / \mathfrak{H}(M) A$ is an $R / \mathfrak{A}(M)$-module and $\operatorname{ker} \bar{\alpha}: K / \mathfrak{Q}(M) A$ is small in $A / \mathfrak{H}(M) A$. Thus $\bar{\alpha}$ is a minimal epimorphism in $R / \mathfrak{A l}(M)$-mod. If $i: \mathfrak{A}(M) A \rightarrow A$ denotes the inclusion, it is clear that

$$
i^{*}: \operatorname{Hom}(A, M) \rightarrow \operatorname{Hom}_{R}(\mathfrak{H}(M) A, M)
$$

is zero. Hence for any indexing set J, the map $i^{*}: \operatorname{Hom}_{R}\left(A, M^{J}\right) \rightarrow$ $\operatorname{Hom}_{R}\left(\mathfrak{H}(M) A, M^{J}\right)$ is zero. Since A is strongly M-projective as an R-module, applying Lemma 1.6 we see that $A / \mathscr{A}(M) A$ is strongly M-projective in R-mod. Now Lemma 3.8 implies that $A / \mathfrak{H}(M) A$ is a projective $R / \mathfrak{H}(M)$-module. Thus $\bar{\alpha}: A / \mathfrak{H}(M) A \rightarrow B$ is a projective cover of B in $R / \mathscr{H}(M)$-mod. This proves that $R / \mathfrak{H}(M)$ is left perfect.
(2) \Rightarrow (1). Let $B \in R-\bmod$ be such that $\mathfrak{M}(M) B=0$. Let $\pi: P \rightarrow B$ be a projective cover of B in $R / \mathfrak{A}(M)$-mod. Then P is an $R / \mathfrak{Q}(M)$-direct summand and hence an R-direct summand of $\oplus_{\alpha \in S} R / \mathfrak{H}(M)$ for some set S. If $i: \mathfrak{Y}(M) \rightarrow$ R denotes the inclusion, clearly $i^{*}: \operatorname{Hom}_{R}(R, M) \rightarrow \operatorname{Hom}_{R}(\mathfrak{H}(M), M)$ is zero and hence

$$
i^{*}: \operatorname{Hom}_{R}\left(R, M^{J}\right) \rightarrow \operatorname{Hom}_{R}\left(\mathfrak{H}(M), M^{J}\right)
$$

is zero for every set J. Since R is free it is strongly M-projective in R-mod. By Lemma 1.6 we see that $R / \mathfrak{A}(M)$ is strongly M-projective in R-mod. From (1) of Proposition 1.5 it follows that P is strongly M-projective in R-mod.

Now $R / \mathfrak{H}(M)$ is M-independent. From this it follows immediately that $\oplus_{\alpha \in S} R / \mathfrak{A l}(M)$ and hence P are M-independent. If $K=\operatorname{ker} \alpha$, then K is M-independent in P (by the comments following Definition 2.3). Thus $\pi: P \rightarrow$ B is a strong M-projective cover of B in R-mod.

Obvious modifications in the proof of Theorem 3.9 yield:
Theorem 3.10. The following statements are equivalent.
(1) Every cyclic $B \in R$-mod satisfying $\mathfrak{A}(M) B=0$ possesses a strong M projective cover as an R-module.
(2) $R / \mathfrak{H}(M)$ is semiperfect.

Proposition 3.11. The following statements are equivalent.
(1) The direct product $\prod_{\alpha \in J} B_{\alpha}$ of any family B_{α} of strongly M-projective R-modules with $\mathfrak{H}(M) B_{\alpha}=0$ for all $\alpha \in J$ is strongly M-projective.
(2) $(R / \mathfrak{A}(M))^{J}$ is strongly M-projective for every indexing set J.
(3) $R / \mathfrak{H}(M)$ is left perfect, and any finitely generated right ideal of $R / \mathfrak{H}(M)$ is finitely related.

Proof. Immediate consequence of Theorem 3.3 of [4] and Lemma 3.8.

References

1. G. Azumaya, M-projective and M-injective modules (Unpublished).
2. G. Azumaya, F. Mbuntum and K. Varadarajan, On M-projective and M-injective modules, Pacific Math, vol. 59 (1975), pp. 9-16.
3. H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc., vol. 95 (1960), pp. 466-488.
4. S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc., vol. 97 (1960), pp. 457-473.
5. M. S. Shrikhande, On hereditary and cohereditary modules, Canadian J. Math., vol. 25 (1973), pp. 892-896.
6. Bo-Stenström, Rings and modules of quotients, Lecture Notes in Math., vol. 237, SpringerVerlag, N.Y., 1971.

The University of Calgary

Calgary, Alberta

[^0]: Received July 2, 1975.
 ${ }^{1}$ Research done while the author was partially supported by a NRC grant.

