SOLUTION OF THE BURNSIDE PROBLEM FOR EXPONENT SIX!

In commemoration of G. A, Miller

BY
MarsHALL Harr, Jr.

1. Introduction

In 1902 Burnside [1] raised the question as to whether a finitely generated
group G of exponent n is necessarily finite. @ is said to be of exponent n
if g" = 1 for every element g of G. For k generators z;, -+, x; there is a
group B(n, k) such that every group of exponent n with k generators is a
homomorphic image of B(n, k). Here B(n, k) is easily seen to be Fi/Fx
where F; is the free group with k generators, and Fx is the fully invariant
subgroup of F generated by all nt* powers of elements of F .

It is trivial that the Burnside group B(2, k) is Abelian and of order 2*.
In his original paper Burnside showed that B(3, k) is finite, but did not find
the true order of B(3, k). This value is 35, K =k + &) + () and was
obtained by Levi and van der Waerden [5]. Burnside showed that B(4, 2)
is of order at most 2", and Sanov [6] showed that B(4, k) is finite, but the
order of B(4, k) is not known.

In this paper it is shown that B(6, k) is finite. The order of B(6, k) is

a1 23O g =1 - 1) 3OO =14k —1) 2~

This follows from a result of Philip Hall and Graham Higman [3]. Their
results apply to what is known as the restricted Burnside problem. This
is the question as to whether there exists a largest finite group R(n, k) of
exponent n generated by k elements. If it can be shown that there is a
largest finite group R(n, k), then either B(n, k) is infinite or B(n, k) = R(n, k).
They have shown that the existence of a largest finite group for each prime
power exponent dividing n, and any number of generators, implies the ex-
istence of a largest finite solvable group of exponent n and any number of
generators. The requirement of solvability is superfluous if n is divisible
by only two distinct primes, since any such finite group must be solvable.
From their theorems and the result of Levi and van der Waerden they ob-
tained the order above for R(6, k). Graham Higman [4] has solved the
restricted Burnside problem for exponent five.

2. Theorems on groups of exponent three

TureoreM 2.1. If a group G is generated by elements x,, x2, -+ , X, and
if any four of the x’s generate a group of exponent three, then G is of exponent
three.
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Proof. We shall suppose that G is generated by x;, - -+, , with the de-
fining relations 2° = 1 for every z in a subgroup generated by four of the x’s.
Every further group satisfying the hypotheses of the theorem is a homomor-
phic image of G and so of exponent three if G is. In particular the Burnside
group B(3, n) generated by 2, -+, , with defining relations 2* = 1 for
every z of the group is a homomorphic image of G.

We shall use the notation (z, y) = & 'y xy for a commutator and also
write ((z, v), 2) = (2, ¥, 2), (%, ¥, 2),w) = (2, ¥, 2, w). In a group of expo-
nent three, Levi and van der Waerden [5] have shown that the following rela-
tions hold for any elements:

(x._l: y) = (CI), ?/_1) = (x7 y)_l = (y) CI}),
(2'1) (xi Y, y) =1, (x) Y, Z) = (y7 2, x) = (Z, T, y):
(x’ Y, %, w) =1, ((.’l?, y): (z, w)) = L

In our group G it will follow that these relations will hold if z, y, 2, w are
any four elements in a subgroup generated by four of the z’s.
Any element of @ is of the form

(2.2) g = 0102 G,

where each a; is an z; or z7". Let us apply the collecting process of Philip
Hall [2] to this expression altering a string by the rule

(2.3) ..-RS---=---SRRR,S) ---,

this being an identity by the definition of the commutator (R, 8) = R™'S™'RS.
Now for fixed a;, a;, ax of (2.2)

(2.4) (@i, @5, 0, 2s) = 1, u=1---,n,

since the next to last relation of (2.1) applies. Thus (a:, a;, a;) permutes
with every z,, 4 = 1, - - -, n, and sois in the center of G. Hence if we apply
the collecting process to (2.2) first moving z’s to the left, following these by
x2'S, x3’8, -+, X', g takes the form

(2.5) g = x:lg;;Z “e xi‘"cl cet Gy

where e; = 0,1,2,72 =1, .-+, n, and each c. is a commutator of the form
(a;, a;) or (a;, a;, a;) since by (2.4) any longer commutator is the identity.
But as the commutators (a;, a;, ax) are in the center of G, and the commu-
tators (a; , a;) permute with each other by the last relations of (2.1), we may
rearrange ci, * - - , ¢ in (2.5) and use the first three relations of (2.1) so that
we have only commutators (z;, ;), ¢ < j, or (x;, xj, xx) with 7 < j < k.
Hence g may be put in the form

26) g =atwi? - 2 [Lics (@i, 2 [Liciar (i, @, m)"0%

Here each of the exponents takes only the values 0, 1, 2, and so the order of
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G is at most
(2.7) 3%, N=a+G) + 6.

But Levi and van der Waerden have shown that 3" is the order of the Burn-
side group B(3, n). And as B(3, n) is a homomorphic image of @, it follows
that G = B(3, n), proving our theorem.

TaEOREM 2.2. If G is the group {a, b, ¢, d} generated by a, b, ¢, d, and if
each of the subgroups {a, b, c}, {a, b, d}, {a,c,d}, {b,c,d} 7s of exponent
three, then G 1is finite. If further G is of exponent siz, then G s in fact of expo-
nent three.

CoroLLARY. If G is of exponent six and generated by x,, « -+ , Ta, and if
any three x’s generate a group of exponent three, then G s of exponent three.

The corollary is an immediate consequence of the two theorems.

Proof. For the first part of the theorem we assume the defining relation
of G to be g° = 1 for every g in each of the four subgroups given, and for the
second part we assume also ¢° = 1 for every g of G. Thus G has 24 auto-
morphisms permuting a, b, ¢, d according to the symmetric group on four
letters and 16 automorphisms replacing one or more of a, b, ¢, d by their in-
verses. Other groups satisfying the hypotheses of the theorem will be homo-
morphic images of G as given by these defining relations, and the conclusions
will follow.

We shall use the following notation for elements of G':

wm=(a,b) wn=1(be u=I(qbdcad
Uz = (ar C) V2 = (as b; d) 2 = (a7 b) ¢, J—l)
us = (a, d) v = (a, ¢, d) 2= (a,b,d,c)

Uy = (b’ C) Uy = (b’ ¢, d) 2 = (ay b} dy c_l)

(2.8)
Up = (b, d) z = (a,c,d,b)
Ug = (C, d) 2 = (a, ¢, d’ b—l)
& = (b7 (A d? a)

2 = (bc,d,a™)

The relations (2.1) are valid in the four subgroups generated by any three of
a,b,¢,d. Thus

(2~9) (bv a,c) = ((a) b)—ly ) = (a’y b, c)—l'
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We note the following:
2= (a,bed) = (a,bc) d(a,b,c)d,
(a, b, )2, = d '(a, b, ¢) d,
(2.10) i@, b,¢) = d e, b,c) ' d = d'(b, a, ) d,
(b, a, ¢) 2i (e, b, c) = (b,a,¢)"d'(b, a,¢)d = (b, a,c,d),
navr = (b, a, ¢, d).

This gives the following relations:
0, a ¢ d) =vnavi, (Oac d") = vz,
(b’ a, d: c) Vg z3_lv2_lr (b’ a, d, c—l)

(c, @, d, b) = v325v3, (¢, @, d, b") = v325703",

V225 vz,
(2.11)
(¢, b, d, @) = ve2z7'vs, (¢, b,d, a™") = vyzz'vi.

We list in tabular form the results of transforming the ’s and v’s by @, b, ¢, d
and their inverses.

U a'Ua b~'Ub ¢'Uc d'Ud

m U1 UL UL V1 UL V2

Uz Uz Ug vl_l Ug Ug V3

s us UV e us

Uy Usg N1 Us Us Us Vg
(2. 12) Us Up Ve Usp Up vZI Up

Us Ug U3 Ug V4 Ug Ug

U1 V1 V1 V1 N2

(2 [ V2 V223 (2]

Vs U3 V32 Vs U3

U4 Vg 27 U4 Uy V4

U aUa™ bUb™! cUc™ avd™

Uy Uy U e w oy

Uy Uz Uz Uy Uy U077

Uz Us Uz V2 U V3 Uz

ug e g ug e
(2.13) Us Us U7 Ug Ug Vg Us

us Ugvs e us e

(41 ()% 0N 0n V122

V2 Vg Ve V224 Vs

V3 V3 V32 V3 U3

V4 V4 28 Vs V4 V4
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These relations all are from given properties of the subgroups or by definition
of the 2’s.

From the relations holding in the four subgroups we may derive further
relations by transformation. Thus from

—1
Ue Us U = Up

holding in {b, ¢, d} if we transform by a, using (2.12) we get

(2.14) V3 U Us Vs U Vs = Upa,
whence

—1 —1 —1
(2.15) Ug VaUg = Up Vg UsV2V3 &

Similarly from
(2.16) U Ug Us = Us

holding in {a, ¢, d} and transforming by b™, using (2.13) we get

—1 ]

2.17) VaUs UsV2 UV = Uglp,
whence

-1 -1 —1
(218) Ug VaUs = Uz Vg UV V4
Transforming

—1
(2.19) Us UsUs = U
-1 .

by ¢ gives

-] —1
(220) v41u5 UgV3Us Vs = UgVs,
whence

-1 —1 —1
(2.21) U VgUp = Uz Vg UgV3Vs .

From (2.15) and (2.18) we have

(2.22) U0 Us V2 VT =" Uz VT UsVaVs .
Substituting in this from (2.21) we have

(2.23) U3 Vs U V3 Vs ValsT = Us V3 UsVaVs .

From this we get using v;> = v,

(2.24) V3 U3 Val3 Va Vsl = Uj Vs s .
In (2.24) replace a by ™, b by b, and d by d”*. This gives
(2.25) V3V7 V3 V3 Ve s = U3 Vs .

(2.24) and (2.25) give together

—] —1 —1 —1 —1 —1
(2.26) VoV Vg Vg = Uz Vg Vs V2,
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and so

(2.27) V203 e, = 3
Substituting this in (2.25) we have

(2.28) V30T 03T = UTvsUs .

In (2.28) replacing a by o™, ¢ by ¢, and d by d* gives

(2.29) VsV 0aUs = uz'vsus .

From the left-hand sides of (2.28) and (2.29) we have

(2.30) V3VT VI VT = V3 Wi VsVi,

whence

(2.31) V3Vs = U403,

and from (2.29)

(2.32) Vs = U3 ValUs.

We already had from {b, ¢, d} the relation

(2.33) Vs = Uz0als.

Permuting a, b, ¢, d in (2.31), (2.32), and (2.33) in all ways, we find

(2.34) ViV = Vjs, ., =12 3,4,
and

(2.35) ViU; = Ujv;, 1=1,238,4 j=1---,86.
Now from

(2.36) VeV = VUivg, 1 =123,
transforming by a we get

(2.37) Va27V; = VU427, 1 =123,
whence

(2.38) 20 = V21, 1= 1,2,3.
Similarly from

(2.39) VaUi = Uy, 1=1,23,
transforming by a we get

(2.40) VaZrU; = U;Vs27, 1=1,23,
whence

(2.4:1) ZrU; = U271, 1 = 1, 2, 3.
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Also from

(2.42) Vaty = Ugly
transforming by a we get

(2.43) VaZrUsg¥y = UgV1Vs 27,
and using (2.42) and (2.38) we have

(2.44) 21Uy = Ug 27 .
Similarly we find

(2.45) Zrus = Us2r and 2rus = Us2y.
In (2.12) we find

(2.46) a v = vs2;.
Transform by b and use (2.12). This gives

(2.47) b e busbab = v b7 b

By definition of u; , b 'ab = au; , and so

(2.48) urla aauy = vab 2 b,
and by using (2.12) this becomes

(2.49) UT W21 Uy = Vb 27 b.

By (2.39) and (2.41), u; commutes with both », and 2;, and so

(2.50) 2 = b '%b.

We also take the relation

(2.51) v = a(@va)at = a(vz)a ! = vzsazra”,

whence

(2.52) azna = 25

Also

2.59) o nd = ai): a' = vz = a::(a_lzu a)a
=q (uz)a = uzna za,

whence

(2.54) e = 272 .

Substituting in (2.50), (2.52), and (2.54) in all ways, we obtain the following



tables:

(2.55)

(2.56)

2
21
()
23
24
25
[
27
28

2i
21
[
z3
24
%5
%6
&7
28
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—1
a z;a

21
Z2
23
24
%5
26
'z

—1
27

az; a"’

21
22
23
%4
%5
26
%

—1
28 27

b'2:b ¢ zic d'z:d
21 21 ZTIZz
2 2 a
2 252 23
24 2-3—1 24
252 25 25
25_1 26 26
27 27 27
28 28 28

bz; b czic dz;d™

2 2 z{l
29 29 %'z
23 Z 23
2 Zr'z 2
2z 25 25
7825 2 28
27 27 27
28 28 28

These tables, together with (2.12) and (2.13) show that wu, -

Ul’o-c’ v4’ zl,..-

771

. Ug
) y
, 2 generate a normal subgroup of G, which, since it

includes the commutators of pairs of the generators, w;, -+, us, must be

G'.

If we now take the relation from (2.45)

(2.57)

and transform by b, we get

(2.58)
whence

(2.59)

2rUsg = Ug2y

27 UgVy =

2710y =

Ug Vs 27,

Vs 27 .

Adjoining this to (2.38)-(2.45) we find that z; permutes with all «’s and
v’s. On substituting we have

(2.60)
(2.61)

2iU; =

2;0; =

Uiz,

ViZi,



772 MARSHALL HALL, JR.

Also from v} = 1, transforming by a and using (2.59), we have

(2.62) (azn)® = 1 = vz,

whence 25 = 1, and on substituting,

(2.63) 2 =1, i=1,---,8.
From the definition of u; we have

(2.64) a0 M ugba = uy b o ug abur

By using (2.12) this becomes

(2.65) UgVsVs2r = Us Ug Vs V325 UI .

From this we find, using (2.34), (2.35), (2.60), and (2.61),

(2.66) 22 = Us U UsUT .

Transforming this by ™ we obtain, using (2.13) and (2.56),
(2.67) 2525 = Vs Up UL UV UL = Us Uy UgUT,

the last being from (2.35). Comparing (2.66) and (2.67) we find

(2.68) % =27,
and on substituting also
(2.69) =12, =2, @=4a;

note that (2.55) now shows that the 2’s are in the center of G. On making
the appropriate substitutions in (2.66) we find

-1 -1 ~1 —1

Us UL Us U1 = 2712 = Z21%3 ,

—1 —~1 -] -1 —1 —1

(2.70) Us UsUs U2 = 2327 = 21 % ,
-1 -1 —1 —1

Ug UgUsU3 = 232 = 21 27.

Our relations now show that, modulo the group 21, 2;, 2, 2r (which is ele-
mentary Abelian of order 27 or a divisor of 27), G is the Burnside group
B(3, 4) of exponent three and order 3". This shows that G is finite and of
exponent nine, whence if we assume that G is of exponent six, then G is neces-
sarily of exponent three, and our theorem is proved.

This last is however proved directly if we calculate that

(2.71) (med)® = uiziz = 212;.

Hence if (uycd)® = 1, we have (212;)° = 1, but since (2,2;)° = 1, this gives
2123 = 1, and on substitution we have

(2.72) e =1, ey =1, Ze =1, 2z = 1.
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Then from (2.70) and (2.72) we have
(2.73) aziese =1, =2z =1,

and so all 2’s are 1, and G is of order at most 3, and so G = B(3,4). This
completes the proof of our theorem.

3. The main theorem

Our main theorem is of course the proof of the Burnside conjecture for
exponent six.

TaEOREM 3.1. A finitely generated group G of exponent six is necessarily
finite.

Proof. Philip Hall and Graham Higman [3] have shown that there is a
finite group R(6, k) generated by 1, - - - , 2 of exponent six such that every
other finite group of exponent six generated by k elements is a homomorphic
image of R(6, k). Its order is

31  23@*6), =14+ -1, =14+ & —1)2

Thus, once the finiteness of the Burnside group G = B(6, k) is established,
its order is given by (3.1). G = B(6, k) is of course the group generated by
Ty, -+, o with defining relations z2° = 1 for every element z of the
group G.

The proof of this theorem does not depend on the Hall-Higman results,
though in order to get the exact order of the Burnside group their results
must be used. The motivation for the proof does, however, come from their
work. They have shown that a finite group H of exponent six has 2-length
one. This means that H has a normal series

(3.2) 1S UEVCH,

where U is a maximal normal subgroup of order prime to 2, ¥V /U is a 2-group,
and H/V is of order prime to 2.

Our proof will follow this idea. We show the existence of a normal sub-
group M of G such that

(3.3) GDoO M DM,

where G/M is finite of exponent three, M /M’ is finite of exponent two. M’
is easily seen to be finitely generated, and the main difficulty will be in show-
ing that M’ is of exponent three and hence finite by the results of Levi and
van der Waerden.

The proof is given by a succession of lemmas.

Lemma 1. A group G of exponent six generated by k elements xy, - -+ , &
has a subgroup M, generated by the cubes of elements of G of index dividing
3K =k+ () + ()
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This is a direct consequence of the results of Levi and van der Waerden.

LemMA 2. M s generated by a finite number of elements of order 2. The
derived group M' of M 1is of index a power of 2 in M, and M’ is generated by
a finite number of elements of the form abab where o® = 1,5 = 1.

Proof. M being of finite index in a finitely generated group is itself finitely
generated, say by o1, o2, -+, am. M is also generated by elements of
order 2, namely the cubes of the elements of G. Thus each « can be ex-
pressed in terms of a finite number of elements of order 2, and the finite

number of elements of order 2 needed to express a;, - -+, ax will be a set
of generators for M. If M is generated by i, ---, x, with af = 1,
i=1,--+,t then M’ is of index at most 2° in M. Also M’ is generated by

the commutators z; 7 x;x; and their conjugates and so by a finite set of
these. Hence M’ is generated by a finite number of elements of the form
abab where o> = 1,5 = 1.

Now M’ is of finite index in G and has a finite number of generators of
the form abab where ¢ = 1, b> = 1. If it can be shown that M’ is of ex-
ponent three, then by the results of Levi and van der Waerden it will follow
that M’ is finite and so also G, proving our theorem. From the corollary
to Theorem 2.2 it will be enough to prove the following lemma.

Lemma 3. Ifd’ = V=7 =d =¢ =f = 11in agroup of exponent siz,
then the subgroup {abab, cded, efef} is of exponent three.

The rest of the proof consists of steps leading to the proof of this lemma
This lemma might be attacked by a high speed computer, but would prob-
ably be a very long problem.

To motivate the rest of our proof we observe that if H is a finite group
of exponent six, and if H/H' is a 2-group, then H' must be of exponent three.
For by the Hall-Higman results H must have 2-length one, that is, H has
normal subgroups R and S such that H 2 R 2 S 2 1, where H/R is a 3-
group, R/S is a 2-group, and S is a 3-group. If H > R, then H has a maxi-
mal normal subgroup T of index 3, and as H/T is the cyclic group of order
3, T 2 H’ and so H/H' would contain an element of order 3, contrary to
assumption. Hence H = R. As H/S = R/S is a 2-group of exponent two,
H/S is Abelian and so S 2 H’. But as H/H' is a 2-group and H/S is the
maximal factor group which is a 2-group, H' 2 S. Hence H' = § is of
exponent three.

Lemma 4. If H = {z, a, b} is of exponent six, and if & = 1,
& =10 =1, zax = a*, xbx = b, then {a, b} is of exponent three.

This lemma is critical since we note that [H:H'] = 2, and so if H is finite,
then H' = {a, b} must be of exponent three and so of order 27 (or naturally
a divisor of 27). Thus if H is finite, its order divides 54.

We assume that H is given by the generators z, a, b, and defining relations
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@ =10 = 1,0 =1, zax = o', 2bxr = b, and relations «* = 1
for every u e H. Then in A = {a, b} there are automorphisms obtained by
replacing a or b by its inverse and interchanging a and b.

The derived group A’ of A is generated by 21, 22, 23, 2:, where
3.4) 2 = a b 'ab, 2 = a ‘bab”},

' 2 = ab_la_lb, 2 = aba b7

Here the 2’s are transformed by a and b in the following way:

2 a zia b'2:b

2 2z A
(3.5) 2 2z a

23 at 232

24 Py Pre
We also have

X1 = 24, XX = 33,
3.6)

X3 = 22, X284 = 21 .

Replacing the generators has the following effect on the 2’s:

. a, a,b a,b
& b, a a b a, b’

21 21_1 23 29
3.7 22 Zs' 24 Z
23 2 2 24
24 Z 22 23

Now [A:4] = 9. If wecanshowthatz = 1,2, = 21", 2 = 21, 24 = 21,
then it will follow that A’ is of order 3 and so 4 is of order 27, and easily
seen to be of exponent three as we wish to prove.

For our first relation

3.8) 1 = (zab)® = (wabzab)® = (a7 7'ab)® = 2.
Replacing a and b by their inverses in turn we have

3.9) d=d==2=1

We find

(23 zf1z2)2 = ((ab’l)g)2 = ((sz"l)6 =1,
(23'22)° = (7' (ab)’b)’ = b (ab)’b = 1,

1= (22)° = (a2212)’ = (2120)’,
whence
(@'aza) =1 or (ma'zn)' = 1.
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Also
(2 2i'2r'a)’ = ((@7'bab)®)* = (¢ "bab)® = 1.

Thus we have found the following four relations on the 2’s:

(3.10) (ai'a)’ =1,
(3.11) (57'2)" = 1,
(3.12) (sei'a)’ =1,
(3.13) (22 27'222)" = 1.
From (3.10) we find

(3.14) 2321 %2 = 2721 .
From (3.11)

(3.15) 2o = 272

By combining (3.14) and (3.15)

. —1_—1 —1 —1 -1 _—1
(316) R3R1 Ry = 23R%1 %2R3°R%3 %2 = 22 2122 23.
From (3.12)

-1 -1, -1 -1 -1 -1
(3.17) 2321 25 2321 %3 2321 22 = L.

Substituting from (3.16) into (3.17) we have

—1 —1 —1 —1 —1_—1
(3.18) 2y 2122 232321 22 2321 22 = 1,
whence
-1 -1 —1 —1 -1 -1
(319) %3 %1 %2 %3 = 2221 R = 22 %2 %1.

Squaring and using (3.13) we have

(3.20) 2 (e e )’ = (2ie2)’ = L.
Hence
(3.21) (fr'22)" =1, andso (az) = 1.

In (3.21) interchange a and b. This gives
(3.22) (2125 = 1.
In (3.21) replacing a by ™" gives

(3.23) ()’ = 1.
In (3.22) replacing b by b™" gives

(3.24) (2224)" = 1.
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In (3.11) replacing @ by a™* gives
(3.25) (¢720) = 1.

If wewritew;s = 212, ws = 2123, Ws = 2 23, we have from (3.21), (3.22),
and (3.25)

(3.26) wi=1 w =1 w;=1

We have from (3.11), (3.23), and (3.24)

(3.27) (wr'w)® =1,  (wrwy)’ =1, (wi'wy)’ = L.

From (3.26) and (3.27) the w’s are of order 2 and permute pairwise. Now
(3.28) 1= (2122)" = Grazaar) = (12 2)°.

But

(3.29) (rz2242)" = (wyw3'we)® = w; wiwy = 1.

From (3.28) and (3.29) we have

(3.30) 12222z =1 or zzzzez = 1.
Transforming (3.30) by a gives

(3.31) Zeieszs zaei =1 or zeizeie = 1.
In (3.30) replacing a by a™* gives

(3.32) 23z =1 or 222324 = 1.
From (3.31) and (3.32) we have

(3.33) = mnan = ans,
whence

(3.34) dAma = azn,

and so

(3.35) 28 = 2321 .

But then

(3.36) (1) = 2l 25 = 1.

while from (3.22), (2125)° = 1, and so
(3.37) nz=1 or 2z =z
In this, interchanging a and b gives

(3.38) 2 = 27
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From (3.33) we now find
(3.39) 2=z,

—1 — .
We now have shown 28 = 1,2, = 21", 23 = 21, 2s = 2,, proving A’ of order
3, A of order 27, and so our lemma is true.
The next lemma is similar.

LemMA 5. If H = {x, a, b} is of exponent siz, and if & = 1,a° = 1,b° = 1,
xax = a ', xbx = b, then {a, b} is of exponent three.

Proof. With A = {a, b}, as in the previous lemma A’ is generated by
2= a 'blab, z = a bab™', 2z = ab~'a”'b, and 2, = aba"'b~". Here auto-
morphisms of A include replacing @ or b by its inverse, but not an inter-
change of @ and b. Here

zox = o, z(bab™Mz = ba b = (badb™)™', and
z(blab)z = ba”b = (bab)”.

Hence by Lemma 4 both {a, bab™'} and {a, b~"ab} are of exponent three.
Thus

(3.40)

(3.41) (@ b7lab)* =1 or 2z =1,

and similarly

(3.42) =23 =4zs= 1

Also

(3.43) wazrzize = (@bab™) =1, or 22 = 22.

In this replacing b by b™" gives

(3.44) miZsa =1 or za=22.
Also

(3.45) 1= (@™ = (sa'2),
and

(3.46) 1 = (b7'(ab)’d)* = (£5'22)".
Also as 23 = 1, we have

(3.47) 1= (")’ = (z2'a)’
From (3.45) we have

(3.48) 2320 2 2521 2 = 1,

and by using (3.44)

(3.49) Z32a2s = 212271 .
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From (3.46)
1 —1 —1 —1
(350) 23R = 2223 and 29 23 = 23 22 .

Thus using (3.49) and (3.50), we have

(3.51) ZaZs s = 2l A3l = 2325 232 = 3%l = 212321,
Hence

(3.52) % = 2 a

But from (3.47) this gives

(3.53) = (') a = .

In (3.53) replace b by b™";

(3.54) u =z

Transform (3.53) by b, and we have

(3.55) G =2 a,

whence from (3.53) and (3.54)

(3.56) wi = aa,

and so z; and 2; permute. Substitute z; = 27" in (3.46), and we have
(3.57) (2120)" = 1.

But as 2; and 2, permute,

(3.58) ()’ =2ias = 1.

From (3.57) and (3.58) we get

(3.59) 212 = 1.

Combining (3.53), (3.54), and (3.59) we have
(3.60) 2 = 21, 2 = 21, 2=z, 2= 1.
Thus A’ is of order 3, and A = {a, b} is of order 27 and exponent three.

LemvMa 6. If H = {z, a, b, ¢} is of exponent six and « = 1,
=0 =c =120 =a", abx = b, zex = ¢, then {a, b, ¢} is of ex-

ponent three.

Proof. By Lemma 4 {a, b}, {a, ¢}, and {b, ¢} are of exponent
three. Since the rules (2.1) apply to groups of exponent three, we have
z(a, b)z = (@, b)) = (a,b)™ = (a, b). Hence by Lemma 5, {c, (a, b)}
is of exponent three and also {a, (b, ¢)}, {b, (¢, @)}. Let us write

Uy = (a7 b)’ Ug = (C, 0,), Uz = (b’ C),

(3.61)
0 = (a7 b’ 0)7 V2 = (C, a, b)a V3 = (b) ¢, a’)~
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Then since {(a, b), ¢} is of exponent three, we have (a, b, ¢*) = (a, b, ¢)™".
Similarly we have the following relations:
ot = (a,b,¢Y), ot = (b, a, ), v = (b,a,c™,
(3862 vi'=(c,a, b, v = (a¢cb), =/ (acb?),
vt = (b, ¢, at), vt = (¢, b, a), vs = (¢, b, a™).
We now calculate a v, a.
a'via = aN(a, b) ¢ (a, b)ca
= (a, b)a7¢'(a, b)ca
= (a, b)"'a" ¢ "ac-c ' (ab)ac- ¢ 'a ca
= (a, b)"(a, ¢)c"(a, b)c-(c, a)
(a, b)Na, ¢)(a, b)(a, b, ¢)(c, a)

-1 -1
= U3 U U V1 U2 .

(3.63)

I

Here we noted that since {a, b} is of exponent three, a permutes with (a, b).
In (3.63) let us replace b by b™* and ¢ by ¢*. This gives

(3.64) a7 va = Uy us uTvr Uz
From (3.63) and (3.64) we have

(3.65) UTUT U 0y Up e Up 07 Uy UT UT = 1,
whence

(3.66) DUz T = U U U Uy Us UL
and so

(3.67) us vy uz 0 = (up ur)?,
whence

(3.68) (uevruz'v1)’ = (uaur’)’ = L.

As 2 x = vi, Tus * = us, by Lemma 5, u, and v, generate a group of expo-
nent three, and so

(3.69) (uevruz™vi’)? = 1.
Combining (3.68) and (3.69) we have

(3.70) Ugr Uz VT = 1 OF Uty = vy Us.
Also using (3.67) we find

(3.71) (upur®)® = 1.
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We have usv; = vy Uy since {uz, b} is of exponent three, and this with (3.70)
and substitution gives
(372) UV = VjUs, ’b,j = 1, 2, 3.

From zcx = ¢, z(aba)z = (aba)™* we may apply Lemma 4 and conclude
that {aba, ¢} is of exponent three. In particular (abac)® = 1 or

abacabacabac = 1
373 aba”"b™"-ba"cac 6" - bebacabac = 1.
Here since aca = ¢ 'a ‘¢, we have
uy ble, a)b™-bebe b -ba bala b ¢ bea)a e ac = 1,
(e, a)(c, a, b )uz'ur'a (b, a-uzt = 1,
674 Uy ug w3 us Uz (b, ¢)(d, ¢, a)uz’ = 1,
Us Up V7 U UT U V3 Uz = 1.
This with (3.72) gives
(38.75) V25 = Us Uz Uy Ug Uz UL
In this replacing @ by a™* and ¢ by ¢ gives
(3.76) V3Us = Up Up UT Uz Uz Uz .

From (3.75) and (3.76) we get

1 -1 —1 —1 -1 41 41 —1 —i
(38.77) U UT UL U = Wp UT UF U3 UL U
whence

—1 —1 —1 —1\3
(3.78) uy uz Uy U = (U uz ).

But if in (3.71) we replace (Z’ g’;_1> we get

(3.79) (ui'uz")’ =1,
and so from (3.78)
(3.80) U U U U = 1 O U Uy = Ug Uy .

Substituting we have

(3.81) Us Uj = Uj Ui, i,j = 1, 2, 3.
Then (3.75) becomes
(3.82) v =1 or v, = vs.

Substituting we have

(383) V0 = U = V3.
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Writing » for the common value of v1 , v, v we have ava =a e =v;=0
and ¢ 'ur e = up, @ UG = up, @ usa = uzv. Similarly {us, us, us, v} is
transformed into itself by b and ¢ and thus is the derived group of
A = {a, b, ¢}. This shows that A is of order dividing 3, which is the order
of the Burnside group B(3, 3). Thus A = B(3, 3) is of exponent three,
proving the lemma.

Lemva 7. If H = {z, a1, aa, --+ , an} ts of exponent six and 2° = 1,
3 . — . .
ad=1i=1-,nzra;x=a;,i=1 - ,nthend = {ar, -+, an} s
of exponent three.

Proof. By Lemma 6 any three of the a; generate a group of exponent
three, and by the corollary to Theorem 2.2 this proves that 4 is of exponent
three.

Lemma 8. If H = {a, b, ¢} is of exponent siz and @’ = b* = ¢* = 1, then
H' is of exponent three.

Proof. The following transformation table shows that a1, a2, oz, as, as
generate H'.

ao; & ba; b ca; ¢
-1 -1 -1 —1
ay = abab ay (4731 a2 O 04 O3
—1 —1 —1
ag = acac [+7} a1 04 a
—1 —1
(384) a3 = bcbc 73 a3 as
—1 —1 —1 -1
oy = abcach oy a1 as a2 a5 a1 a3
-1 -1 —1 —1
ap = abcbeca o3 a1 A A1 a2 O O

Herea: = (ab)® = 1, b = (ac)® = 1, and aon @ = oi", a0z @ = a7, whence
by Lemma 4, {01, as} is of exponent three. Hence

b_l{al , aplb = {afl, of s}

is also of exponent three, and so in. particular o} = 1. Thus since
aasa = o from Lemma 6, {1, oy, a4} is of exponent three. This is the
group {abab, acac, abcacb}. If we interchange a and b, the corresponding
group {baba, bcbc, bacbca} must also be of exponent three. But this

is {a1, as, ai'as) = {01, as, as}. In particular the subgroup {as, as} is
of exponent three, and so we have
(3.85) (was) =1, (ai'w)’ = 1.

But from (3.84)

(3.86) alosost)a = asos = (azas) ™,

aos’as)a = o5 as = (o3 a5) .
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Hence from Lemma 7 the following elements
(3.87) o, o, a1, ozas., oo

are all of order 3 and transformed into their inverses by a, whence they
generate a group of exponent three. In particular

(3.88) (@iamas)’ =1, (aias'a)’ =1, i=1,2,4,
whence
(3.89) (o5 i as)® = 1, (s asa3’)® = 1, i=1,24.

It follows that the group K given by
(3.90) K = {a;,as a5, o055, a5 ios, as i 05}, t =124,

is of exponent three by Lemma 7 since each of the elements is of order 3 and
is transformed into its inverse by a.

Noting that o3'os o5 aios = a5 aias and osap -osaios = oza;os,
and also that az'(azos’)as = (a5 as)” and o3 (a5 as)oas = asas (o o5) ",
we see that K is normalized by o3 . Since K is trivially normalized by a1,
oz, as, and o3 a5, we see that K is normal in H' = {a1, o2, a3, a1, as).

Further we note in H’
3.01) a1 =1 (mod K), az =1 (mod K), a3 = o3 (mod K),
’ aw=1 (modK), o=a (modK).

Thus K is of index 3 in H’. Hence for an arbitrary z ¢ H' we have, since K
is of exponent three,

(3.92) feK, =) =1
But as H was of exponent six, we have
(3.93) £ =1 2"=1 whence 2’ = 1.

Thus H’ is of exponent three, proving our lemma.

LemMa9. IfH = {a,b,c, d} isof exponent sicanda® = b* = & = d* = 1

and o = abab, B = cded, then {a, B} is of exponent three.

Proof. Write 8 = 81 = cded, B2 = acdeda. Then {B1, B2} is in the
derived group of {a,c, d} and so by Lemma 8 is of exponent three. In
particular

(3.94) e =1, (68) =1
Thus the group
(3.95) U = {a, BB, BB}
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is generated by elements of order 3 and axa = baba = o,

a(BiB:)a = BBt = (BB
a(Br'B)a = B7'6 = (B7'8y) 7,

whence by Lemma 6, U is of exponent three. Thus also

(3.96) (B2’ =1,  (af82)° = 1,
and so

(3.97) B7'aB)’ =1,  (Bafi)’ =1,
whence by Lemma 7 the group V

(3.98) V = {a, 167", BBz, B aP1, P2 afr’}

is of exponent three, being generated by elements of order 3 which are trans-
formed into their inverses. But we readily see that V is normal of index 3
inA = {a, B1, B}, whence A is of exponent nine, but by hypothesis being of
exponent six, must be of exponent three. But {«, 81} = {«, 8} is a subgroup
of A and so of exponent three, as we wished to prove.

Now for Lemma 3 and the proof of the main theorem!

Lemma 3. If H = {a, b, ¢, d, e, f} is 0, exponent six and o> = b* = ¢ =
d=¢ =1 =1and a = abab, B = cdcd, v = efef, then {a, B, v} is of ex-
ponent three.

Proof. Write B = 8 = cded, B = acdeda, v1 = v = efef, v» = aefefa.
Then by Lemma 8, {81, 82} and {vi, v2} are of exponent three. Thus the
elements

(3.99) a, BBz, BB, MY, Vi

are of order 3 and transformed into their inverses by a. Hence by Lemma 7
they generate a group of exponent three. We assert that if W(u, v) is an
arbitrary word in elements u, v and their inverses, then the two elements of H

(3.100) WG, vOW Bz, v2) ", Wi, v)aW (B, v2)

are of order 3 and are transformed into their inverses by a. Since a8;a = 8;,
—1
aB2a =P1, av1a =172, av20 = v1, aad = « , we have surely

a(W By, v)aW Bz, v2) Da = W(Be, v2)a  W(Bi, v1)"
= (W, v)aW (B, v2) )7,

and similarly without . Thus the elements of (3.100) are all transformed
into their inverses by a. Hence by Lemma 7, those elements of (3.100) which
are of order 3 generate a group of exponent three. To prove they are of order
3 we proceed by induction on the length of W, this being trivially true if
W = 1. Now suppose this true for a particular W(u, v). Then the ele-

(3.101)
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ments
W1, y)eW Bz, v2) Wi, v)W(B:, v2),
BB, B2 BT, Y2, eyt

by Lemma 7 generate a group of exponent three. Thus

(3.102) BB (B, y)aW By, v2) ™) = 1,
whence
(3.103) BW By, v1)aW By, v2) 8" = 1,

and similarly without the «. Thus the statement is also true for uW (u, v),
and in exactly the same way true for u™ W (u, v), vW(u, v), and v~ W (u, v).
But we may build up any word W(u, v) by successively multiplying on the
left by u, w™, v, or v™". By Lemma 9, {8, v1} is of exponent three and so
of order dividing 27. Thus with 27 words W(u, v) we obtain all distinct
elements of (3.100). By Lemma 7 the elements of (3.100) generate a group R
of exponent three. We note that

(3.104) BU'W(B1, y1)aW (B2, v2) 81 = BT W (B, v1)aW (B2, ¥2) B2+ B2 € R

and similarly without «. Thus R is normalized by 8; . Similarly R is nor-
malized by v:. But as R contains «, 8782, ¥iv2, R is normal in
A = {a, B1,B2,7,v2}. Furthermore in A we have

a=1 (modR), Bi =B (mod R), B2 = B1 (mod R),

(3.105)
=71 (modR), ~y=mv (modR).

Thus A/R is a homomorphic image of the group {8, v1} which by Lemma 9
is of exponent three and order 27. Hence for an arbitrary z ¢ A we have
2 eR, and (2°)° = 2’ = 1. But as z° = 1 by hypothesis, we have &* = 1,
whence 4 is of exponent three, and consequently {a, 8, ¥} which is a sub-
group of A is also of exponent three. This proves Lemma 3. The proof of
the main theorem is now immediate.

Proof of main theorem. M’ by Lemmas 1 and 2 is of finite index in G.
By Lemma 2, M’ is generated by a finite number of elements of the form
abab with o = b* = 1. By Lemma 3 any three of these generate a group of
exponent three. By the corollary to Theorem 2.2 it follows that M’ is of
exponent three. By the results of Levi and van der Waerden it follows that
M’ isfinite. Since M’ is finite and of finite index in G, it follows that G is finite.
This proves our theorem.
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