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1. Introduction

In 1902 Burnside [1] raised the question as to whether a finitely generated
group G of exponent n is necessarily finite. G is said to be of exponent n
if g 1 for every element g of G. For k generators x, x there is a
group B(n, k) such that every group of exponent n with k generators is a
homomorphic image of B(n, k). Here B(n, ) is easily seen to be F/F
where F is the free group with k generators, and F is the fully invariant
subgroup of F generated by all n* powers of elements of F.

It is trivial that the Burnside group B(2, k) is Abelian and of order 2.
In his original paper Burnside showed that B(3, /c) is finite, but did not find
the true order of B(3, k). This value is 3, K k + () + () and was
obtained by Levi and van der Waerden [5]. Burnside showed that B(4, 2)
is of order at most 2TM, and Sanov [6] showed that B(4, k) is finite, but the
order of B(4, k) is not known.

In this paper it is shown that B(6,/c) is finite. The order of B(6, k) is

(1.1) 23+()+(), a 1 + (/c 1). 3+()+(), b 1 + (k 1) 2.
This follows from a result of Philip Hall and Graham Higman [3]. Their
results apply to what is known as the restricted Burnside problem. This
is the question as to whether there exists a largest finite group R(n, k) of
exponent n generated by /c elements. If it can be shown that there is a
largest finite group R(n, ), then either B(n, k) is infinite or B(n, k) R(n, k).
They have shown that the existence of a largest finite group for each prime
power exponent dividing n, and any number of generators, implies the ex-
istence of a largest finite solvable group of exponent n and any number of
generators. The requirement of solvability is superfluous if n is divisible
by only two distinct primes, since any such finite group must be solvable.
From their theorems and the result of Levi and van der Waerden they ob-
tained the order above for R(6, k). Graham Higman [4] has solved the
restricted Burnside problem for exponent five.

2. Theorems on groups of exponent three

THEOREM 2.1. If a group G is generated by elements x x x,, and

if any .four of the x’s generate a group of exponent three, then G is of exponen
three.
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Proof. We shall suppose that G is generated by xl, x with the de-
fining relations z 1 for every z in a subgroup generated by four of the x’s.
Every further group satisfying the hypotheses of the theorem is a homomor-
phic image of G and so of exponent three if G is. In particular the Burnside
group B(3, n) generated by xl, xn with defining relations z 1 for
every z of the group is a homomorphic image of G.
We shall use the notation (x, y) x-iy-lxy for a commutator and also

write ((x, y), z) (x, y, z), ((x, y, z),w) (x, y, z, w). In a group of expo-
nent three, Levi and van der Waerden [5] have shown that the following rela-
tions hold for any elements"

(x-1, y) (x, y-) (x, y)-i (y, x),

(2.1) (x, y, y) 1, (x, y, z) (y, z, x) (z, x, y),

(x, y, z, w) 1, ((x, y), (z, w)) 1.

In our group G it will follow that these relations will hold if x, y, z, w are
any four elements in a subgroup generated by four of the x’s.
Any element of G is of the form

(2.2) g aas at,

where each a is an x or x7x. Let us apply the collecting process of Philip
Hall [2] to this expression altering a string by the rule

(2.3) RS SR(R, S) ...,
this being an identity by the definition of the commutator (R, S) R-S-RS.
Now for fixed a, a, ak of (2.2)

(2.4) (a, as, ak, x) 1, u 1, n,

since the next to last relation of (2.1) applies. Thus (ai, as, a) permutes
with every xu, u 1, ., n, and so is in the center of G. Hence if we apply
the collecting process to (2.2) first moving x’s to the left, following these by
xs’s, xa’s, x’s, g takes the form

(2.5) g xlx2 enX nCl Cs

where e 0, 1, 2, i 1, n, and each c is a commutator of the form
(ai, a.) or (a, a, a) since by (2.4) any longer commutator is the identity.
But as the commutators (a, a, a) are in the center of G, and the commu-
tators (a, as) permute with each other by the last relations of (2.1), we may
rearrange c, c, in (2.5) and use the first three relations of (2.1) so tha
we have only commutators (x, x), i < j, or (x, x., x) with i < j < k.
Hence g may be put in the form

(x )’<< (x, x,)(2.6) g 1 2 X i<j
Here each of the exponents takes only the values 0, 1, 2, and so the order of
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G is at most

(2.7) 3, N n + (’) + (’).

But Levi and van der Waerden have shown that 3N is the order of the Burn-
side group B(3, n). And as B(3, n) is a homomorphic image of G, it follows
that G B(3, n), proving our theorem.

THEOREM 2.2. If G is the group {a, b, c, d} generated by a, b, c, d, and if
each of the subgroups {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d} is of exponent
three, then G is finite. Iffurther G is of exponent six, then G is in fact of expo-
nent three.

COROLLARY. If G is of exponent six and generated by xl x,, and if
any three x’s generate a group of exponent three, then G is of exponent three.

The corollary is an immediate consequence of the two theorems.
Proof. For the first part of the theorem we assume the defining relation

of G to be g3 1 for every g in each of the four subgroups given, and for the
second part we assume also g6 1 for every g of G. Thus G has 24 auto-
morphisms permuting a, b, c, d according to the symmetric group on four
letters and 16 automorphisms replacing one or more of a, b, c, d by their in-
verses. Other groups satisfying the hypotheses of the theorem will be homo-
morphic images of G as given by these defining relations, and the conclusions
will follow.
We shall use the following notation for elements of G’:

(2.8)

ut (a, b)

u2 (a, c)

u3 (a, d)

u4 (b, c)

ua (b, d)

u6 (c, d)

vt (a,b,c)

v2-- (a,b,d)

va (a, c, d)

v4 (b, c, d)

zt (a, b, c, d)

z (a, b, c, d-t)

za (a, b, d, c)

z (a, b, d, c-1)
z, (a, c, d, b)

z (a, c, d, b-1)

z7 (b, c, d, a)

z8 (b, c, d, a-)

The relations (2.1) are valid in the four subgroups generated by any three of
a, b, c, d. Thus

(2.9) (b, a, c) ((a, b)-, c) (a, b, c)-1.
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(2.10)

We note the following’

Zl (a, b, c, d) (a, b, c)-1 d-l(a, b, c) d,
(a, b, c)zl d-l(a, b, c) d,

z-(a, b, c)-1 d-l(a, b, c)-1 d d-l(b, a, c) d,

(b, a, c)-lz-l(a, b, c)-a (b, a, c)- d-l(b, a, c) d (b, a, c, d),
-1 -1 (b, a, c, d).)1 Zl )1

This gives the following relations-

(b, a, c, d) v z-lv-[
--1 --1(b, a, d, c) v. z3 v

(2.11)
(c, a, d, b) v3zv
(c, b, d, a) v4 z-ilv7

z-ly-1(b,a,c,d.-) v
(b, a, d, c-) vzTv1,
(c, a, d, b-) vaz71v,

--1 --1(c, b, d, a-1) v4z8 v
We list in tabular form the results of transforming the u’s and v’s by a, b, c, d
and their inverses.

U a-Ua b-1Ub c-1Uc d-1Ud
Ul Ul Ui Ul Yl Ul Y2

--1
2 ?2 U2 Y 2 U2

US 3 3 V2 U3 V3 U3

4 4 Yl U4 U4 U4 P4
--1(2.12) u uv u u v u

u u uv m u

(2.13)

V3 V3 V3 Z6 V3 P3
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These relations all are from given properties of the subgroups or by definition
of the z’s.
From the relations holding in the four subgroups we may derive further

relations by transformation. Thus from

-15
holding in {b, c, d} if we transform by a, using (2.12) we get

(2.14) vuTuvuv uv
whence

(2.15) u7 vu uvuv v7.
Similarly from

(2.16) u7uau ua

holding in {a, c, d} and transforming by b-, using (2.13) we get

(2.17) vuuvuv uv,

whence

(2.18) U71V2 m uTvTuvv
Transforming

(2.19) uluu
by gives

(2.20) vuuavuv u
whence

(2.21) u
From (2.15) and (2.18) we have

(2.22) uvuv v7 uv7uavv
Substituting in this from (2.21) we have

(2.23) u v ua vav vv uvuavv.
From this we get using

--1 --1 --1(2.24) va vTv va v v uTv ua

In (2.24) replace a by a-;, b by b-, and d by d-;. This gives
--1 --1 --1 --1(2.25) vv v2 v v4 v2 uTv4u.

(2.24) and (2.25) give together
--1 --1 --1 --1 --1 --1(2.26) vva v v2 v2 va v4 v2,



THE BURNSIDE PROBLEM FOR EXPONENT SIX

and so
--1 --1 --1(2.27) v v3 v4 v v-lv-1.

Substituting this in (2.25) we have

(2.28) va

In (2.28) replacing a by a-, c by c-, and d by d- gives
--1 --1 --1(2.29) v3 v vv u’lv u3.

From the left-hand sides of (2.28) and (2.29) we have
--1 --1 --1(2.30) vv v v4 vIv71vv7,

whence

(2.31) va v v v3,

and from (2.29)

(2.32) v uTv4 u.
We already had from {b, c, d the relation

(2.33) v4 uvu4.

Permuting a, b, c, d in (2.31), (2.32), and (2.33) in all ways, we find

(2.34)

and

(2.35)

Now from

(2.36)

transforming by a we get

(2.37)

whence

(2.38)

Similarly from

(2.39)

transforming by a we get

(2.40)

whence

(2.41)

l)il) l)jl)i

l)iUj Uil)i

Y4 Yi Vii)4,

Y4Z7Yi I)iY4Z7

ZTl)i ViZT

l)4 Ui il)4

1)4 Z7 i i I)4 Z7

769

i,j= 1,2,3,4,

i= 1,2,3,4, j= 1,...,6.

i 1, 2, 3,

i 1, 2, 3,

i 1, 2, 3.

i 1, 2, 3,

i 1, 2, 3,

ix 1,2,3.
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Also from

(2.42) vm mv

transforming by a we get

(2.43) v z7 u4 Vl u4 Vl )4 ZT,

and using (2.42) and (2.38) we have

(2.44) z u4 u4 z.

Similarly we find

(2.45) z u5 u5 z and z u6 u6 z.
In (2.12) we find

(2.46) a-v a vz.
Transform by b and use (2.12). This gives

(2.47) b-ia-ibv4 b-iab 4 b-iz b.

By definition of u, b-ab au, and so

(2.48) u71a-lv4 aul v4 b-lz b,

and by using (2.12) this becomes

(2.49) u’lv z ul v b-z b.

By (2.39) and (2.41), u commutes with both and z, and so

(2.50) z b-lz b.

We also take the relation

(2.51) v a(a-lv a)a- a(v z)a-1 v Zs az a-
whence

-1(2.52) az a-1 Zs

Also

(2.53)

whence

--2 a a-1a )4 aY4 v4zs a (a-iv4 a)a
a-l(v4 z)a v za-z a,

(2.54) a-z a z-izs.
Substituting in (2.50), (2.52), and (2.54) in all ways, we obtain the following
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tables"

(2.55)

--1 --1 --1 --1z a za b zb c zc d zd
--1

Zl Zl Zl Zl Zl Z2
--1

Z2 Z2 Z2 Z2 Zl

Z3 Z3 Z3 ZlZ4 Z3
--1

Z4 Z4 Z4 Z3 Z4
--1

Z5 Z5 Z5 Z6 Z5 Z5
--1

Z6 Z6 Z5 Z6 Z6
--1

Z7 Z7 Z8 Z7 Z7 Z7
--1

Z8 Z7 Z8 Z8 Z8

(2.56)

z az a bz cz c dz
--1

Zl Zl Zl Zl Z

Z2 Z2 Z2 Z2 zlzl
ol

Z3 Z3 Z3 Z4 Z3
--I

Z4 Z4 Z4 Z4 Z3 Z4
-1

Z5 Z5 Z6 Z5 Z5

Z6 Z6 zlz5 Z6 26
--1

Z7 Z8 Z7 Z7 Z7
--1

Z8 Z8 Z7 Z8 Z8 Z8

These tables, together with (2.12) and (2.13) show that ul,..., u6,

vl, v, z, z8 generate a normal subgroup of G, which, since it
includes the commutators of pairs of the generators, u, u6, must be
G

If we now take the relation from (2.45)

(2.57) z7 ue u z7

and transform by b, we get

(2.58) Z7 U6

whence

(2.59) z7 v4 v4 zT.

Adjoining this to (2.38)-(2.45) we find that z permutes with all u’s and
v’s. On substituting we have

(2.60) z u. us z, i-1,...,8, j= 1,...,6,

(2.61) zv vz, i 1,..., 8, j 1,..., 4.
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Also from v 1, transforming by a and using (2.59), we have

(2.62) (v4zT) 1 vz,
whence z 1, and on substituting,

(2.63) z 1,

From the definition of u we have

(2.64) a-b-u ba u b-a-u abu-[.
By using (2.12) this becomes

--1(2.65) u6 v3 v4 z7 ul u6 v4 v z5 ul

From this we find, using (2.34), (2.35), (2.60), and (2.61),
--1(2.66) z7 z uTulu u-[.

Transforming this by a- we obtain, using (2.13) and (2.56),
--1 --1(2.67) zs z v3 u-uu v7lu’[ u-dul u u-[,

the last being from (2.35).

(2.68)

i= 1, ,8.

Comparing (2.66) and (2.67) we find

--1
Z8 Z7

and on substituting also

(2 69) -1 -1 -1
Z6 Z5 Z4 Z3 Z2 Zl

note that (2.55) now shows that the z’s are in the center of G.
the appropriate substitutions in (2.66) we find

--I --I --I
U6 Ul U6 -1 Z7 Z5 Zl Z

(2.70) -1
U5 U2 U U;1-" z-lz"1 Z-Iz-1,

--1
U4 U3 U4 U-1-- z’lz z’lz7

On making

Our relations now show that, modulo the group zl, za, z, z (which is ele-
mentary Abelian of order 27 or a divisor of 27), G is the Burnside group
B(3, 4) of exponent three and order 31. This shows that G is finite and of
exponent nine, whence if we assume that G is of exponent six, then G is neces-
sarily of exponent three, and our theorem is proved.

This last is however proved directly if we calculate that

(2.71) (u cd) u zl za z za.

Hence if (u cd) 1, we have (zl za) 1, but since (Zl Z3) 1, this gives
zl za 1, and on substitution we have

(2.72) zlza 1, zz 1, zz 1, zzl= 1.
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Then from (2.70) and (2.72) we have
--1(2.73) z,zlzsz7 1, zl zl 1,

and so all z’s are 1, and G is of order at most 34, and so G B(3, 4).
completes the proof of our theorem.

This

3. The main theorem

Our main theorem is of course the proof of the Burnside coniecture for
exponent six.

THEOREM 3.1. A finitely generated group G of exponent six is necessarily
finite.

Proof. Philip Hall and Graham Higman [3] have shown that there is a
finite group R(6,/) generated by xl, xk of exponent six such that every
other finite group of exponent six generated by/c elements is a homomorphic
image of R(6, It). Its order is

(3.1) 2a3b+()+(), a 1 + (k- 1)3k+()+(), b 1 + (k- 1)2.
Thus, once the finiteness of the Burnside group G B(6, k) is established,
its order is given by (3.1). G B(6,/) is of course the group generated by
x,,..., x with defining relations z 1 for every element z of the
group G.
The proof of this theorem does not depend on the Hall-Higman results,

though in order to get the exact order of the Burnside group their results
must be used. The motivation for the proof does, however, come from their
work. They have shown that a finite group H of exponent six has 2-length
one. This means that H has a normal series

(3.2) 1 U----- VcH,
where U is a maximal normal subgroup of order prime to 2, V/U is a 2-group,
and H/V is of order prime to 2.
Our proof will follow this idea. We show the existence of a normal sub-

group M of G such that

(3.3) G M D M’,
where G/M is finite of exponent three, M/M’ is finite of exponent two. M’
is easily seen to be finitely generated, and the main difficulty will be in show-
ing that M’ is of exponent three and hence finite by the results of Levi and
van der Waerden.
The proof is given by a succession of lemmas.

LEMMA 1. A group G of exponent six generated by ]c elements x, x
has a subgroup M, generated by the cubes of elements of G of index dividing
3K,K k- () - ().
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This is a direct consequence of the results of Levi and van der Waerden.

LEMMA 2. M is generated by a finite number of elements of order 2. The
derived group M of M is of index a power of 2 in M, and M’ is generated by
a finite number of elements of the form abab where a 1, b 1.

Proof. M being of finite index in a finitely generated group is itself finitely
generated, say by al, as,... aM. M is also generated by elements of
order 2, namely the cubes of the elements of G. Thus each a can be ex-
pressed in terms of a finite number of elements of order 2, and the finite
number of elements of order 2 needed to express al, aM will be a set
of generators for M. If M is generated by x,..., xt with x 1,
i 1, t, then M’ is of index at most 2 in M. Also M is generated by
the commutators x-(ix-xix and their conjugates and so by a finite set of
these. Hence M is generated by a finite number of elements of the form

b= 1abab where a 1,
Now M’ is of finite index in G and has a finite number of generators of

the formababwherea 1, b 1. If it can be shown that M’isofex-
ponent three, then by the results of Levi and van der Waerden it will follow
that M’ is finite and so also G, proving our theorem. From the corollary
to Theorem 2.2 it will be enough to prove the following lemma.

LEMMA 3. If a b c d e f 1 in a group of exponent six,
then the subgroup [abab, cdcd, efef} is of exponent three.

The rest of the proof consists of steps leading to the proof of this lemma
This lemma might be attacked by a high speed computer, but would prob-
ably be a very long problem.
To motivate the rest of our proof we observe that if H is a finite group

of exponent six, and if H/H is a 2-group, then H’ must be of exponent three.
For by the Hall-Higman results H must have 2-length one, that is, H has
normal subgroups R and S such that H R S 1, where H/R is a 3-
group, R/S is a 2-group, and S is a 3-group. If H R, then H has a maxi-
mal normal subgroup T of index 3, and as HIT is the cyclic group of order
3, T

__
H and so H/H’ would contain an element of order 3, contrary to

assumption. Hence H R. As HIS R/S is a 2-group of exponent two,
H/S is Abelian and so S H. But as H/H’ is a 2-group and HIS is the
maximal factor group which is a 2-group, H S. Hence H S is of
exponent three.

LEMMA 4. If H {x, a, b} is of exponent six, and if x 1,
a 1, b 1, xax a-, xbx b-, then {a, b} is of exponent three.

This lemma is critical since we note that [H :H’] 2, and so if H is finite,
then H’ {a, b} must be of exponent three and so of order 27 (or naturally
a divisor of 27). Thus if H is finite, its order divides 54.
We assume that H is given by the generators x, a, b, and defining relations
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x 1, a 1, b 1, xax a-1, xbx b-, and relations u 1
for every u e H. Then in A /a, b} there are automorphisms obtained by
replacing a or b by its inverse and interchanging a and b.
The derived group A’ of A is generated by z, z2, z3, z4, where

z a-b-ab, z. a-lbab-,
(3.4)

z3 ab-a-b, z4 aba-b-.

(3.5)

Here the z’s are transformed by a and b in the following way"
--1 --1

zi a zia b zb
--1 --1

Zl Z Zl Z Z2
--1 --1

Z2 Z4 Z2 Zl
--1 --1

Z Zl Z Z4
--1 --1

Z4 Z2 Z
We also have

(3.6)
XZl X Z4 XZ2 X Za

XZ3 : Z2 XZ4 X Z1.

Replacing the generators has the following effect on the z’s"

(::azi ka-,
--1

Zl Zl Za Z2
--1(3.7) z. z z zl
--1

Z Z2 Zl Z4
--1

Z4 Z4 Z2 Za
--1Now [A "A’] 9. If we can show that Zl

then it will follow that A’ is of order 3 and so A is of order 27, and easily
seen to be of exponent three as we wish to prove.
For our first relation

(3.8) 1 (xab)-- (xabxab)= (a-b-ab)- z.
Replacing a and b by their inverses in turn we have

z 1(3.9) z z za

We find
(Z3 -1z, z) ((ab-1)a)= (ab-1)6= 1,

whence

--1 1,(za z.) (b-l(ab)ab) b-l(ab)6b
1 (Zl X) (Zl XZl X) (Zl Z4),

(a-lzl z4 a) 1 or (z3 ZlZ2)-I-1 1.
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(3.0)

(3.11)

(3.12)

(3.13)

From (3.10) we find

(3.14)

From (3.11)

Also
(Z2z-lzlzl)2= ((a-lbab)3)2= (a-lbab)6- 1.

Thus we have found the following four reIations on the z’s:

(z3 z-lz_) 1,

(z71z)-- 1,

(za z71z-l) 1,

(z z-[lzlzl) 1.

--1 --1
Z3 Zl Z2 Z3 Z2 Zl

--I --I(3.15) z z2 z: za.

By combining (3.14) and (3.15)
--1 --1 --1 --1 --1(3.16) z z z z z z z.z z z z zz.

From (3.12)
--1 --i --1 --1 --I --I(3.17) z3 Zl z2 z3 Zl z2 z3 Zl z2 1.

Substituting from (3.16) into (3.17) we have
--1 --1 --1 --1 --1 --1(3.18) Z2 Zl Z2 Z3"Z3Zl Z2 Z3Zl Z2 1,

whence
--1 --1 --1 --1 --1(3.19) z3 zl z. z3 z z-[lzs.z. Zl z2 zl z zl

Squaring and using (3.13) we have

(3.20) -1, -1 -1 -1 -1 \2
Z3 (Zl Z2 )2Z3 (Z2 1.Zl Z2 Zl)

Hence
--1 --1\2 and SO (Zl Z2) 1(3.21) Zl Z2 1,

In (3.21) interchange a and b. This gives

(3.22) (zl z) 1.

In (3.21) replacing a by a-1 gives

(3.23) (z3 z4) 1.

In (3.22) replacing b by b-1 gives

(3.24) (z z4) 1.
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In (3.11) replacing a by a-1 gives

(3.25) (z{lz4)= 1.
--1If we write wl zl z, w zl z3, w3 zl z4 we have from (3.21), (3.22),

and (3.25)

(3.26) wl 1, w. 1, w3 1.

We have from (3.11), (3.23), and (3.24)

(3.27) -1 -1(w wl) 1, (w. wa) 1, (w-{lwa)= 1.

From (3.26) and (3.27) the w’s are of order 2 and permute pairwise. Now

(3.28) 1 (zl z x) (zl z xzl z x) (zl z,. z za).
But

(3.29) (zl z,. z, z3) (wl w";lw,.) w w w, 1.

From (3.28) and (3.29) we have

(3.30) zlzzz3 1 or zazlzz 1.

Transforming (3.30) by a gives
--1 --1 --1 --1 --1 --1(3.31) zazl z4z .z zl 1 or z,z z3z z, 1.

In (3.30) replacing a by a-1 gives

(3.32) z3zzz 1 or zzlzz 1.

From (3.31) and (3.32) we have

(3.33) z z z[lza z- z z za

whence

(3.34) Z’{Iz$ Z’{ Zl Z$

and so

(3.35)

But then

Zl Z8 Z3 Zl

(3.36)

while from (3.22), (zl za) 1, and so

(3.37) zlz3 1 or

In this, interchanging a and b gives

(3.38)

(zza) zl z 1.

-1
Z$ Zl,.

-1
Z2 Zl
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From (3.33) we now find
--1(3.39) z4 z2.

We now have shown z 1, z2 z-1, z3 z71, z4 zl, proving A of order
3, A of order 27, and so our lemma is true.
The next lemma is similar.

LEMMA 5. If H {x, a, b} is of exponent six, and if x 1, a 1, b 1,
xax a-1, xbx b, then a, b} is of exponent three.

Proof. With A {a, b}, as in the previous lemma A’ is generated by
zl a-lb-lab, z a-lbab-1, za ab-la-lb, and z aba-lb-1. Here auto-
morphisms of A include replacing a or b by its inverse, but not an inter-
change of a and b. Here

-1 x(bab-1)x ba-lb-1 (bah-l)-1, andxax a
(3.40)

x(b_lab)x b_la_lb (b_lab)_l.
Hence by Lemma 4 both {a, bab-1 and {a, b-labl are of exponent three.
Thus

(3.41) (a-l.b-lab)a= 1 or z-= 1,

and similarly

3= z 1(3.42) z z3

Also
-1-1 (a bab-) 1, or zz z2z(3.43) z z. z4 z

In this replacing b by b-1 gives

(3.44) z3 z-lzTlzl 1 or z3 z zl z.

Also

(3.45) 1 ((ab-1)) (z z-lz),
and

(3.46) 1 (b-l(ab)b) (z3-1z:).
Also as z 1, we have

(3.47) 1 (b-lz-lb)= (z-z).
From (3.45) we have

(3.48) z3 zl z zJzl z2 1,

and by using (3.44)
--1(3.49) z3 z2 z3 z z z.
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From (3.46)
--1(3.50) z3z2 z2z-1 and zlz3

Thus using (3.49) and (3.50), we have
--1 --1 --1 --1".1) z2 z z. z z .z z2 z z2 "z z z z z z z2z-

Hence
"’.o) z z z z2 z z

But from (3.47) this gives
--1 --1(3.53) z (z z) z- Zl

In (3.53) replace b by b-;
--1(a.4) .

Transform (.gg) by b, and we have
--1

whence from (a.a) and (.4)

(3.56)

and so zl and z permute.

(3.57)
But as zl and z permute,

(3.5S)

-1
Zl Z2 zlzl

-1 and we haveSubstitute za zl in (3.46),

(z z.) 1.

(z z.) z z 1.

From (3.57) and (3.58) we get

(3.59) zl z 1.

Combining (3.53), (3.54), and (3.59) we have

(3 60) -1 -1
Z2 Zl ZS Zl Z4 Zl Zl 1.

Thus A’ is of order 3, and A {a, b} is of order 27 and exponent three.

LEMM. 6. If H {x, a, b, c} is of exponent six and x 1,
b b-1 -1 then {a, b, c is of ex-a c 1, xax a-1, xbx ,xcx c

ponent three.

Proof. By Lemma 4 /a, b}, /a, c I, and /b, c} are of exponent
three. Since the rules (2.1) apply to groups of exponent three, we have
x(a, b)x (a-1, b-1) (a, 5-1)-1 (a, b). Hence by Lemma 5, {c, (a, b)}
is of exponent three and also {a, (b, c)}, {b, (c, a)}. Let us write

ul (a, b), u. (c, a), ua (b, c),
(3.61)

vl (a, b, c), v (c, a, b), va (b, c, a).
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Then since {(a, b), c} is of exponent three, we have (a, b, c-1) (a, b, c)-1.
Similarly we have the following relations"

-i (a, b, c-1), vl

-1 (a, c, b), v2
-1 (c, a, b-i),(3.62)
-1 (b, c, a-i),Y3 ?)3

We now calculate a-lvl a.
-1a vl a a-l(a, b)-lc-l(a, b)ca

(3.63)

(a, b)-la-lc-l(a, b)ca

(a, b)-la-lc-lac, c-la-l(ab)ac. c-la-lca
(a, b)-(a, c)c-l(a, b)c. (c, a)

(a, b)-l(a, c)(a, b)(a, b, c)(c, a)

u-lu-1"{I )I "2

Here we noted that since {a, b} is of exponent three, a permutes with (a, b).
In (3.63) let us replace b by b-1 and c by c-1. This gives

(3.64) a-iv1 a ul u2 u’lvl u-1.
From (3.63) and (3.64) we have

--1 --1(3.65) ul u ul v, u,.u v-uluu 1,

whence
--1 --1 --1(3.66) v, u v, u, u u u uu,

and so

(3.67) u v uv (u u),
whence

--I --Ix2(3.68 (U2 I U2 I (’2 UI) I.

As Xl x 1 xu2 x 2 by Lemm 5, 2 nd i genert roup of expo-
nent three, nd so

(3.69) (u u) i.

Combining (3.68) nd (3.69) we hve
--I --I(3.70 2 1 U2 I i or 2 1 i 2.

Also using (3.67) we find

(3.7) (u u’) .
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We have u2 w. v u. since {u, b} is of exponent three, and this with (3.70)
and substitution gives

(3.72) u v v u, i, j 1, 2, 3.

From xcx c-, x(aba)x (aba)- we may apply Lemma 4 and conclude
that {aba, c} is of exponent three. In particular (abac) or

abacabacabac 1
(3.73)

aba-b- ba-cac-b- bcbacabac 1.

Here since aca c-a-lc-, we have

u b(c, a)b- bcbc-b b-a-ba(a-b-ic-bca)a-c-ac 1,
-1ul(c, a)(c, a, b-)uu-Ea-(b, c)a.u 1,

(3.74) --1 --1 --1u u2 v u3 ul ,o, c)(b, c, a)u 1,
--1 --1 --1

This with (3.72) gives
--1(3.75) v2 y$ u2 ull ua ulu1.

In this replacing a by and c by c- gives
--1(3.76) v va u2 ua ulululu

From (3.75) and (3.76) we get
--1--1--1 --1--1

whence
--1 --1(3.78) ul u ulu (ui u ).

Bu if in (a.71)

(a.7) (r;) 1,

and so from

(3.80) -i -I
Ul 2 I2 i or lU2 2Ul.

Substituting we hve

(3.81) u u u u,

Then (3.75) becomes
--1(3.82) vv= I or v= .

Substituting we hve

(3.83) v v v.

i,j 1, 2, 3.
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Writing v for the common value of vl, vs, vs we have a-ira a-lvs a v3 v
and a-lul a ul a-lug, a us, a-lu a us . Similarly {u, u., us, v} is
transformed into itself by b and c and thus is the derived group of
A {a, b, c}. This shows that A is of order dividing 37, which is the order
of the Burnside group B(3, 3). Thus A B(3, 3) is of exponent three,
proving the lemma.

LEMMA 7. If H {x, al, as,... a,,} is of exponent six and x 1,
aS 1, i 1, n, xa x a-(1, i 1, n, then A al,...,a,} is
of exponent three.

Proof. By Lemma 6 any three of the a generate a group of exponent
three, and by the corollary to Theorem 2.2 this proves that A is of exponent
three.

LEMMA 8. If H {a, b, c} is of exponent six and a b c 1, then
H’ is of exponent three.

Proof. The following transformation table shows that al, as, as, a, a
generate H’.

aa a ba b ca c
--1 --1 --1 --1

al abab al al 01.2 a a4 as
--1 --1 --1

a2 acac a2 al a4 a2

(3.84) aa bcbc a as as
--1 --1 --1 --1

a abcacb a al a as a al as
--1 --1 --1 --1

a abcbca aa al a al a2 a a2

Herea (ab)6 -1 -1 whence1, as (ac) 1, andaala al ,aasa= as
by Lemma 4, {a, a} is of exponent three. Hence

is also of exponent three, and so in. particular a 1. Thus since
aa4 a a71 from Lemma 6, {al, as, a} is of exponent three. This is the
group {abab, acac, abcacb}. If we interchange a and b, the corresponding
group {baba, bcbc, bacbca} must also be of exponent three. But this

--1 --1is {al a, a a} {al, a, a}. In particular the subgroup {as, a} is
of exponent three, and so we have

(3.85) (as a’l) 1, (a-la)s= 1.

But from (3.84)

(3.86)
a(aa a-l)a a a; (as al)-,- ()-.a(aza)a a a
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Hence from Lemma 7 the following elements
--1 --1(3.87) 1, 2, , 5, a a5

are all of order 3 and transformed into their inverses by a, whence they
generate a group of exponent three.

(3.88) (a a 1) 1,

whence

(3.89) (ala aa) 1,

It follows that the group K given by

(3.90)

In particular

(aCa)a 1, i 1, 2, 4,

-I -I -I" (:, 03 05 3 05, 05 oi 03, 05 oi 31,--’

i= 1,2,4.

i 1, 2, 4,

is of exponent three by Lemma 7 since each of the elements is of order 3 and
is transformed into its inverse by a.

--1 --1 --1 --1 --1 --1Noting that . and 5 .oco ,
and also that () (al)- and a(l)
we see that K is normalized by . Since K is trivially normalized by ,

--1
2, 4,and we see that Kis normalin H’ {1, 2, , a4, a}.
Further we note in H’

1 - 1 (mod K), 2 1 (mod K), a a (mod K),
(3.91)

4---- 1 (modK), a-= a (modK).

Thus K is of index 3 in H’. Hence for an arbitrary z e H’ we have, since K
is of exponent three,

(3.92) z zK, (z) 1.

But as H was of exponent six, we have

(3.93) z 1, z 1 whence

Thus H’ is of exponent three, proving our lemma..

LEMMA 9. IfH a, b, c, d} is of exponent six and a b
and a abab, cdcd, then {a, is of exponent three.

d-c -1

Proof. Write ---1 "--cdcd, 2 acdcda. Then {1, .} is in the
derived group of {a, c, d} and so by Lemma 8 is of exponent three. In
particular

(3.94) (1 -1)$ 1, (f12)3 i.

Thus the group

(3.95)
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-Iis generated by elements of order 3 and aaa baba a

a(-12)a 11 (-12)-1
whence by Lemma 6, U is of exponent three. Thus also

(3.96) (a.11)a 1, (a-12)a 1,

and so

( a1) 1, ( aft71) 1,(3.97) -1

whence by Lemma 7 the group V

(3.98)

is of exponent three, being generated by elements of order 3 which are trans-
formed into their inverses. But we readily see that V is normal of index 3
in A {, 1, .}, whence A is of exponent nine, but by hypothesis being of
exponent six, must be of exponent three. But/a,/1} {a, } is a subgroup
of A and so of exponent three, as we wished to prove.
Now for Lemma 3 and the proof of the main theorem!

LEMMA 3. I:f H {a, b, c, d, e, f} is oj exponent six and a b c
d e f2 1 and a abab, cdcd, , efef, then {a, , "} is of ex-
ponent three.

Proof. Write cdcd, acdcda, ’1 ")’ efef, , aefefa.
Then by Lemma 8, {1,/} and {/1, ’} are of exponent three. Thus the
elements

are of order 3 and transformed into their inverses by a. Hence by Lemma 7
they generate a group of exponent three. We assert that if W(u, v) is an
arbitrary word in elements u, v and their inverses, then the two elements of H

(3.100) W(l, l)W(2 ’’2)-1, W(l, ’’l)oW(2, ’2)-1

are of order 3 and are transformed into their inverses by a. Since a/1 a ,
--1

a2 a- 1, /1 a- ,., a5’ a ’1, aaa we have surely

and similarly without a. Thus the elements of (3.100) are all transformed
into their inverses by a. Hence by Lemma 7, those elements of (3.100) which
are of order 3 generate a group of exponent three. To prove they are of order
3 we proceed by induction on the length of W, this being trivially true if
W 1. Now suppose this true for a particular W(u, v). Then the ele-



THE BURNSIDE PROBLEM FOR EXPONENT SIX 5

ments

w(, )w(, )-, w(, )w(., ),

by Lemma 7 generate a group of exponent, three. Thus

(3.102) (flflW(l, fl)(:gW(2, 2)-1) 1,

whence

(3.103) (IW(,, 71)W(f2, ,.)-1/-) 1,

and similarly without the a. Thus the statement is also true for u W(u,
and in exactly the same way true for u-W(u, v), vW(u, v), and v-lW(u, ).
But we may build up any word W(u, v) by successively multiplying on the
left by u, u-1, v, or -. By Lemma 9, /, ’1} is of exponent three and so
of order dividing 27. Thus with 27 words W(u, ) we obtain all distinct
elements of (3.100). By Lemma 7 the elements of (3.100) generate a group R
of exponent three. We note that

(3.104) /-W(fl, l)oW(2, "’2)-11 -Iw(I, ’l)o/W(2, f2)-12.-11 {! R

and similarly without . Thus R is normalized by . Similarly R is nor-
malized by ,. But as R contains , fi-lf2, ,i-1,2, R is normal in
A {a,/1, 2,71, ’}. Furthermore in A we have

a ---- 1 (mod R), fll 1 (mod R), f12 fl (mod R),
(3.105)

’1 (mod R), 2 ’1 (mod R).

Thus AIR is a homomorphic image of the group {fj, ,1} which by Lemma 9
is of exponent three and order 27. Hence for n arbitrary z e A we have
zaeR, and (z3) z 1. But as z- 1 by hypothesis, we have z- 1,
whence A is of exponent three, and consequently {a, , } which is a sub-
group of A is also of exponent three. This proves Lemma 3. The proof of
the main theorem is now immediate.

Proof of main theorem. M’ by Lemmas 1 and 2 is of finite index in G.
By Lemma 2, M’ is generated by a finite number of elements of the form
abab with a b 1. By Lemma 3 any three of these generate a group of
exponent three. By the corollary to Theorem 2.2 it follows that M’ is of
exponent three. By the results of Levi and van der Waerden it follows that
M’ is finite. Since M’ is finite and of finite index in G, it follows that G is finite.
This proves our theorem.
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