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1. Introduction

Let F be an algebraically closed field of characteristic 0. It is known that
there is a large class of affine algebraic F-groups G for which the group
of all affine algebraic group automorphisms is again an affine algebraic F-group
in a natural way. In fact, [2] gives an intrinsic structural characterization of the
connected groups G for which this is the case. It is our present purpose to apply
the underlying principle and technique of [2] quite generally to an exploration
of g’(G) when G is an arbitrary pro-affine algebraic group over an arbitrary
algebraically closed field.
Although g’(G) is usually not an algebraic group, there is a natural notion ef

algebraic subgroup of /"(G). The guiding principle for this is the following.
For a subgroup P of //"(G) to qualify as an algebraic subgroup, it should be
possible to endow P with the structure of a pro-affine algebraic group in such
a way that the canonical map P x G- G, sending each (, x) onto (x),
becomes a morphism of pro-affine algebraic varieties. We shall see in Section 2
that if P qualifies in this sense then there is a unique minimum pro-affine struc-
ture on P. If each such P is given this minimum structure then the resulting
family of algebraic subgroups of r(G) has all the desired naturality properties.

In Section 3, we obtain the appropriate extensions of the results of [2] for
affine algebraic groups over fields of characteristic 0. The main result here is
that the subgroup of "t(G) that is generated by the family of all connected
algebraic subgroups is still an algebraic subgroup, the maximum connected
algebraic subgroup of //’(G). This illustrates the strength of the structure
theory of affine algebraic groups in characteristic 0, as compared with the case
of characteristic p 4: 0. Indeed, we exhibit a simple and nonpathological ex-
ample showing that the result does not extend to the case of nonzero charac-
teristic. Another simple example shows that, independently of the characteristic,
an extension to the pro-aitine (rather than affine) case is also not possible.

In Section 4, we deal with connected affane algebraic groups in characteristic 0.
First, we verify that the algebraic subgroups of /(G) are precisely those sub-
groups whose natural images in the automorphism group of the Lie algebra are
algebraic, in the usual sense (essentially, the proof of this is already in [2]).
Next, we show how one can describe the image in the Lie algebra automorphism
group of the maximum connected algebraic subgroup of g’(G) in purely Lie
algebra theoretic terms. Loosely speaking, this shows that the maximum
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connected algebraic subgroup is far more computable than is the whole group
"/g’(G). Finally, we point out the reassuring fact that when the base field is the
field of complex numbers, in which case /’(G) carries the structure of a complex
Lie group, the maximum connected algebraic subgroup of f(G) coincides with
the topological identity component of //’(G).

Added in proof I have just learned that, long before [2] was written, the
automorphism groups of affine algebraic groups over fields of characteristic 0
were analysed by A. Borel and J-P. Serre (Thdormes definitude en cohomologie
galoisienne, Comment. Math. Helv., vol. 39, Fasc. 2 (1964), pp. 111-163). They
are shown to be groups of a special type (ALA) in a suitably defined category of
locally algebraic schemes. Although Borel and Serre work in the general
algebraic geometric setting, where the Hopf algebras of polynomial functions
do not appear explicitly as such, it is not difficult to see that the identity com-
ponent of the group Q of Theorem 3.2 coincides with the identity component
(in the sense of Borel-Serre) ofthe automorphism group of G, and that Theorems
3.1 and 3.2 are covered by the results of the paper cited above.

2. Algebraic automorphism groups

Let F be an algebraically closed field, and let G be a pro-afline algebraic
F-group, with Hopf algebra of polynomial functions A at(G), in the sense of
[1]. Let P be a subgroup of the group //’(G) of all pro-afline algebraic group
automorphisms of G, and suppose that P can be equipped with a Hopf algebra
B of F-valued functions such that (P, B) is the structure of a pro-affine algebraic
F-group, with the property that the map P x G G sending each (, x) onto
(x) is a morphism of pro-affine algebraic varieties. Then, for every elementf
of A, the F-valued function on P x G sending each (, x) onto f((x)) is a
polynomial function on P x G. This means that there are elements gl,..., g,
of A and hi,..., h, of B such that f((x)) = hi()gi(x), so that

f hi()gi.
i=1

Thus, P and B must satisfy the following conditions.

(1) For everyf in A, the composites f , with ranging over P, all lic in
some finite-dimensional F-subspacc of A, i.e., A is locally finite as a (right)
P-module.

(2) For every p in A HomF (A, F) and everyfin A, the F-valued func-
tion p/f on P defined by

(p/f)(a) p(f a)

belongs to the algebra B of polynomial functions on P.

Recall, from [1], that a family of functionsfon a group is calledfully stable
if it is stable with respect to the translation actions f-, x .f and f--f" x,
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where (x .f)(y) f(yx) and (f. x)(y) f(xy), as well as with respect to the
mapff’, wheref’(x) f(x-1). For any subgroup P of #’(G), let us denote
by A(P) the smallest fully stable F-algebra of F-valued functions on P that
contains all the functions p/f, with p in A andfin A.

If (P, B) is as above then, by the definition of pro-affine algebraic group, B is a
fully stable F-algebra of representative functions on P (which is equivalent to
saying that B is a Hopf algebra of functions on P). By virtue of condition (2)
above, A(P) is a sub Hopf algebra of B, and it is clear that A(P) still separates
the elements of P. By assumption, P may be identified with the group ((B) of
all F-algebra homomorphisms B F, and our last statement says that the
restriction map ((B) - ((A(P)) is injective. On the other hand, it is a general
fact of the theory of pro-affine algebraic groups that such a restriction map is
always surjective (of. [1, Theorem 2.1]). Therefore (P, A(P)) is the structure of
a pro-affine algebraic F-group, and the canonical map P x G G is clearly a
morphism of pro-atfine algebraic varieties also with respect to this minimum
admissible algebra A(P) of polynomial functions on P. This provides us with a
justification for referring to P as an algebraic subgroup of g’(G), making the
agreement that the Hopfalgebra ofpolynomialfunctions on P is to be A(P). We
observe that, if the base field F is of characteristic 0, then the injectiveness of the
map ((B) ((A(P)) implies that A(P) B.
The following result is a straightforward extension of [2, Theorem 2.1].

TI-IEORE 2.1. Let (G, A) be the structure of a pro-affine F-group, where F
is an algebraically closedfield. Let P be a subgroup oflC(G). Then P is contained
in an algebraic subgroup of /C(G) ifand only ifA is locallyfinite as a P-module.
If this condition is satisfied, then A(P) is afully stable F-algebra ofrepresentative
functions on P, and the associated group ff(A(P)) may be identified with an alge-
braic subgroup of g’(G), coinciding with the intersection of the family of all
algebraic subgroups that contain P.

Proof The necessity of the condition being already clear (condition (1)
above), we assume that A is locally finite as a P-module. Letfbe an element of
A, and let (fl,..., f,) be an F-basis for the F-linear span in A of the family of
compositesf , with in P. Let p be an element of A. Evidently, for every
a in P, we have (p/f). p/(fo ). Now f 0 is an F-linear combination

Z’= h()f, whence (p]f). .= h()p]f. This shows that the F-linear
span in A(P) of the family of translates (p]f). , where ranges over P, is finite-
dimensional, so that each p]f is a representative function on P. Since A(P) is
the smallest fully stable algebra of F-valued functions on P containing the func-
tions p]f, it follows that A(P) is a sub Hopf algebra of the Hopf algebra of all
representative functions on P.
Now let a be any element of C(A(P)), and let x be an element of G. Viewing

x as an element of A, we consider the effect of a on the elements x/fof A(P),
wherefranges over A. Thus we define an F-valued function a on A by setting
a,(f) a(x/f). From the fact that x is an F-algebra homomorphism A --, F
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we have x/(f#) (x/f)(x/g) for all elementsfand # of A. It follows that ax is
actually an F-algebra homomorphism A -+ F, i.e., that ax is an element of G.

Let 7: A --. A (R) A denote the comultiplication of A, so that, for x and y in
G, we have xy (x (R) y) 7. For f in A, let us write 7(f) ’= fli (R) f2i.
Then we have

which shows that

This gives

whence

((xy)/f)(z) (xy)(f z) f((x)o( y))

((x) (R) (Y))(7(f))

fi(e(x))f:i(o(Y)),
i=1

(xy)/f
i=1

axr(f) o’,(f,)o’r(f2,),
i=1

Thus, the map sending each element x of G onto a is a group homomorphism
G --+ G. Let us denote this group homomorphism by a*.
For a fixed f in A, the functions x/fi with x ranging over G, all lie in some

finite-dimensional F-subspace of A(P). In fact, if f ’=1 hi(oOfi (as
above), then

x/f f(x)hi.
i=1

Therefore, the restriction of a to the set of these functions x/f coincides with a
finite F-linear combination of evaluations at elements of P, i.e., there are
elements c,,..., c, of F, and elements e,,..., e, of P, such that a(x/f)
.,= cix(fo oi) for every x in G. By the definition of a*, this means that
f a* = cif i. In particular, this shows that f a* belongs to A, and
we have thus shown that a* is a morphism ofpro-affine algebraic groups G + G.

Next, let us observe that if the element a of fq(A(P)) is the canonical image of
an element e of P then a* e. Indeed, for everyfin A and every x in G, we
have

f(a*(x)) a(x/f) (x/f)(e) f(o(x)).

Now let ,5" A(P) A(P)(R) A(P) be the comultiplication of A(P). Let a
and z be elements of fg(A(P)), and let h be an element of A(P). Then we have
(a)(h) z((a (R) i)(6(h))), where stands for the identity map on A(P). If a
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is the canonical image, ’ say, of an element of P then (a (R) i)(6(h)) is simply
the translate h., and the above reads (’,)(h) ,(h’). On the other hand,

("c)(h) ’((i (R) ’r)(f(h))) (i (R) z)(6(h))().

Thus, we have (i (R) z)(6(h))() "c(h.). In particular, for h x/f, this gives

(i (R) r,)(a(x/f))(oO (x/(fo )) (fo )(**(x)) (z*(x)/f)().
Hence (i (R) )(a(x/f)) **(x)/f Now, if r is an arbitrary element of fg(l(P)),
this gives

(tr (R) ,r,)(a(x/f)) f(a*(.c*(x))).

The expression on the left is equal to (a’c)(x/f) f((a’c)*(x)). Lettingf range
over A, we conclude from this that (av)*(x) a*(**(x)) for every x in G,
whence (trz)* tr* z*.

Clearly, if denotes the neutral element of fg(A(P)), then 1" is the identity
map on G. Therefore, the last result above shows that every tr* is in fact an
element of //"(G), its inverse (a*)-1 in /C(G) being (a-1).. The map sending
each a onto a* is therefore an injective group homomorphism ((A(P)) "/’(G),
by means of which we identify (9(A(P)) with a subgroup of /(G). This sub-
group contains P, because (’)* for every element of P. It is now evident
that, by this identification, ((A(P)) becomes an algebraic subgroup of //’(G),
that P is algebraically dense in f(A(P)), and that the restriction map is a Hopf
algebra isomorphism A(fg(A(P))) --. A(P). Finally, the initial discussion in this
section shows that every algebraic subgroup of //"(P) that contains P must also
contain ((A(P)). Our proof of Theorem 2.1 is now complete.

PROPOSITION 2.2. Let (G, A) be the structure ofapro-affine algebraic F-group,
where F is an algebraically closedfield. Let P be an algebraic subgroup of t/’(G),
and let H be a P-stable algebraic subgroup of G. Then the image Pn of P in
"//’(H) is an algebraic subgroup of "//’(H), and the canonical map P Pn is a
morphism ofpro-affine algebraic groups. IfH is normal in G, then the samefacts
hoM with G/H in the place of H.

Proof Let re" A An denote the restriction homomorphism of A onto the
Hopf algebra An of polynomial functions on H. Let z:P Pn denote the
canonical map of automorphism groups. For f in A and in P, we have
7r(f ) r(f) z(). This shows that An is locally finite as a Pn-module, and
that z is a morphism of pro-affine algebraic groups from P f(A(P)) to
(g(An(Pn)). This implies (cf. [1, Section 2]) that the image Pn ofP is an algebraic
subgroup of fg(An(Pn)), whence, actually, Pn ((An(Pn)). This proves the
first part of the proposition.
Now suppose that H is normal in G. Then G/H is a pro-affine algebraic

F-group, its Hopf algebra of polynomial functions being the H-fixed part An
of A (cf. [1, Section 2]). Let "c: P PGln be the canonical map of P onto the
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group PG/n of automorphisms of G/H induced by the elements of P. The Po/n"
module structure of An, when lifted to a P-module structure by means of z,
becomes the restriction to An of the P-module structure of A. Therefore, it is
clear that An, viewed as the algebra of polynomial functions on G/H, is locally
finite as a Pore-module, and that z is a morphism of pro-affine algebraic groups
from P #(A(P)) to if(An(P/n)). As in the first part of this proof, it follows
that Po/n is an algebraic subgroup of qC(G/H), and that z: P Po/n is a
morphism of pro-affine algebraic groups. This proves Proposition 2.2.

Somewhat more generally than in the second part of Proposition 2.2, let us
consider a P-stable sub Hopf algebra B of A. The restriction map if(A) if(B)
is a surjective morphism of pro-affine algebraic groups. Now P acts on B by
Hopf algebra automorphisms, whence we have a canonical map P W’(t(B)).
If PB denotes the image ofP in //’(if(B)), then B(PB) may evidently be identified
with the sub Hopf algebra B(P) of A(P) constructed in the same way as was
A(P), starting from the functions p/f, with p in B (or A) andfin B. Now the
canonical map P (if(B)) becomes simply the restriction map if(A(P))
I(B(P)), and we conclude as above that it is a surjective morphism of pro-
affine algebraic groups from P to an algebraic subgroup of g’(if(B)).

PROPOSITION 2.3. Let (G, A)and P be as in Proposition 2.2. Every finitely
generated sub Hopfalgebra ofA is contained in afinitely generated P-stable sub
Hopfalgebra of A. If B is a finitely #enerated P-stable sub Hopf algebra of A,
then B(P) isfinitely generated, so that the canonical image ofP in W’(I(B)) is an

affine algebraic 9roup.

Proof Let f A, P, x G. Then we have

(fo).x=(f’(x))o, x.(fo) ((x)’f)o and (fo)’ =f’o.

This shows that, if C is a sub Hopf algebra of A, then the F-subalgebra of A
that is generated by the elementsf , withfin C and in P, is still a sub Hopf
algebra of A. If C is finitely generated as an F-algebra, it follows from the fact
that A is locally finite as a P-module that the subalgebra generated by the
elements f is still finitely generated. This proves the first statement of the
proposition.
Now suppose that B is a finitely generated P-stable sub Hopf algebra of A.

Since B is locally finite as a P-module, there is a finite-dimensional P-stable
subspace S of B that generates B as an F-algebra. Let T denote the F-subspace
of B(P) that is spanned by the functions p/f, with p in B andfin S. The argu-
ment we made in the beginning of our proof of Theorem 2.1 (showing that each
p/fis a representative function on P) shows that Tis stable under the translation
action ofP from the right, and also that T is still finite-dimensional. For in P,
let o denote the linear endomorphism of B defined by o(f) f . Then we
have a. (p/f) (p o)/f, whence we see that T is also stable under the trans-
lation action of P from the left.
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Now letfand g be elements of B, and let p be an element of B. The restric-
tion of p to the P-orbit (fg) p is an F-linear combination of evaluations at
elements of G. Since the evaluations are F-algebra homomorphisms, it follows
that the F-subalgebra of B(P) that is generated by T contains all the functions
p/f, withfin the F-algebra generated by S, i.e., withfin B. Therefore, B(P) is
generated as an F-algebra by the elements of Tand the corresponding functions
t’, where t’() t(-1). Our proof of Proposition 2.3 is now complete.

As an immediate corollary, we have that if G is an affine algebraic group then
every algebraic subgroup of(G) is an affine algebraic group.

PROPOSITION 2.4. Let (G, A) be as above, and let P and Q be algebraic sub-
groups of I(G) such that P normalizes Q. Then QP is an algebraic subgroup of
().

Proof. Evidently, the assumptions imply that A is locally finite as a QP-
module. Let p be an element of A, and letfbe an element of A. Consider the
element p/f of A(QP). Clearly, its restriction to P is the element p/f of A(P).
Since the restriction map from A(QP) to the F-algebra of all representative func-
tions on P is a morphism of Hopf algebras, it follows that the restriction image
of A(QP) is contained in A(P). Moreover, it is a sub Hopf algebra containing
the functions p/f, and therefore coincides with A(P) (by the definition of A(P)).
The same holds for Q in the place ofP. Therefore, as pro-affine algebraic groups,
P and Q may be identified with algebraic subgroups of fq(A(QP)), via the above
restriction maps. This implies that the conjugation action ofP on Q is an action
by automorphisms of pro-affine algebraic groups, that A(Q) thereby becomes a
locally finite P-module, and that the associated representative functions on P
belong to A(P). Therefore, the semidirect product Q.P, where (ql, Pl)(q2, P2)
is defined to be (ql(Plq2P- ), PP2), can be endowed with the structure of a pro-
affine algebraic F-group, such that the algebra of polynomial functions is
canonically isomorphic with A(Q)(R) A(P). Clearly, the multiplication of
r(G) yields a morphism of pro-affine algebraic groups Q. P (g(A(QP)).
Therefore, the image QP is an algebraic subgroup of (q(A(QP)), and so coincides
with it. In particular, QP is an algebraic subgroup of /(G), so that Proposition
2.4 is established.

3. Affine groups in characteristic 0

If G is a pro-affine algebraic group, we denote by G= the unipotent radical of G,
i.e., the maximum unipotent normal algebraic subgroup of G. The identity
component of G will be denoted by G, and the center of G by (G). We shall
usually write (G) for Cg(G)l. The algebra of polynomial functions on G will
be denoted by (G). The following result is implicit in [2-1, and the proof given
below is confined to making a safe connection with the reasoning carried out
in [2].
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THEOREM 3.1. Let F be an algebraically closedfieM of characteristic 0, and
let G be an affine algebraic F-group. Let P be a subgroup of U(G). Then (G)
is locally finite as a P-module if and only if the canonical image of P in
I//’(cg (Gi/Gu)) is finite.

Proof First, we show that it will suffice to prove the theorem in the case
where G is connected. Suppose that (G) is locally finite as a P-module. Let P’
denote the canonical image of P in qC(G). Clearly, a’(Gx) is locally finite as a
P’-module. Therefore, assuming that the theorem holds for Gx, the canonical
image of P’ in qC(cgl(G/G,)) is finite. But this coincides with the canonical
image of P. Conversely, if the canonical image of P in qC(I(Gx/G,)) is finite,
and if the theorem holds for G, then (G1) is locally finite as a P’-module. By
a simple elementary argument, given in the proof of Proposition 2.3 in [2], this
implies that (G) is locally finite as a P-module.

It remains to prove the theorem in the case where G is connected. Assume
that G is connected, and that aC(G) is locally finite as a P-module. We know
from Section 2 that the local finite-ness is preserved in passing to factor groups
and subgroups. Therefore, (C(G/G,)) is locally finite as a P-module. Now
(G/G,) is an algebraic toroid, and the elementary argument given at the
beginning of the proof of Lemma 3.1 in [2] shows that the canonical image ofP
in qC/’(cg(G/G,)) must therefore be finite.
Now suppose that the canonical image of P in qg’(c(G/G,)) is finite (and

G Gx). Let G’ denote the group of inner automorphisms of G. Since the
canonical image of G’P in qC(c(G/G,)) coincides with that of P, we may
replace P with G’P, and so we now suppose that G’ c P. We may write G as a
semidirect product G,. K, where K is a maximal reductive subgroup of G. Let
X denote the stabilizer of K in P. Since all the maximal reductive subgroups of
G are conjugate by inner automorphisms, we have G’X P.
Put T (K), and let Z denote the element-wise fixer of T in P. Suppose

that is an element ofXwhose canonical image in q((G/Gu)) is trivial. Let
be an element of T. Then the coset tG. is an element of cg(G/G.), so that
y(t)G. tG., which gives t-y(t) G. T (1), so that y Z. Since the
canonical image of X in qg(ffl(G/G.)) is finite, we see that Z c X is therefore of
finite index in X.
From here on, the second half of the proof of Lemma 3.1 in [-2] can be copied

and yields the conclusion that a’(G) is locally finite as a P-module. This
establishes Theorem 3.1.

THEOREM 3.2. Let F be an algebraically closedfield of characteristic 0, and
let G be an affine algebraic F-group. Let Q be the kernel of the canonical homo-
morphism /U(G) - /"(c (G/G,)). Then Q is an algebraic subgroup of tU(G),
and every connected algebraic subgroup of#(G) is contained in Q.

Proof By Theorem 3.1, (G) is locally finite as a Q-module. Let us write A
for (G), and let us consider the algebraic hull (q(A(Q)) of Q in qC(G). We can
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apply Proposition 2.2, first passing to the factor group G/G,, and then to the
subgroup cgl(G1/Gu). The conclusion is that the image of fa(A(Q)) in
/’(cgI(G/Gu)) is an algebraic automorphism group, P say, and that the can-
onical map fa(A(Q)) P is a morphism of affine algebraic groups. Since Q is
the kernel of this morphism, it is an algebraic subgroup of (9(A(Q)), and there-
fore Q fa(A(Q)), so that Q is an algebraic subgroup of"/C(G).
Now let R be any connected algebraic subgroup of C(G). Again, the

canonical image of R in /C(cg (G/G,)) is an algebraic group of automorphisms,
S say, and the canonical map R S is a morphism of affine algebraic groups.
Therefore, S is connected. On the other hand, by Theorem 3.1, S is finite.
Therefore, S is trivial, which means that R c Q, so that Theorem 3.2 is proved.

Evidently, Theorem 3.2 implies that if R and S are connected algebraic sub-
groups of #(G) then at(G) is locally finite as a module for the group generated
by R and S. The following example shows that thisfails in characteristic p O.

Let F be an algebraically closed field of characteristic p - 0. Let G be the
direct product of two copies of the additive group of F. More precisely, G is the
(unipotent) algebraic vector group whose elements are the pairs (u, v) of ele-
ments of F, and a’(G) is the polynomial algebra Fix, y], where x and y are the
usual coordinate functions on G.
For each element a of F, define the automorphism Pa of G by Pa(U, V)

(u, v + auP). It is easy to see that these automorphisms constitute an algebraic
subgroup R of //’(G), and that R is isomorphic, as an affine algebraic group,
with the additive group of F. Similarly, define the automorphisms aa by
tra(u, v) (u + av, v). Clearly, these constitute an algebraic subgroup S of
"/U(G), and in fact S is isomorphic with R. We have

x p. x, y p,, y + ax’, x a. x + ayt’, y a,, y.

Now let be the automorphism P trl of G. We have

xo), x + y’, yoy y +y’ + xt’.

It follows that, for every positive integer k, the function x k is a sum of terms
x or yS, where r and s are powers ofp. the term of highest degree being y"- 1.
In particular, a’(G) is not locally finite as a module for the group generated by
R and S.
The same kind of failure occurs, independently of the characteristic, with pro-

affine (rather than affine) algebraic groups. The simplest example for this is as
follows.

Let F be an algebraically closed field, and let G be the group of infinite se-
quences (ao, ax,... ) of elements of F, with entry-wise addition. We can endow
G with the structure of a (unipotent) pro-affine algebraic F-group, whose algebra
of polynomial functions is the algebra F[xo, x,... ] of polynomials in the
usual coordinate functions x. For every in F, we define automorphisms Pt
and trt of G as follows. Writing a for (ao, aa,... ), etc., put p(a) b, where
b2i a2i + ta2i+ and b2i+ a2i + (i 0, 1,...). On the other hand,



140 G. HOCHSCHILD

put at(a) c, where c2 a2i and C2i + a2f+t + ta2i+2. It is easy to see
that the automorphisms Pt constitute an algebraic subgroup R of C(G), and the
automorphisms at constitute an algebraic subgroup S of C(G), and that both
R and S arc isomorphic, as affine algebraic groups, with the additive group of F.
Wc have

x2i Pt x2f + tx2+ , x2f+l Pt x2f+t,

X21 t X2i X2i+ fit X2[+l + tx2f+2"
Ify ptoatwehave

X2 X2 + X2f+l + X2f+2, X2f+l X2f+i + X2i+2"

Clearly, M(G) is not locally finite as a module for the group generated by
R and S.

Finally, let us return for a moment to the case of an ane group G over an
algebraically closed field of characteristic 0. If R and S are algebraic subgroups
of (G), and if R is connected, it is still true that M(G) is locally finite as a
module for the group generated by R and S. Indeed, the canonical image of R
in ((G/G)) is trivial (by Theorem 3.2), and the canonical image of S is
finite (by Theorem 3.1). Therefore, the canonical image in ((Gt/G)) of
the group generated by R and S is finite, and the conclusion follows from
Theorem 3.1. However, this can fail if neither R nor S is connected. The
simplest and typical example for this is as follows.

Let G be the direct product of two copies of the multiplicative group of F.
Then, as is well known, (G) is isomorphic with the multiplicative group of the
2 by 2 integral matrices of determinant or -1. Let a be the automorphism
corresponding to the matrix

1

and let be the automorphism corresponding to the matrix

Then each, and z is of order 3, while z o, corresponds to the matrix

which is evidently of infinite order.

4. Lie algebra automorphisms

Let F be an algebraically closed field, and let G be an affine algebraic F-group.
Let L denote the Lie algebra of G, and let #’(L) denote the group of all Lie
algebra automorphisms of L, with its natural structure of an affine algebraic



ALGEBRAIC AUTOMORPHISM GROUPS 141

F-group (an algebraic subgroup of the full linear group on the F-space L). The
proof of I-2, Proposition 2.2] shows that, ifP is an algebraic subgroup of
then the natural map P I/’(L) is a morphism ofaffine algebraic groups, so that
the image ofP in I(L) is an alttebraic subgroup of/’(L).

TIaEOREM 4.1. Let F be an algebraically closedfieM of characteristic O, and
let G be a connected affine algebraic F-group, with Lie algebra L. Let P be a
subgroup of /’(G). Then P is algebraic if and only if its image in (L) is an
algebraic subgroup of t/’(L).

Proof. We have already seen that the condition is necessary. Now suppose
that the image of P in (L) is an algebraic subgroup of #’(L). Then the proof
of I-2, Theorem 3.3] shows that the image of P in /’(I(G/Gu)) is finite. (In
order to adapt this proof to the present situation, it suffices to observe, as in the
proof of Theorem 3.1 above, that we may assume P to contain the group of
inner automorphisms of G). By Theorem 3.1, this implies that ,(G) is locally
finite as a P-module. From the above, we know that the natural map from
(q(A(P)) (where A z’(G)) to //’(L) is a morphism of affine algebraic groups.
Since G is connected and Fis of characteristic 0, this map is injective. Therefore,
P is the full inverse image of an algebraic subgroup of //’(L), so that P is an
algebraic subgroup of fg(A(P)). Hence P (q(A(P)) and is an algebraic sub-
group of (G). Theorem 4.1 is therefore proved.

Let G be as in Theorem 4.1. It will be convenient to have a notation for the
maximum connected algebraic subgroup of qC(G), whose existence has been
established in Theorem 3.2. Let us denote it by

Let z denote the natural homomorphism /’(G) - /’(L). Since G is con-
nected and F is of characteristic 0, we know that z is injective, and that its
restriction to qC/’l(G) is an isomorphism of affine algebraic groups from
to the connected algebraic subgroup z(/’l(G)) of (L). We shall obtain a
description of z(qC/l(G)) in purely Lie algebra theoretic terms.
From a semidirect product decomposition G Gu. K, with K a maximal

reductive subgroup of G, we have a semidirect sum decomposition L L + R,
where L, is the Lie algebra of G,, and so an ad-nilpotent ideal of the Lie algebra
L of G, and where R is the Lie algebra of K. If is an element of z(qC(G)), then
(L,) Lu, while (R) is the Lie algebra of some maximal reductive subgroup
of G, which is a conjugate xKx-1, where x is some element of G. Therefore,
there is an element in L, such that (R)= Exp (Dt)(R), where Dt is the
nilpotent inner derivation effected by on L (Dt(s) [-t, s]). The automorphisms
Exp (Dr), with ranging over L,, constitute a unipotent algebraic subgroup of
/’(L), which we denote by E,. Thus, G determines the ad-nilpotent ideal Lu
of L, as well as an E-orbit E E,(R) of reductive sub Lie algebras of L. Let
/’o(L) denote the subgroup of //(L) consisting of those automorphisms which
stabilize L, and permute the members of E among themselves. Note that,
although R is not determined by G, the E-orbit E of R is determined by G



142 G. HOCHSCHILD

alone, i.e., is independent of the choice of R. Therefore, /Za(L) is determined by
G alone. In proving the theorem below, we shall obtain a computationally
effective (noninvariant) description of /a(L), which will show that it is actually
an algebraic subgroup of //(L).

Next, let us consider the reductive Lie algebra L/Lu. Denote the group of
inner automorphisms of L/Lu by t/(L/Lu). This may be defined as the con-
nected algebraic subgroup of //(L/L,) whose Lie algebra is the Lie algebra of
inner derivations of L/L,, but it coincides with the natural image of the group
G’ of inner automorphisms. It is known (from the elementary structure theory
of semisimple Lie algebras) that I/(L/L,) is generated by the automorphisms
Exp (Dr), with in L/Lu and such that D is nilpotent.

THEOREM 4.2. Let F be an algebraically closedfieM of characteristic O, and
let G be a connected affine algebraic F-group, with Lie algebra L. In the notation
introduced above, tC/(L) is an algebraic subgroup of(L), and the natural image
in t/(L) ofthe maximum connected algebraic subgroup t/x(G) ofC/(G) coincides
with p-I(t/i(L/L,))I, where p is the canonical map //(L) //(L/Lu).

Proof Write L Lu + R, as above, and let V denote the subgroup of
//(L) consisting of the automorphisms that stabilize R, as well as L,. Clearly,
V is an algebraic subgroup of //(L). Let be an element of //(L). From our
above discussion, we know that there is an element Exp (Dr) of E, such that
Exp (Dr) stabilizes R, and therefore belongs to V. It follows that "/V’(L)
E.V. From the definition of E. and the fact that V stabilizes L., it is clear that V
normalizes E.. It follows that V = /’a(L), so that V’a(L) E.V (evidently,
E. W’a(L)). Since Eu is a connected algebraic subgroup of (L), and is
normalized by the algebraic subgroup V, this shows that W’a(L) is an algebraic
subgroup of "#(L) (owing to the fact that E. is connected, and because all the
groups involved are affine, the argument needed here is standard, and simpler
than the one we used at the end of our proof of Proposition 2.4).

Let Q be the algebraic subgroup of V’(G) defined in Theorem 3.2, so that
Q1 w’x(G). Clearly, the group G’ ofinner automorphisms ofG is a connected
algebraic subgroup of Qx. Referring to the semidirect product decomposition
G G.. K, let H denote the element-wise fixer of K in /’(G). It is clear from
the definition of Q that H is an algebraic subgroup of Q. Since G’ is a connected
normal algebraic subgroup of Q, it follows that G’H is an algebraic subgroup
of Q, whence (G’H)x is a connected algebraic subgroup of Qx. Clearly,
(G’H)I G’H.

Let = be any element of Q. There is an element in G, such that, if t’ is the
corresponding element of G’, the automorphism t’ stabilizes K. We have
K TS, where T cd(K) and S is the semisimple commutator subgroup
[K, K]. Since t’= belongs to Q, we know from the proof of Theorem 3.1 that
t’ leaves the elements of T fixed. Clearly, t’ stabilizes S. Since the image of
G, in G’ is a connected normal algebraic subgroup of Q, it is dear that t’
belongs to Q whenever belongs to Q1.
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The restriction to S of the canonical morphism

[tT, t]. ---> ([, ].)/.
is an isomorphism of affine algebraic groups S --, ([G, GJG,)/G,, from which
we have an isomorphism #(([G, G]Gu)/Gu)- //’(S). Composing this with
the canonical homomorphism /g’(G) --, /’(([G, G])/Gu), we obtain a homo-
morphism /g’(G) -, //’(S). With the help of Proposition 2.2, it is easy to see
that the restriction of this homomorphism to Q is a morphism of affine algebraic
groups r/: Q -, (S) (it is evident from Theorem 3.1 that /(S) is algebraic).
Moreover, if is an element of Q1, and if t’ is a corresponding element of Q1
as obtained above, stabilizing S, then the automorphism of S induced by t’
clearly coincides with (t’). Therefore, the automorphism of S induced by t’
actually belongs to ///’(S), whence it is the inner automorphism effected by an
element s of S. Now we have (s’)-t’a H. Hence Q1 G’H, and therefore
even Q (G’H)i G’Hx. Since G’H Qx (as we have seen above), our
conclusion is that Q G’Hi.

Let z denote the natural homomorphism /(G) - /(L). Clearly, zU(G))
/"(L), and the restriction of to Q is an injective morphism of affine algebraic
groups Q --. g/’(L). The kernel of

p: /’(L) "F’(LIL,,)

evidently contains z(H1), whence (p ")(Qx) (p z)(G’) c //’i(LIL,). Since
z(Qi) is connected, this gives

z(Qi) c p-i(Ui(LIL,))i.

Conversely, let e be any element of p-(/’(L]L,)). There is an element x in
G such that z(x’)e lies in the kernel of p. Since this is still an element of //’(L),
there is an element in G, such that z(t’)z(x’)e stabilizes R. Since this auto-
morphism is still in the kernel of p, it follows that z(y’)e leaves the elements ofR
fixed, where we have written y for tx. Therefore, z(y’)e induces an automorph-
ism of L, that commutes with every derivation D,, with r in R. Using that G,
is unipotent, we see that this automorphism of L, is the differential of an anne
algebraic group automorphism/x of G, that commutes with every conjugation
effected by an element of K. Clearly, # can therefore be extended to yield an
element #* of #(G) that leaves the elements of K fixed. Now Ix* belongs to Q,
and z(y’)e z(#*), which shows that e belongs to z(Q). Thus we have
p- (.tgi(LiL,)) = z(Q), whence

p- (f,-i(LIL,)) = z(Q) z(Q1).

Since the reversed inclusion has already been established above, this completes
the proof of Theorem 4.2.

Finally, it is interesting to consider the above in the ease where F is the field
of complex numbers, so that G is a connected complex algebraic group. In this



144 G. HOCHSCHILD

case, /’(G) carries the structure of a complex Lie group, being a dosed complex
Lie subgroup of the group of all complex analytic group automorphisms of G.
It is known [3, Theorem 3] that the topolotgical identity component of /’(G) is
algebraic, in the sense that its natural image in #’(L) is an algebraic subgroup
of (L). By Theorem 4.1, this means that it is an algebraic subgroup of W’(G).
Since it is topologically connected, it is also connected as an algebraic group.
Therefore, it is contained in the maximum connected algebraic subgroup
W’I(G) of (G). Since 1(G) is a connected complex algebraic group, it is
also topologically connected. Therefore, the maximum connected algebraic
subgroup #1(G) coincides with the topological identity component ofthe complex
Lie group I(G).
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