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1. Introduction
In this paper we give some improvements of results in earlier papers in this

series [1], [2], [3] and add some related results. G will denote a locally compact
abelian group with dual group . A ()--1 is a sequence in , --* .
Except in Theorems 3.2 and 3.3 we assume that for some neighbourhood V of
0 in and some constant C > 0,

every translate V h- of V contains at most C terms of the sequence

We write E (A) for the set of x in G for which the sequence ((x, ))= is
not uniformly distributed on the circle

T

We identify T with the interval [0, 1) where convenient. In case G T,
Z [14, 1.2.7] where Z denotes the additive group of integers. Thus

can be thought of as integers, where (x, k) e’’ (x e T). Thus E (A) is
the set of x in [0, 1) for which the fractional parts {Mx}, {),x}, are not
uniformly distributed in [0, 1). Similar remarks apply when G R,
the real line. In both cases Weyl showed E (A) has Lebesgue measure zero
[15]. In [3] we generalised his theorem as follows.

THEOREM 1.1. If G has an open subgroup Ra X H where H is compact and
is almost torsion free (i.e. has finitely many elements of order m, each m >_ 1 ),
(A) has local Haar measure zero if (1.1) holds.

The hypothesis about the open subgroup is ’best possible’ [3]. Actually
(1.1) is relaxed very considerably in [15], [3]. We call a group G having an
open subgroup as described above a Weyl group.

Note. ’E has local Haar measure zero’ means rn (E a K) 0 for every
compact K in G where dm (x) (or dx) is Haar measure in G. We use ’locally
a.e’ to mean ’except for a set of local Haar measure zero in G’. ’Locally’
can be dropped when G is -compact.
We now briefly describe the main results of this paper. In 2 we sharpen

Theorem 1.1 for some groups by considering the rate of vanishing of the
discrepancy

D (n; x) sup N,,(A, x)/n A I/2r
locally a.e. Here the supremum is over all arcs A of T, of length A J, N (A)
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being the number of terms (x, ), (x, ) that fall in A. When G is
connected the results are like the classical theorems [5], [7] for the case G
RorT.

In 3 we show, when G T, that finite mesure dt (x) >_ 0 concentrated
on E (A) (that is, I1 (T\E (A)) 0) cannot stisfy

t(n) O((logn)--) as n--. (e> 0).

This improves a result in [3]. Here # is the Fourier Stieltjes transform de-
fined in the general group case by

(’r fo (x, "r )- d (x for M (G ), " O.

(We write M (G) for the space of complex regular Borel measures on G with
total variation norm and M0 (G) for the set of t in M (G) such that t (’) --* 0
as /-- in O. )
We also show in 3 when G is a quotient group of a torus Tu (b any cardinal)

that if ), - in ( and F (A) is the subset of E (A) defined by

(1.2) F (A) {x G" ((x,),) ):= is not dense in T}

then F (A) is a U* set--that is, no nonzero # in M0 (G) is concentrated on
F(A).

In 4 we exhibit a class of Weyl groups, the a-adic groups f, studied by von
Neumann and van Dantzig; see [11] for references. We prove some simple
algebraic results (for example, that f, is almost torsion free, which appears to
be new). 4 ends with some supplementary remarks on the earlier papers in
the series.

2. Character sums and discrepancy locally a.e.

In this section we prove the following theorems.

THEOREM 2.1. Let G be any locally compact abelian group. The hypothesis
(1.1) implies

(2.1) (x, O(n (log n)

for a suitable constant b b (G), locally a.e. in G.

Note. We shall use constants C like Zygmund [16], that is they need not
be the same at each occurrence, they are independent of variables such as x
and n, and all other dependences are indicated where desirable.

THEOREM 2.2. Let G be a compact abelian group and suppose Q (h elements
) in belong to the group

Fa(O) {)eO hX O} (h >_ 1).
Then if
(2.2) Q(h) O(h) as h---. (A >0)
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the hypothesis (1.1) implies

(2.3) D (n, x) o (n-1/(A +2) (log n)+1/2)
for every > O, a.e in G. If
(2.4) Q(h) 0(logh)") as h-- ,
the hypothesis (1.1) implies that, locally a.e.,

(2.5) D(n; x) o(n-/2(logn)(’+5+)) ( > 0 arbitrary).

TEOREM 2.3. Let G be a locally compact abelian group and suppose the
component of 0 is open in G. Then (1.1) implies

(2.6) D(n; x) 0 (n-1/2(log n)b)

for a suitable constant b b (G), locally a.e in G.

We prove Theorem 2.3 first. We require two lemmas.

LEMM 2.1. We have for every integer M > 1,

( )n 1(2.7) nD(n;x)

_
300 M+ 1 + --(x’hh)Proof. See [8, Theorem III].

LEMMA 2.2. Let z() (z) )-- be a vector in R for p 1, n. Sup-
pose there are at most C of these vectors in each box [0, 1) + m, where m has
integer coordinates. Then for A > 1, h > O, n >_ 2,

(2.8) S -111-I min (1/,rh z) I, 2A <_ CI --o (log n)r/hr

where CI depends only on C, A and a.

We use the convention that min (1/0, 2A is 2A.

Proof. The contribution to S of those z() with z) >= n A- 1 or z) <
-n 1 for some j is at most

n (2A)a-1/(n A- 1 __< (2A)a-.
The contribution of those z() with -1 -<_ z) < 1 for all j is at
most 2. C. (2A).
We partition the remaining z() as follows. Consider those z() for which

--1 <-_ z}v) < 1 for jcK,

1 < z}v) < n + 1 or --n 1 <__ z},) < --1 for j e K,

where K is a subset of {1, 2,... a} with r members (1 -<_ r <_- a). These
z(v) satisfy

-me- 1 <= ze) < -mi or me-<_ ze) <me-l- 1

for some integers m., 1 =< m <_- n, for all j in K.
For a fixed set K and fixed m (j K) the contribution of these z(v) to S is
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at most

0rh) ml m,

If now K is fixed but the m vary (1 -< me -<_ n) the total is clearly

If K then varies over all subsets of 1, 2, a} with r members the total is

a
(a r) r! (rh) + + <-

h
(4A)aa! C(1 + log n)

Summing from r I to a and adding the two contributions computed first,

S <-_ C(2A )a-1 4- (4A)aa!C .-o (1/hr) (1 4- log n)
which yields the desired result.

Proof of Theorem 2.3. Let din1 (x) be Haar measure on R X H, the com-
ponent of 0 in G; H is connected and if/is torsion free [11, (24.35)]. Now

din1 (x dxl dx dz.

(dx Lebesgue measure on R, 1 <_ j <_ a; dz Haar measure on H. We
always take compact groups to have total ttaar measure unity.) Suppose
we can prove (2.6) for the sequence ((x x0, h))-i for any x0 in G, a.e
w.r.t, dm (x). Then it is easy to deduce (2.6) holds locally a.e in G; see the
reasoning in [3, 2.8]. Now (k)= considered as a sequence in (R X H)
also satisfies (1.1) with adjusted C and V; this is proved exactly like [3,
Lemma 2.6]. We can thus assume throughout that G R X H (as taking
x0 0 has no significant effect on the calculation).
By Theorem 3 of [9], (2.6) ll follow, with exponent b (C + 3)/2, if we

can show

D (m, ) dm (x) Cn (log)(2.9) I -. n; x n

for any A > 0, where D (m, n; x) is the discrepancy of the sequence (+)=
(m 0). We take m 0 to simplify the writing. By Lemma 2.1, and
Minkowski’s inequality,

I/ C(n/+, (l/h)
(2.10) - (x, hk) dm(x)

--A,AI aXH

(we have taken M In/:]).
Now

--A,A]

;.,-’ =’ r" exp (2,ihxi(y")- y’)))dx,f (z, h,- dz
J--A
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where
(d,...,

and
(x, X) exp (2i_, x y))- (z, ,).

Let S (p, q) be 1 if v q, 0 otherwise. Since/ is torsion free,
J

_
,.q=l II, rain (1/rhly’) y)I, 2A). S (p, q).

We now use (1.1). Consider a fixed value of the index q. If S (p, q) 1,
the vector

Z(V) y(P) y(q)
can only fall in any cube [0, 1)a -t- m(m e Ra) for at most C values of p.
So Lemma 2.2 applies. Summing over p, and then q,

J <Cn 1+ ...hJL-t -t-

Thus the sum on the fight of (2.10) is at most

Cnllogn if a 1

Cn1 (log n)a2 if a >_ 2.

ttere we use the fact that a 1/h812, _, 1/h2, are convergent series.
This completes the proof of (2.9) and thus of Theorem 2.3.
Theorem 2.1. can obviously be proved by the same technique. The value

of b can be taken to be 1/2 (a W 3 T e) in (2.1), where R" X H is open in G,
H compact; [14, 2.4].
The proof of Theorem 2.2 is similar. We have to obtain the following

inequalities"

(2.11) j n2D (m, n; x,) dx

_
Cn-(+)

if (2.2) is assumed;

(2.12) n2D (m, n; x) dx < Cn (]og n)+2

if (2.4) is assumed. We can then apply Theorems 3 and 5 of [9].
prove (2.11). We have

We only

where N is the number of solutions p of hv hhq. The number of distinct
values of X that could solve this equation is clearly at most Q (h), and by
(1.1) the number of solutions p is at most CQ(h) for fixed q; that is,
Nq <_ CQ (h ), and

(so 1 (x, hg) dx < c Q(h)
.nm < CMnm

We now apply lemma 2.1 with M In/(+)] to obtain (2.11).
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3. Measures concentrated on E(A) and F(A)
We begin with the following theorem.

THEOREM 3.1. Let k, k., be a sequence in R or Z satisfying (1.1). Let
be a positive finite measure concentrated on E (A). Then for every > O,

(3.1) lim supx-.+ (k) (log),)+* q- .
If > O, ,+/k, >_ c > 1 (n > 1 ), then we have infact
(3.2) lim supx+ (X) (log log X)+ q- .
Proof. Assume for definiteness that (X,):- is a sequence in Z. Suppose

if possible that

(3.3) l(-n) I(n) el(log (n+2))+’ (n0).

We have, for h 1 integer,

The number of solutions of hX hX e [j, j + 1) (j 0, 1, 2 ) is uni-
fory bonded by C, for a fixed q. Combining this fact th (3.3), clearly

C/0og (j + Cn’/0og (n + 2))TM.
The arment is now exactly like that in [15], [1]. Let

(x) (l/n)-x,x, n [e] where b 2/(2 + e).

Then

so1{(z) < a.e (d), soh @) 0 a.e (d), and since n+/n 1,
one deduces easily @) 0 a.e (d). Since ts is true for h 1, Weyl’s
criterion ves (E (A)) 0 which is absurd, and so (3.1) must be true.
The proof of (3.2) is sitar, but we use X > c- (p > q). Ts
completes the proof of Theorem 3.1.

If we consider the smaller set F (A), we find that it is a U*-set (ts is a
much stronger assertion than that F (A) is locally null). Actually we need a
rather derent hothesis on A, one that is not comparable th (1.1) in
gener but is much weaker if G h simple structe (see Theorem 3.3).

oaE 3.2. Let G be a locally copac$ abeln grip a A (M):=I a

seee in . Suppose She tension mM e K has only finitely many solutions
(, n), m 1, n 1, for eh compact set K in . Then F (A) a U*-se$.

Theorem 3.3 a consequence of the fofiong lemmas. Lem 3.2 is
silar a reset of Rajchman [12]. Lem 3.1 we known when G T
[16].
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LEMMA 3.1. (i) If E supports no measure It >_ 0 of mass 1 in Mo (G), E is
a U*-set.

(ii) If E, (n >_ 1 are U*-sets, so is [J:_ E.
LEMM. 3.2. Let A be an arc of T and let

E(A,A) IxeG: (x,X,)A (n 1,2... )}.

Uer the hypothesis on A of Theorem 3.2, E (A, A) pports no measure 0
in Mo (G).

Proof of Lemma 3.1. In this proof X is the indicator function of the set B.
We assert that

(3.4) ifeM0(G) andhei (d ), dv hd, then v eMo(G).

To see this, note that Mo (G) is
trigonometric polynomial on G, and Mo(G), dv td, clearly v e Mo(G).
Finally if h e L (d there is such a th

[11, 31.4]) (3.4) follows at once from these three statements.
Now suppose E is not a U*-set and e M0 (G) is concentrated on E. Then

for a suitable closed F E, X d is a positive measure, not zero, supported
on E, of form hd, h L (d). Ts proves 0). To obtain O) suppose
E E, is not a U*-set and let M0 (G) be concentrated on E. Then

(E.) > 0 some n and dv Xd is again of form dv , so E
is not a U*-set. This proves (ii).

Proof of Lemma 3.2. Suppose if possible d 0, nonero in M0 (G), con-
centrated on E (A, A). Then (0) > 0. Let

be a ’triangular’ funetion vanisng outside the are A. We have

for x in E (A, A) and integrating termse w.r.t.

Thus if K is a compact set in G such that () < e for K,

The first sum on the right is c0 (0) if k is large, by hypothesis on A, and the
second is at most Be in modulus. If e is small enough, we have a contradic-
tion, and ts completes the proof of Lemma 3.2.
We now obtain Theorem 3.3. from Lemmas 3.1 and 3.2 on obserng that

F (A) a=r E (A; A), and we cun take the union over arcs th rational
endpoints.
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The hypothesis on A in Theorem 3.3 may not be fulfilled even when ( is
discrete and torsion free and A is a sequence of distinct points; take for example

R, the reals with the discrete topology, and A (1/n),=-_. Then
n 1 has infinitely many solutions. On the other hand, we have the
following result.

THEOREM 3.3. Let G be a locally compact abelian group. Suppose G has
an open subgroup (topologically isomorphic with) (T/A )< R, where b is
any cardinal and A is a closed subgroup o T. If , --> in , F (A) is a
U*-set.

Stronger results are known when G T [12], [13].

Proof. We have only to show that if K is compact in , m),. e K has only
finitely many solutions (m, n) (m >_ 1, n >_ 1). We can identify restriction
of characters to H (T/A) X R with a homomorphism Q --./ which
is continuous, open and has compact kernel 1 [14, 2.1]. We show that
mQ (),) e Q (K) has only finitely many solutions. Now Q (.) --+ in/.
For let U be a relatively compact neighbourhood of 0 in . Then Q (U) is
a relatively compact neighbourhood of 0 in/. If p is given and q is suffi-
ciently large, U -t- r - ),; so Q () Q (U) -t- Q (). It follows easily
that Q(ks)
Now can be identified with B )< R where B is a subgroup of the (dis-

crete) weak direct product Zb [14, 2.2]. Thus Q(K) c F X I-C, C] for
some C > 0 where F is finite in B. It remains to show that if Q (.) -- in
B )< R,
(3.5) mQ (ks) e F X [-C, C]
has only finitely many solutions (m, n) (m >_ 1, n >_ 1). In fact, if (m, n)
are distinct solutions (j >_ 1 it is clear that n is bounded, so m is unbounded.
But this obviously implies Q (s) (0, Z. for large j, where Z, -* in R.
This contradicts (3.5), and so there are only finitely many such (m, n) and
the proof of Theorem 3.3 is complete.

4. Some properties of the groups 1=
The following description of the groups t is amplified in [11, 10 and 25].

Let a be any fixed sequence of integers (as),__ where as > 1, all n. Let
t, be the set of all x (x,) in the Cartesian product

IXs,z {0, 1, a, 1}
such that only finitely many x. (n < 0) are nonzero, and with the following
addition" if x, y e fa, x - y is z (zs) where

Xmo 0, x, 0 for n < too, Y-o 0, y, 0 for n < no,

Po min (too, no)
z, 0 for n < po;

xo-t-yo toao -Zo, Zoe{0,1...,ao 1}, to 0 or 1;
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if zo z and to t are defined (/ > po),

+ y+ -t- t t+ a+ - z+,

z+ e {0, 1, a+ 1, t+ integer.

t A be the set of all in such that 0 for n < k (k e Z). We
ite h for Ao. With the topology whose subbasis is

{x + h x, k Z},. becomes a locally compact abelian, 0-dimensional, a-compact, metrizable
group in wch the A (k e Z) are compact open suboups forng a neigh-
boyhood base of 0.

Let a* be the sequence" a a for n e Z. The dual group of . can be
identified th .. under the follong map" y

x (x) exp 2x:y_,/a, a+...
(x 0for j< m;y Oforlk).
The dual group of . can be idented th

Z (a=) exp (2il/...a.), integer},

a discrete subgroup of T, under the mapping x,,

x()

The main theorem of ts section is

EOaEM 4.1. Let a be any sequence as above. Then
O) is a Weyl grip,

(fi) is almost Wrsion free.
Before ging this proof we state a very simple proposition. Recl that

F (G) is the set of x in G for wch kx x + W x (k summands) is 0.

PaoosmN 4.1. Suppose F(G) has at most s ements a F,(G) at
ost ements. Then F(G) has at most st elements.

Proof. Let x F, (G), then nx eF(G). If y for a fixed y, clearly
x can take at most vMues in G. Since y can take at most s values in F (G),
x is one of at most st 4ements of G.

Proof of Theorem $.1. To prove 0) it is enough
compact open suboup H th most torsion free dual. Take H h,, then

is algebraically a suboup of T, wch is most torsion free. Ts proves
(i).
To prove (ii) it is enough, by Proposition 4.1, to show that F(,) is finite

for each prime p. By Theorem 4 of [3] and the fact that ,. is a Weyl group,
the groups F (,) are compact (p 2, 3, 5 ). Thus it is enough to prove
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each F (23) discrete. We divide the prime numbers into two classes:

(a) for arbitrarily large positive values of n, a is divisible by p;
(b) for sufficiently large n, say n

_
no, p does not divide

In case (a) we shall show

(4.1) F(12,) {0}.
Suppose x e , say x e A., and px O. If

x= (... ,0, x, x+, ,x, ...)
we write

(4.2) x(k) x-ax+- - (a...a_)x (] > n).

x (k) is a positive integer, and if x (]) is divisible by a a_ then

Ta k--1 0.

Thus to prove x 0, we have only to show that for arbitrarily large values of
k,

(4.3) a,, a_ x (k ).

Now from the definition of addition in 9,, px 0 implies that px(k) is a
multiple of aN a for each k > n, say

px (k qa,, a (q >_ linteger)

For arbitrarily large values of k we can cancel p from a and obtain (4.3).
This shows x 0 and (4.1) follows.
In case (b) we shall show that for the no in question,

(4.4) f(2) n A {0}.

Since A is open, it follows that F() is discrete, once we prove (4.4).
Suppose x F (23) n A, x 0, and let x, (n >_ n0) be the first nonzero

coordinate of x. Clearly px,, is a multiple of a.. But p and aN are coprime,
and 0 <_ x _< a 1. We conclude that x 0. This is absurd, (4.4) is
proved and the proof of Theorem 4.1 is complete.
We note that in general O=i F() may be infinite"

PROPOSITION 4.2. Let a,, (n Z) be distinct prime numbers. Then Fa,()
has a,, elements (n Z).

Proof. There are a elements of the form x (..., 0, x, x+l, ) such
that a x 0. Namely, x can take any value 0, 1, a_l, and once
is given the succeeding coordinates are uniquely defined. For the congruence

ax+-z0 (moda.+)
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has exactly one solution xn+k in {0, 1, an+k 1}, whatever lc >_ 1 and
z > 0 are.
On the other hand an element of the form (... 0, x., x.+l, (j < n)

(x 0) cannot have order an. This is proved in the same way as (4.4).
The proof of Proposition 4.2 is complete.
Here is a simple corollary of Theorem 4.1.

THEOREM 4.2. Let a be a sequence such that any prime p, which divides some
am, divides a, for arbitrarily large positive values of n. Then a is torsion free.
An example is a (... p, p, p, where p is an integer >_ 2. In case

p is prime this special case has number theoretic importance, and harmonic
analysis has been carried out in important recent work of Y. Meyer and
J-P. Schreiber. See Meyer’s book Algebraic numbers and harmonic analysis,
North Holland, 1972.

Proof. Exactly as in case (a) of Theorem 4.1 one shows that F (ta)= {0}
for every prime p that divides some am. If p divides no an, one shows as in
case (b) of Theorem 4.1. that F (t,) n An, {0} for every no, which implies
F(t) 0. Theorem 4.2 is proved.

Similarly, under the following condition, F (J,=l Fn (t,) is a discrete
subgroup of 12a.

(4.5) There is an integer no such that for every n e Z either n ak for arbi-
trarily large positive k, or n is coprime with a for ]c >_ no.

For integers n of the first type clearly Fn (ta) is {0}.
For integers n of the second type, our method (b) shows Fn (ta) n An, 0}.

So Fa n An, {0}. Since F is a group, it must be a discrete subgroup of t.
In case (e.g.) a (... 11, 7, 5, 3, 2, 2, 2, 2, ), F, is clearly an infinite
discrete subgroup.
A question which I cannot answer in general is whether t, is ever (topologic-

ally isomorphic with) H X D where H is a compact group and D is a discrete
group. The following condition on a ensures that this is not the case.

(4.6) Except for a finite set S of positive integers n, either n divides a
for arbitrarily large positive k, or n is coprime with every a.

For in this case, clearly F, is finite and we deduce from the following proposi-
tion that t, has no infinite discrete subgroup.

PROPOSITION 4.3. The elements of a discrete subgroup D of any group
have finite order.

Proof. Since D is discrete, D n An {0} for some n. If x is in t, and ]

is a suitable integer, kx e An. In case x e D, this implies kx 0, and the
proposition is proved.
We obtain from Theorem 2.2 the following result.
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THEOREM 4.3. Let a be any sequence as above.
quence in a* satisfying (1.1). Then the sequence

Let y() (n

_
1) be a se-

x(. (x (n > 1)

has discrepancy D (n; x) satisfying

D (n; x) o (n-1/3 (log n)*+1/2)
for every c > O, for almost all x w.r.t. Haar measue on .

Haar measure on f is described in [11, 15]. For a subset of A. it is simply
the product measure 1"I, where . assigns mass 1/a to each point of
{0, 1, a. 1}.

Proof of Theorem .8. It is enough to deal with discrepancy of sequences

x(-) (z x0)

a.e in the compact open subgroup ha. This point is covered in Theorem 2.3.
Sinceh, is a subgroup of T, Q (h)

_
h inthe notation of Theorem 2.2 and it is

easy to complete the proof.
We end this paper with some remarks on earlier papers in the series.
(a) In Theorem 1.1 (and 2.1, 2.3) we cannot delete the word ’local’.

In fact, E (A) can have infinite Haar measure. Let G Ra X R. It is not
hard to show [11, 11.33] that Haar measure m (A) of a set A c Ra X {0t is
0 if A is countable, -t-oo if A is uncountable.

Let ),. (0, n) e (Ra) X R. Clearly (),)_1 satisfies (1.1), but (x, .)
1 on Ra X {0} and so Ra X {0} c E (A). This shows E (A) has infinite Haar
measure.

(b) Condition (12) at the end of [3] does not now seem to me to lead to a
proof of g (E (/k)) 0 without very strong assumptions about the sequence

(c) Corollary 3.2 in [2] can be considerably improved by imitating the
method of Theorem 4 of [10], providing the hypothesis on G (which reduces to
’F2 (G) has Haar measure 0’) is strengthened.

THEOREM 4.4. Suppose G is a locally compact abelian group having at most
countably many elements of finite order. Let K be any compact set in G which
supports a continuous measue in M (G). Then there is a sequence A in for
which K is appropriate.

The hypothesis on G ensures that if is a continuous measure in M (G),
there are continuous measures . in M (G) such that , () (n,). (See
Lemma2 of [4]: one puts .(E) g({x:nxeE}).) We leave it to the
interested reader to check the details.

(d) It follows from work of D6schamps-Gondim [6] that if A is a topological
Sidon set in (, where G is a connected locally compact abelian group, then
E (A) is uncountable and dense in G. For this we only need the result that



every compact neighbourhood of 0 is appropriate for A; see [10], [2] for the
application of this to prove our assertion about E (A).

(e) In [3] I stated that I could find no direct proof thatF() is compact if
G satisfies the hypothesis of (1.1). Here is such a proof.

PROPOSITION 4.4.. Let G be a locally compact abelian group, suppose B is an
open subgroup of G and F,() is finite. Then F() is compact (m 1,
2...).

Proof. Let A be the annihilator of B in ; then A is compact since B is
open. Now as topological groups, /A. So if F (/) is finite, the
relation

m(,-l-A) A or meA
only has solutions from finitely many cosets of A in . In particular the
equation m 0 only has a compact set of solutions in . This completes
the proof.
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