A DIOPHANTINE PROBLEM ON GROUPS IV

BY
R. C. BAkRER

1. Introduction

In this paper we give some improvements of results in earlier papers in this
series [1], [2], [3] and add some related results. G will denote a locally compact
abelian group with dual group G. A = (\,)7=1 is a sequence in G, \, — .
Except in Theorems 3.2 and 3.3 we assume that for some neighbourhood V of
0 in G and some constant C > 0,

(1.1) every translate V + v of V contains at most C terms of the sequence
(M)t

We write E (A) for the set of ¢ in @ for which the sequence ((z, A5))j=1 is
not uniformly distributed on the circle

T ={":0¢[0, 1)}

We identify 7' with the interval [0, 1) where convenient. In case G = T,
G = Z 14, §1.2.7] where Z denotes the additive group of integers. Thus \;
can be thought of as integers, where (z, \;) = ™" (z¢T). Thus E(A) is
the set of z in [0, 1) for which the fractional parts {Ma}, {N}, - -+ are not
uniformly distributed in [0, 1). Similar remarks apply when G = @ = R,
the real line. In both cases Weyl showed E (A) has Lebesgue measure zero
[15]. 1In [3] we generalised his theorem as follows.

TaeoreM 1.1. If G has an open subgroup R* X H where H is compact and
A s almost torsion free (i.e. has finitely many elements of order m, each m > 1),
E (A) has local Haar measure zero if (1.1) holds.

The hypothesis about the open subgroup is ‘best possible’ [3]. Actually
(1.1) is relaxed very considerably in [15], [3]. We call a group G having an
open subgroup as described above a Weyl group.

Note. ‘E has local Haar measure zero’ means m(E n K) = 0 for every
compact K in G where dm (z) (or dx) is Haar measure in G. We use ‘locally
a.e’ to mean ‘except for a set of local Haar measure zero in G’. ‘Locally’
can be dropped when G is o-compact.

We now briefly describe the main results of this paper. In §2 we sharpen
Theorem 1.1 for some groups by considering the rate of vanishing of the
discrepancy

D(n; z) = supsa | Na(4,z)/n — | A | /27|

locally a.e. Here the supremum is over all arcs 4 of T, of length | A |, N.(4)
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being the number of terms (x, M), -+, (£, \) that fall in A. When G is
connected the results are like the classical theorems [5], [7] for the case G =
RorT.

In §3 we show, when G = T, that a finite measure du(z) = 0 concentrated
on E(A) (thatis, |u| (T\E(A)) = 0) cannot satisfy

i) = 0(logn)™®) as n— o (¢>0).

This improves a result in [3]. Here 4 is the Fourier Stieltjes transform de-
fined in the general group case by

80) = [ @) du@) for weM (@), <6

(We write M (@) for the space of complex regular Borel measures on G with
total variation norm and M, (G) for the set of u in M (G) such that i(y) — 0
asy — » in G.)

We also show in §3 when G is a quotient group of a torus T (b any cardinal )
that if A, - » in G and F (A) is the subset of E (A) defined by

1.2) F(A) = {zeG: ((2, \))n=1 is not dense in T}
then F(A) is a U* — set—that is, no nonzero u in M, (@) is concentrated on
FA).

In §4 we exhibit a class of Weyl groups, the a-adic groups @, studied by von
Neumann and van Dantzig; see [11] for references. We prove some simple
algebraic results (for example, that Q, is almost torsion free, which appears to

be new). §4 ends with some supplementary remarks on the earlier papers in
the series.

2. Character sums and discrepancy locally a.e.
In this section we prove the following theorems.

Tueorem 2.1. Let G be any locally compact abelian group. The hypothesis
(1.1) implies

2.1) 2oh-1 (2, M) = O(n'” (log n)")
for a sustable constant b = b(G), locally a.e. in G.

Note. We shall use constants C like Zygmund [16], that is they need not
be the same at each occurrence, they are independent of variables such as x
and n, and all other dependences are indicated where desirable.

TrEOREM 2.2. Let G be a compact abelian group and suppose Q (h) elements
X\ in G belong to the group

Fil@) ={(NeG:m=0 (h>1).
Then if

(2.2) QM) =0R*) as h— o (4 >0)
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the hypothesis (1.1) tmplies

(2'3) D(’n, x) - O(n—I/(A+2) (].Og n)e+1/2)
for every ¢ > 0, a.ein G. If
2.4) Q(h) = O(logh)®) as h— o,

the hypothests (1.1) implies that, locally a.e.,
(2.5) D(n; 2) = o Uog n) P %) (e > 0 arbitrary).

TuroreMm 2.3. Let G be a locally compact abelian group and suppose the
component of 0 s open in G. Then (1.1) implies

(2.6) D(n;z) = 0 (ogn)®)
for a suitable constant b = b(G), locally a.e in G.
We prove Theorem 2.3 first. We require two lemmas.

LemMma 2.1.  We have for every integer M > 1,

(2.7) nD(n; z) < 300 (M 1t E Z (, hN;)

h—l

Proof. See [8, Theorem III).

Lemma 2.2. Let 2P = (2§”)}=1 be a vector in R* forp = 1, -+ ,n.  Sup-
pose there are at most C of these vectors in each box [0, 1)* + m, where m has
integer coordinates. Then for A > 1,h > 0,n 2> 2,

(28) 8= 2 pm1 II5m min (1/xh |2 |, 24) < C1 223~ (log n)'/H
where Cy depends only on C, A and a.
We use the convention that min (1/0, 24) is 24.

Proof. The contribution to S of those 2™ with 2{” = n + 1 or 2 <
—n — 1 for some j is at most

n(A) Y/ (n+ 1) £ (24)
The contribution of those z® with —1 = 2§ < 1 for all j is at
most 2°-C- (24)°.
We partition the remaining 2 as follows. Consider those 2 for which

—1=22” <1 for j¢K,
1< <n+1 or —n—122" < —1 for jekK,

where K is a subset of {1,2, ---, a} with » members (1 £ r < a). These
27 satisfy
—m; — 1 §z§P) < —mj or m; Szm <m;+1

for some integers m;, 1 < m; < n, for all j in K.
For a fixed set K and fixed m; (j e K) the contribution of these z® to S is
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at most
(24)* 1
(-n-h)" Mys =+ My
If now K is fixed but the m; vary (1 £ m; < n) the total is clearly

2°C -

o @O 1Y
20 Gy <T+ "’7»>'

If K then varies over all subsets of {1, 2, - - - , a} with » members the total is

a! o (2A)T7(1 1Y _ (44)%lC(1 4 log n)"
@=nir> (ah)” <I Tt E) = G :

Summing from r = 1 to a and adding the two contributions computed first,

S = CAY™ 4+ (44)'alC 20 (1/K) (1 + logn)’
which yields the desired result.

Proof of Theorem 2.3. Let dmi(z) be Haar measure on B* X H, the com-
ponent of 0 in G; H is connected and A is torsion free [11, (24.35)]. Now

dmi(x) = day - - - da, dz.

(dz; = Lebesgue measure on R, 1 < j < a; dz2 = Haar measure on H. We
always take compact groups to have total Haar measure = unity.) Suppose
we can prove (2.6) for the sequence ((z — o, \j))j=1 for any z in G, a.e
w.r.t. dmi(xz). Then it is easy to deduce (2.6) holds locally a.e in G; see the
reasoning in [3, §2.8]. Now (\;)j=1 considered as a sequence in (R* X H)"
also satisfies (1.1) with adjusted C and V; this is proved exactly like [3,
Lemma 2.6]. We can thus assume throughout that G = R* X H (as taking
2o # 0 has no significant effect on the calculation).

By Theorem 3 of [9], (2.6) will follow, with exponent b = (C; + 3)/2, if we
can show

2.9) I= j;~4 aexa n’D*(m, n; ) dm(x) < Cn (log n)™,

for any A > 0, where D (m, n; z) is the discrepancy of the sequence (Am4n)n=1
(m > 0). We take m = 0 to simplify the writing. By Lemma 2.1, and
Minkowski’s inequality,

' < 0 + Ligrrcn (1/h)

(we have taken M = [n'%]).
Now

== n= 9 d
/ fl—A,A]oxH | Zk 1 (IB, h)‘k) | ml(x)

A
= D pem {H‘}-x [A exp (2mihz;(ys” — yi¥)) dxj} fH (2, hyp — hv,) dz
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where
® 0]

(y sy Ya s Vk ) = (y(k)y &)
and
(2, M) = exp (@mi Y512 95")" (2 me)-
Let S(p, ¢) be 1if v, = v,, 0 otherwise. Since A is torsion free,
J < 2pem [[immin (1/7h | yf” — y§® |, 24)-8(, q).

We now use (1.1). Consider a fixed value of the index ¢. If S(p, q) = 1,
the vector

» _ ,® (q)
=Yy -y

can only fall in any cube [0, 1)* 4+ m(m ¢ R*) for at most C' values of p.
So Lemma, 2.2 applies. Summing over p, and then g,

J < Cn (1 + logn ot (loian)“).

Thus the sum on the right of (2.10) is at most
Ccn'*log n if a=1
Cn'® (logn)*? if a > 2.
Here we use the fact that » 5 1/h¥%, D4 1/h%% ... are convergent series.
This completes the proof of (2.9) and thus of Theorem 2.3.

Theorem 2.1. can obviously be proved by the same technique. The value
of b can be taken to be (¢ + 3 + ¢) in (2.1), where R* X H is open in G,
H compact; [14, §2.4].

The proof of Theorem 2.2 is similar. We have to obtain the following
inequalities:

(2.11) f n’D*(m, n; z) de < O V4D

if (2.2) is assumed;
(2.12) f n’D*(m, n; ) de < Cn (log n)***
[}

if (2.4) is assumed. We can then apply Theorems 3 and 5 of [9]. We only
prove (2.11). We have

fa |27?"1 (z, h\i) I2 de = Z;-Fl fo (2, Bxp, — k\g) dz = E:ﬂ N,

where N, is the number of solutions p of A\, = hA;. The number of distinct
values of A, that could solve this equation is clearly at most Q (h), and by
(1.1) the number of solutions p is at most CQ(h) for fixed ¢; that is,
N, < CQ(h), and

éh([ Z (, hg)

We now apply lemma 2.1 with M = [n**#] to obtain (2.11).

2
dx) < 0 ZQ(h) nll2 S CMA/2nlI2.

k=1
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3. Measures concentrated on E(A) and F(A)
We begin with the following theorem.

TueorEM 3.1. Let M, N, - -+ be a sequence in R or Z satisfying (1.1). Let
u be a positive finite measure concentrated on E(A). Then for every ¢ > 0,

(3.1) lim Supye s | 4 (\) | (log A} = 0.
IfM> 0, Mp/M = ¢ > 1 (n> 1), then we have in fact
32) lim supas+4e | () | (loglog \)'*® = + oo,

Proof. Assume for definiteness that (\,)n=1 is a sequence in Z. Suppose
if possible that

(3.3) |a(=n)| = [ ()| < C/(og (n + 2))"™ (n 2 0).
We have, for 1 > 1 integer,

1
I= ./; |Zi‘=1 ezﬂmhz lz dﬂ(x) = Z;-¢=l ﬁ(h)‘p - hka)'

The number of solutions of | A\, — kN, | €[4, 7+ 1) (7 =0,1,2 -.-)is uni-
formly bounded by C, for a fixed ¢. Combining this fact with (3.3), clearly

I < n3 35 C/(og (5 + 2))* < Cn'/(og (n + 2))*".
The argument is now exactly like that in [15], [1]. Let
fa(@) = (1/0) 2 oy &7 Ny = [e'“b] where b= 2/(2 + ¢).
Then

2;‘:;1]0 | foa @) P (@) < o,

80 D pet | fop @) P <  a.e (du), 50 fu, (@) =0 a.e (du), and since nu41/m — 1,
one deduces easily f, () — 0 a.e (du). Since this is true for h > 1, Weyl’s
criterion gives u(E(A)) = O which is absurd, and so (3.1) must be true.
The proof of (3.2) is similar, but we use A, — A, = ¢™® (p > ¢). This
completes the proof of Theorem 3.1.

If we consider the smaller set F (A), we find that it is a U*-set (this is a
much stronger assertion than that F (A) is locally null). Actually we need a
rather different hypothesis on A, one that is not comparable with (1.1) in
general but is much weaker if G has simple structure (see Theorem 3.3).

TaEOREM 3.2. Let G be a locally compact abelian group and A = (M)n=1a
sequence in G. Suppose the relation m\, € K has only finitely many solutions
(m,n),m > 1,n > 1, for each compact set K in Q. Then F(A) is a U*-set.

Theorem 3.3 is a consequence of the following lemmas. Lemma 3.2 is
similar to a result of Rajchman [12]. Lemma 3.1 is well known when G = T
[16].
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Lemma 3.1. () If E supports no measure u > 0 of mass 1 in Mo(G), E is
a U*-set.
(i) If En(n > 1) are U*-sets, so is Up—y E.

LemMA 3.2. Let A be an arc of T and let
EA,A) ={zeCG: (x,\)ed (n=1,2---)}L
Under the hypothesis on A of Theorem 3.2, E (A, A) supports no measure u > 0
wmn My (G).
Proof of Lemma 3.1. In this proof X is the indicator function of the set B.
We assert that
(34) ifpeMo(@)and heL' (d|u|), dv = hdu, then ve My (G).

To see this, note that My(G) is a closed set in M (G). Next, if t(x) is a
trigonometric polynomial on @, and u e Mo (@), dv = ¢ dy, clearly v e My (G).
Finally if h e L' (d | » | ) there is such a ¢ with

2= hllarawy <e

[11, §31.4]). (3.4) follows at once from these three statements.

Now suppose E is not a U*-set and p € Mo(G) is concentrated on E. Then
for a suitable closed F C E, X d | u | is a positive measure, not zero, supported
on E, of form hdu, h e L'(d | w| ). This proves (i). To obtain (ii) suppose
E = U, E, is not a U*-set and let p ¢ M, (G) be concentrated on E. Then
|u| (Bn) > 0some nand dv = Xg,d | p|is again of form dv = hdp, so E,
is not a U*-set. This proves (ii).

Proof of Lemma 3.2. Suppose if possible du > 0, nonzero in M, (G), con-
centrated on E(4, A). Then £(0) > 0. Let

FE™) = Yo wen €™, B= .|| < ®, >0,
be a ‘triangular’ function vanishing outside the arc A. We have
Do Ca(@mN) =0 (k> 1)
for z in E (4, A) and integrating termwise w.r.t. du,
Yiwtfiln) =0 (62 1)
Thus if K is a compact set in G such that | A(y) | < efory ¢ K,
0 = D mner Cn B (W) + Dnner Cn o (nN).

The first sum on the right is ¢, 4 (0) if & is large, by hypothesis on A, and the
second is at most Be in modulus. If ¢ is small enough, we have a contradic-
tion, and this completes the proof of Lemma 3.2.

We now obtain Theorem 3.3. from Lemmas 3.1 and 3.2 on observing that
F(A) = Uscr E(4; A), and we can take the union over arcs with rational
endpoints.
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The hypothesis on A in Theorem 3.3 may not be fulfilled even when G is
discrete and torsion free and A is a sequence of distinct points; take for example
G = Ra, the reals with the discrete topology, and A = (1/n)3—1. Then

n\, = 1 has infinitely many solutions. On the other hand, we have the
following result.

TueoREM 3.3. Let G be a locally compact abelian group. Suppose G has
an open subgroup (topologically isomorphic with) (T®/A) X R°, where b is
any cardinal and A is a closed subgroup of T®. If A, » » in G, F(A) is a
U*-set.

Stronger results are known when G = T [12], [13].

Proof. 'We have only to show that if K is compact in G, m\, € K has only
finitely many solutions (m, n) (m > 1,n > 1). We can identify restriction
of characters to H = (T°/A) X R* with a homomorphism Q : @ — H which
is continuous, open and has compact kernel T [14, §2.1]. We show that
mQ (\) € Q(K) has only finitely many solutions. Now Q(\,) — « in H.
For let U be a relatively compact neighbourhood of 0 in G. Then Q(U) is
a relatively compact neighbourhood of 0 in A. If p is given and g is suffi-
ciently large, \ge U + T 4+ 7580 Q(N) ¢ Q(U) + Q(Np). It follows easily
that Q@ (\,) — .

Now I can be identified with B X R* where B is a subgroup of the (dis-
crete) weak direct product Z® [14, §2.2]. Thus Q(K) < F X [—C, C]* for
some C > 0 where F is finite in B. It remains to show that if Q@ (\,) — « in
B X R,

3.5) mQ(\.) e F X [—-C, C)*

has only finitely many solutions (m, n) (m = 1,n > 1). Infact, if (m;, n;)
are distinct solutions (7 > 1) it is clear that n; is bounded, so m; is unbounded.
But this obviously implies Q (\»;) = (0, Zy,) for large j, where Z,; — « in R".
This contradicts (3.5), and so there are only finitely many such (m, n) and
the proof of Theorem 3.3 is complete.

4, Some properties of the groups Q,

The following description of the groups €, is amplified in [11, §§10 and 25].
Let a be any fixed sequence of integers (@n)ne—« Where a, > 1, all n. Let
Q. be the set of all = (x,) in the Cartesian product

Hmz {0, 1, s Qp — 1}

such that only finitely many z, (n < 0) are nonzero, and with the following
addition: if z, y € Q, * + yis 2z = (2.) where

Tmy # 0, =0 for n < my, Yng 0, yo =0 for n < ny,

Po = min (me, 1)
2w =0 for n < pog;

Tpo T Yoo = tpy Apy + Zpy, z?oe{()’l"',apo—l}’ tpo=0 or 1;
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if 2pyy « + + 2o and tp,, - - - & are defined (& > po),
Tott + Yot + B = b1 Gor + 24,
k41 € {0, 1, s Qg4 1}, te1 integer.

Let Ay be the set of all z,, in @, such that 2, = Oforn < k (keZ). We
write A, for A. With the topology whose subbasis is

{4+ Ax:xe keZ},

Q. becomes a locally compact abelian, 0-dimensional, s-compact, metrizable
group in which the A (k ¢ Z) are compact open subgroups forming a neigh-
bourhood base of 0.

Let a* be the sequence: an = a_, for n ¢ Z. The dual group of Q. can be
identified with Q.+ under the following map: y <> xy; ¥ € Qar, Xy € L,

Xo (@) = exp {2m 2250 T 2 atn’ Yoo/ Gnsr - - G}

(;j=0forj < m;y; = 0forl < k).

The dual group of A, can be identified with

Z@") = {t = exp (2mil/ao- - -a.), | integer},
a discrete subgroup of T, under the mapping ¢ < x.,
xi() = Lreont ey e idey

The main theorem of this section is

TurorEM 4.1. Let a be any sequence as above. Then
() Q.78 a Weyl group,
(i) . 7s almost torsion free.

Before giving this proof we state a very simple proposition. Recall that
F1 (@) is the set of z in G for which kz = z + --- + 2 (k summands) is 0,

ProrosiTioNn 4.1. Suppose Fn.(G) has at most s elements and Fn.(G) at
most t elements. Then Fun(G) has at most st elements.

Proof. Let € Fmn(G), then nz e F,(G). If ne = y for a fixed y, clearly
2 can take at most ¢ values in G. Since y can take at most s values in F(G),
z is one of at most st elements of G.

Proof of Theorem 4.1. To prove (i) it is enough to show that Q, has a
compact open subgroup H with almost torsion free dual. Take H = A,, then
A is algebraically a subgroup of T, which is almost torsion free. This proves
@).

To prove (ii) it is enough, by Proposition 4.1, to show that F, (%, ) is finite
for each prime p. By Theorem 4 of [3] and the fact that 2.« is a Weyl group,
the groups F, (2) are compact (p = 2,3,5 ---). Thus it is enough to prove
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each F,(Q,) discrete. We divide the prime numbers into two classes:

(a) for arbitrarily large positive values of n, a, is divisible by p;
(b) for sufficiently large n, say n > ny, p does not divide ay.

In case (a) we shall show
(4.1) Fp(2) = {0}.
Suppose €y, say ¢ € Ay, and pz = 0. If

r = (...’O’x”’xn_u’ cee ) Dhy ...)
we write

4.2) 2k) =t + @ Boga + o0 F (@ ma)z, k> n).
z (k) is a positive integer, and if x (k) is divisible by a. - - - ax—1 then
Zp = -+ =21 = 0.

Thus to prove z = 0, we have only to show that for arbitrarily large values of
k,

4.3) an - g | (k).

Now from the definition of addition in Q,, px = 0 implies that pz (k) is a
multiple of a, - - a; for each k > n, say

pr(k) = qa. -+ @ (g = 1 integer)

For arbitrarily large values of k¥ we can cancel p from a; and obtain (4.3).
This shows ¢ = 0 and (4.1) follows.
In case (b) we shall show that for the ny in question,

4.4) Fu (@) 0 Asy = {0}

Since Ay, is open, it follows that F,(Q.) is discrete, once we prove (4.4).
Suppose @ € Fp (@) n Any, ¢ 5 0, and let 2, (n = no) be the first nonzero
coordinate of x. Clearly pz, is a multiple of a.. But p and a. are coprime,
and 0 < z, < a» — 1. We conclude that 2, = 0. This is absurd, (4.4) is
proved and the proof of Theorem 4.1 is complete.
We note that in general Uz—; F,, (2,) may be infinite:

ProrosiTiON 4.2. Let an (n € Z) be distinct prime numbers. Then F,,(Q,)
has a, elements (n e Z).

Proof. There are a. elements of the form ¢ = (--+, 0, Zn, Za41, -+ ) such
that @, 2 = 0. Namely, z, can take any value 0, 1, - - - , @.—1, and once z,
is given the succeeding coordinates are uniquely defined. For the congruence

Qn Tn+k + z2=0 (mOd a,,+k)
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has exactly one solution @, in {0, 1, --- @u4r — 1}, whatever ¥ > 1 and
z > 0 are.

On the other hand an element of the form (---, 0, z;, Zj41, -++) (F < n)
(x; % 0) cannot have order a.. This is proved in the same way as (4.4).
The proof of Proposition 4.2 is complete.

Here is a simple corollary of Theorem 4.1.

TaEOREM 4.2. Let a be a sequence such that any prime p, which divides some
am, divides a, for arbitrarily large positive values of n. Then Q, is torsion free.

An exampleisa = (---, p, p, , - -+ ) where p is an integer > 2. In case
p is prime this special case has number theoretic importance, and harmonic
analysis has been carried out in important recent work of Y. Meyer and

J-P. Schreiber. See Meyer’s book Algebraic numbers and harmonic analysis,
North Holland, 1972.

Proof. FExactly asin case (a) of Theorem 4.1 one shows that F,(2.)= {0}
for every prime p that divides some an.. If p divides no ax, one shows as in
case (b) of Theorem 4.1. that F,(Q.) n A,, = {0} for every n,, which implies
F,(@.) = 0. Theorem 4.2 is proved.

Similarly, under the following condition, F, = Uj_; F.(Q.) is a discrete
subgroup of Q.

(4.5) There is an integer no such that for every n e Z either n | a; for arbi-
trarily large positive k, or n is coprime with a; for k > ne.

For integers n of the first type clearly F, (2. ) is {0}.

For integers 7 of the second type, our method (b) shows Fy, (2.) n Ay, = {0}.
So Fy n A,y = {0}. Since F, is a group, it must be a discrete subgroup of Q..
In case (eg.)a = (---,11,7,5,3,2,2, 2,2, --), Fq is clearly an infinite
discrete subgroup.

A question which I cannot answer in general is whether ©, is ever (topologic-
ally isomorphic with) H X D where H is a compact group and D is a discrete
group. The following condition on a ensures that this is not the case.

(4.6) Except for a finite set S of positive integers n, either n divides ax
for arbitrarily large positive k, or » is coprime with every ay.

For in this case, clearly F, is finite and we deduce from the following proposi-
tion that @, has no infinite discrete subgroup.

ProrosiTioN 4.3. The elements of a discrete subgroup D of any group Qa
have finite order.

Proof. Since D is discrete, D n A, = {0} for some n. If zisin @, and k
is a suitable integer, kx ¢ A.. In case z e D, this implies kz = 0, and the
proposition is proved.

We obtain from Theorem 2.2 the following result.
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TuEOREM 4.3. Let a be any sequence as above. Let '™ (n > 1) be a se-
quence in Qu* satisfying (1.1). Then the sequence

xw (@) (n2=1)
has discrepancy D (n; x) satisfying
D(n;z) = o™ (log n)*™?)
for every € > 0, for almost all x w.r.t. Haar measue on Q,.

Haar measure on Q, is described in [11, §15]. For a subset of A, it is simply

the product measure []jn u; where u; assigns mass 1/a; to each point of
{0> 17 o, G — 1}

Proof of Theorem 4.3. It is enough to deal with discrepancy of sequences
Xy») (1) - xo)

a.e in the compact open subgroup A,. This point is covered in Theorem 2.3.
SinceA, is a subgroup of T, @ (h) < h inthe notation of Theorem 2.2 and it is
easy to complete the proof.

We end this paper with some remarks on earlier papers in the series.

(a) In Theorem 1.1 (and 2.1, 2.3) we cannot delete the word ‘local’.
In fact, E(A) can have infinite Haar measure. Let G = R; X R. It is not
hard to show [11, §11.33] that Haar measure m(4) of a set A < R; X {0} is
0 if A is countable, 4+ « if A is uncountable.

Let\, = (0,n) € (R:)* X R. Clearly (\)n-1satisfies (1.1), but (z, \,) =
1on R; X {0} and so Rs X {0} < E(A). This shows E (A) has infinite Haar
measure.

(b) Condition (12) at the end of [3] does not now seem to me to lead to a
proof of u(E(A)) = 0 without very strong assumptions about the sequence
Y1, Y2t .

(¢) Corollary 3.2 in [2] can be considerably improved by imitating the
method of Theorem 4 of [10], providing the hypothesis on G (which reduces to
‘F2(G) has Haar measure 0’) is strengthened.

TaEOREM 4.4. Suppose G is a locally compact abelian group having at most
countably many elements of finite order. Let K be any compact set in G which
supports a continuous measue in M (G). Then there is a sequence A in G for
which K is appropriate.

The hypothesis on G ensures that if u is a continuous measure in M (@),
there are continuous measures u, in M (G) such that 4, (y) = & (ny). (See
Lemma 2 of [4]: one puts u.(E) = u({z:nxeE}).) We leave it to the
interested reader to check the details.

(d) It follows from work of Déschamps-Gondim [6] that if A is a topological
Sidon set in G, where G is a connected locally compact abelian group, then
E (A) is uncountable and dense in G. For this we only need the result that
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every compact neighbourhood of 0 is appropriate for A; see [10], [2] for the
application of this to prove our assertion about E (A).

(¢) In[3]1 stated that I could find no direct proof that F,,(G) is compact if
@ satisfies the hypothesis of (1.1). Here is such a proof.

ProrosiTioN 4.4, Let G be a locally compact abelian group, suppose B is an
open subgroup of G and F,(B) is finite. Then Fn(G) is compact (m = 1,
2...).

Proof. Let A be the annihilator of B in G; then A is compact since B is
open. Now as topological groups, B = @/A. So if F.(B) is finite, the
relation

my+ A)=A or myeA

only has solutions v from finitely many cosets of A in G. In particular the
equation my = 0 only has a compact set of solutions in G. This completes
the proof.
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