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Let us define

Ix, y] x-y-xy and [x, (n -t- 1) y] [[x, ny], y].

An element x of the group G is called a left (right) Engel element of G if for
every y in Gthere is an integer n such that [y, nx] 1 ([x, ny] 1).
Denote the sets of left und right Engel elements of G by L(G) and R(G),
respectively.

In this paper we shall be concerned with two problems. The first is to find
large classes of groups in which the Engel elements for well-behaved sub-
groups (in sense to be described in 1). We shall generalize some known
results in 1-2. The second problem is, given a class of groups in which the
Engel elements form subgroups, find alternate characterizations of these sub-
groups. In 1 we introduce special subgroups whose definitions are modeled
on the Engel radicals introduced by Gruenberg [5] and use these to charac-
terize the subgroups of Engel elements in some classes of groups. These
special subgroups have element-wise definitions. Some elegant "global"
descriptions of Engel elements have been obtained by Baer [2] and Gruen-
berg [6] for special classes of groups, namely" The right Engel elements
coincide with the hypercenter and the left Engel elements coincide with the
unique maximum normal hypercentral subgroup. There are some relatively
uncomplicated groups in which the Engel elements cannot admit such a
description. For instance, let G be the standard restricted wreath product
of a cyclic group of order p, a prime, by an infinite elementary abelian p-
group. Then G is metabelian and locally nilpotent, so R(R) L(G) G;
yet G has trivial center. In 3 we introduce a generalization of hypercentrality
which may be of independent interest. This generalization enables us to give
a global description of the Engel elements analogous to those of Baer and
Gruenberg for a class of groups containing the previous example. This de-
scription is developed in 4.

Notation

Let G be a group.
(S} subgroup generated by set S.
[A, B] ([a, b]lae A, be B).
Let z be an automorphism of G and x G.
Ix, ] x-. (x) .
AS <b-ab b e B, a e
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Z(G) center of G.
(G) hypercenter of G.
(G) Hirsch-Plotkin radical of G (maximum normal locally nilpotent

subgroup).
J infinite cyclic group.
J cyclic group of order m.
A wr B standard restricted wreath product of groups A nd B.
The following classes of groups occur frequently.
I class of belin groups.
9 class of Noetherin groups.

class of groups with central series (in the sense of P. Hll nd B.
Hrtley [7, p. 3] or Kurosh [10, p. 171]).
Let 3 be group theoretic class, i.e., 1 e nd groups isomorphic to

groups re groups. Following P. Hll:
L groups in which finitely generated subgroups re contained in

groups.
S subgroups of groups.
Q homomorphic images of groups.
/ groups hving n scending normal series with fctors.
hyper- groups hving n scending invrint series with fctors.
If U is set of the bove operations, is U closed if T

_ , for T e U.
H sc K there is n scending normal series of subgroups from H to K

(If H (x), we write x asc K.).

1. Engel classes and radicals

Gruenberg hs shown in [5] that

(G) {]xscG}
and

p(G) {x]yascxa(y) for all yeG}

form characteristic subgroups of left and right Engel elements of the group G
respectively. Evidently, x is ascendant in G iff x is ascendant in x, so we
may define z(G) to be the set of elements of G which are ascendant in their
normal closure. If H is a subgroup of G, we say that H is weakly ascendant
in G if G has a local system {G,} (see [10, p. 166]) of subgroups such that
H asc G, for all ,, and if G

_
G,, then G asc G,. The notion of weak

ascendance is due to Plotkin [11, p. 10]. We write H wasc G.
Now let us define

p.(G) (x Y wasc xa (y) for all y G}.

Ifxwascxaandy eG, thent [y,x] exa. There issubgroupKofXa

containing such that x asc K. By induction on the length of the ascending
series from (x) to K, one sees that there is an integer n such that It, nx] 1.
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Thus, x e L(G). Similarly, re(G) c_. R(G). The Engel radicals just de-
fined are closely related to the Hirsch-Plotkin radical:

TI-IEOREh 1.1. Let G be a group; then
(i) z(G) (G) and
(ii) p.(G) (G) R(G).

Proof. If x wasc x, then ((x})

_
(xa) by Theorem 1 of [11]. Hence,

x e (x) which is contained in (G) by the same theorem.

Conversely, if x e (G) then xa is a locally nilpotent group. Hence, the
set of all finitely generated subgroups of xa containing x forms the appropriate
local system of xa and x wasc xa.

It is clear that p(G) c_ z(G), so that we obtain from the above remarks
that

p(G)

_
(G) n R(G).

Conversely, if x e (G) n R(G) and y e G, we let x, ..., x be a finite num-
ber of conjugates of x by elements of G. Since uny homomorphism maps
Engel elements onto Engel elements, the x are fight Engel elements of G.
Let

M {[x,ny]li 1, ...,m and n_> 0}

(here Ix, Oy] x). Then M is finite subset of (G), so (M} is nilpotent.
Since y acts as a left Engel element on M, y normulizes (M} by Lemma 2 of
[5] and hence (M, y} is nilpotent by Propositioa i of [5]. Let B (M, y}.
Then the set of all B so obtained is a locl system of nilpotent subgroups of
xa(y}, each member of which contains y. Since every subgroup of a nilpotent
group is subnormal (H is subnormal in K if there is finite normal series
from H to K), we conclude that y wasc xa(y}, so that x e p(G).

CoaoL,xav 1.1 The subsets z(G) and p(G) are characteristic subgroups
of G.

Proof. By Theorem 1.1, q(G) z(G). The non-empty set p(G) is
is clearly inverse closed and a characteristic subset of G. It therefore suffices
to prove that if x and z are elements of re(G), so is xz.
By Lemma 14 of [5], xz is a right Engel element of G. It is clear from the

definition that x and z belong to a.(G) (G). Hence, xz e q(G). By
Theorem 1.1, xz e p(G).

Remark 1.1. It is possible to have p(G) < z(G), s n examination of
J wr J reveals (here, p(G) 1 and z.(G) is the base group).
We now define the classes of groups

{G L(G) a(G)} and 9 /G R(G) p(G)}, i 1, 2.

(These are the classes of groups in which left or right Engel elements are
"well behaved" in reasonable senses).
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Remark 1.2. From Theorem 1.1 it follows that G e iff (L(G)) is locally
nilpotent. Analogous statements hold for the other Engel classes.

PROPOSITION 1.1. The following are equivalent:
(1) G ..
(2) (R()) .
(3) (R G) is locally nilpotent.

Proof. Since p(G)

_
(G), the fact that (1) implies (2) and (2) implies

(3) is clear. Now if (R(G)) is locally nilpotent, then (R(G) }

_
(G). By

Theorem 1.1 (ii), R(G) re(G). Consequently, we have equality and

PROPOSITION 1.2. The following are equivalent:
(1) G i.
(2) (R(G)} is I.
(3) (R(G)> e

Proof. Baer has shown [3, Satz 3.3] that the locally nilpoteat/I groups
are precisely the groups generated by ascendant elements. Consequently,
if G e 91 then R(G) is a locally nilpotent/?I group. If (R(G)
then every left Engel element of K is ascendant in K by Proposition 3 of
[5]. But Heineken has shown that the inverse of a right Engel element is
left Engel element [13, p. 210]. So K is generated by ascendant elements
and is locally nilpotent; thus K e 1. Finally, if K 1 then again K is
generated by ascendant elements, and consequently K is locally nilpotent.
Therefore, K

_
(G) and R(G) K by Lemma 14 of [5]. Now if x R(G)

and y e G, then xa(y} is an extension of an/ group by a cyclic group and
therefore/I. But y is a left Engel element of xa(y}, so y asc x((y} by Lemma
14 of [5]. Hence, G e

COROLLARY 1.2. The group G is an group i (L( G) is an I group.

Relations between the Engel classes are clarified by the following result:

THEOREM 1.2.
(i)

_
(ii)

___
9

(iii) i

_
(iv)

__ .. The following are proper class inclusions:

Proof. The inclusions (i) and (ii) follow from the inclusions a(G)

___
a2(G)

and p(G)

_
p(G). That they are proper follows from the fact that there

exist locally nilpotent groups which are not /I (see [8]). If G e .1, then
the right Engel elements of G are contained in a(G), since inverses of right
Engel elements are left Engel elements and L(G) a(G). By Proposition
1.2, G 9. A similar application of Proposition 1.1 shows that . .
It is known that there exist groups in which every element is an Engel ele-
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ment and which are locally nilpotent (see [4, p. 274, footnote]). Let G
be such a group. From the definition of wreath products, it is easy to see
that R(G wr J) 1, so that G wr J belongs to 1 However, every element
of the base group is a left Engel element of G wr J and the base group has
subgroups isomorphic to G, so is not locally nilpotent.

Remark 1.3. Inclusions (iii) and (iv) of the previous theorem are par-
ticularly interesting. They say, in effect, that whenever the left Engel ele-
ments are well behaved, so are the right Engel elements. Consequently,
the classes 1 and are of special interest.

2. The classes

Plotkia has shown in [11, Lemma 5] that L2 . Since there are locally
nilpotent non-/I groups, L . The closure properties of the classes

are not encouraging in this respect"

PROPOSITION 2.1. The classes 1 and . are not subgroup or quotient closed.

Proof. As in the proof of Theorem 1.2 let G be a non-locally nilpotent
group whose elements are all Engel elements. Let H be the free product
of G and J. It follows readily from the properties of free products that if
x is a non-trivial element of H, then there is an element y e H such that

[x, ny] 1 [y, nx]

for all positive integers n. Therefore, L(G) R(G) 1. So H is an
group. However, H has a subgroup, G, which is not an . group. Also,

H/J" G, so H has a factor group which does not belong to . Hence,
i is neither subgroup or quotient closed, i 1, 2.

Let us define i as the union of all classes which contain all cyclic groups,
are contained in i and are S, Q and/ closed (i 1, 2). The are large
subclasses of . As an illustration, Plotkin has shown in [12] that LM
groups (i.e., the LM-radical groups) belong to . By Corollary 1.2, the
I groups belong to . We shall see in Corollary 2.1 that /!F groups
belong to 1
THEOREM 2.1. is the largest S, Q, } closed subclass of containing

the cyclic groups (i 1, 2).

Proof. The classes / evidently contain the cyclic groups and are /
closed. Furthermore, any factor (homomorphic image of a subgroup) of
an / group has an ascending series with factors (quotient group of suc-
cessive terms) which are isomorphic to factors of groups. Consequently,
/ are S and Q closed classes. Thus, to complete the proof of the Theorem
it is sufficient to prove that/i

___ . Let G e/ ; then G has a series

1 Go__GI __Gx G

such that G,+I/Ge,O_ < h. Suppose 1 G e, where is one
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of the classes defining . By Satz 2.1 of [3, p. 49], G has a characteristic
subgroup C containing G1. Let xl,..., x be left Engel elements of G. If
the group generated by these elements, say B, is not nilpotent, then there is
a subgroup M normal in B such that B/M is not nilpotent but every proper
homomorphic image is by Lemma 4 of [1, p. 410]. Hence, there is an
group K which is generate by a finite number of left Engel elements, non-
nilpotent, and every proper homomorphic image of K is nilpotent. By the
preceding discussion, K has a non-trivial normal E subgroup C, where E is
one of the classes defining . If C K, K is nilpotent since

___ .
Hence, C K and K/C is nilpotent. If x is one of the Engel element gen-
erators of K, then (xC)is subnormal in K/C, so that C(x) is subnormal in
K. But C(x) is an i group, since contains the cyclic groups and is
closed. Since i and x is a left Engel element of C(x), x e q(C(x)),
which is subnormal in G. By Theorem i of [11], (C(x))

_
(K), so that K

is nilpotent, a contradiction. Hence, any / group is an 2 group.
It remains to prove that if G is/ and x e L(G), then x asc G. By re-

peating the argument mentioned above, transfinitely if necessary, we see that
G has an ascending characteristic series

where G,+I/G, is an/ group ( is as above). Let x L(G). For g < X,
we have G, <:] G+(x). Furthermore, G+I(x}/G, is an group, since is
/ closed and contains the cyclic groups. Thus,

xG, asc G,+ (x)/G, and G,
Since G0(x} (x), x asc G and the theorem follows.

COROLLARY 2.1 If every non-trivial homomorphic image of the group G
has a non-trivial ascendant subgroup which is noetherian or I, then G .

Proof. Let G be such group. Then G has an ascending invariant series
whose factors are groups generated by their ascendant/I or their ascendant
noetherian groups. Hence, it is sufficieat to prove that /I

_
; for then

G e/ 1, since /
_ . Let K e/; then K has an ascending normal

series with noetheriun factors. Since /L
_ , K is an 2 group; so if

x e L(K), then xe is a normal locally nilpotent/ group. But noetheriuu
locally nilpotent groups re nilpotent. Hence, an/ series for xa can be
refined to an ascending series with abelian factors. So xa is an/ group and
x asc xa < G. Therefore,/

_
and the result follows.

For groups Theorem 2.1 can be extended to the following result:

THEOREM 2.2. Hyper-L groups are groups.

Proof. Deny the assertion. Since the class of hyper-L groups is S
and Q closed, we can repeat the reduction process of Theorem 2.1 and obtain
a non-nilpotent hyper-L, group G which is generated by a finite number
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of left Engel elements and is such that every proper homomorphic image is
nilpotent. Then G has a non-trivial normal L2 subgroup K. If K G,
then G e L_ 2 (by Theorem i of [11]), a contradiction. So K G and
G/K is nilpotent. So if x L(G), then K(x) is subnormal in G. Now if
xl, ..., x belong to K, let

M {[xi,mx]li 1, ,n and m>_ 0}.
Since : is subgroup closed, (M) is an 2 group normalized by the left Engel
element x (as in the proof of Theorem 1.1, apply Lemma 2 and Proposition 1
of [5]). But the extension (M) (x) is an 2 group, since contains the cyclic
groups. The collection of all groups so obtained forms a local system of. groups for (M, x). Hence, (M, x) is an group and

x e ((K, x))

_
q(G).

Since x was an arbitrary element of L(G), G is nilpotent, a contradiction.

COnOLLARY 2.2. If every non-trivial homomorphic image of the group G
has a normal LL/ subgroup, then G .
Remart 2.1. We have not been able to decide whether or not L .

If this were the case, one would have/L
_
2, a significant extension of

Theorem 2.2.

3. She weak
Recall that a normal subgroup K of G is called hypercentral (finitely hyper-

central) in G if K has an ascending (finite) series which is central in G, i.e.,
if (L, M) is a jump in the series, then [G, M]

_
L. Equivalently, K

_
a(G).

If G is hypercentral (finitely hypercentral) in itself, we simply say G is a
hypercentral (nilpotent) group.

More generally, we say that K is Z hypercentral in G if K has a normal
series (in the sense of P. Hall [7, p. 2]) which is central in G, i.e., if (L, M)
is a jump in the series, than [G, M]

_
L. It follows that is the class of

groups which are Z hypercentral in themselves. A disadvantage of Z hyper-
centrality is that Z hypercentral groups need not map onto Z hypercentral
groups under homomorphisms. More suitable for our purposes is the follow-
ing concept of hypercentrality: The normal subgroup K of G is weakly
hypercentral in G if for any G-invariant subgroup M of K, K/M is Z hyper-
central in themselves is the largest quotient closed subclass of (the Z groups
in Kurosh’s terminology). Such groups are called weakly hypercentral
groups.

Remark 3.1. The concepts of hypercentrality given above are distinct.
Non-finitely hypercentral groups which are hypercentral are well known.
Every free group is Z hypercentral, since the descending central series has
trivial intersection. However, non-abelian simple groups are homomorphic
images of free groups, so free groups are not weakly hypercentral.
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In fact, while it is true that subgroups of finitely hypercentral, hyper-
central and Z hypercentral groups have the corresponding property, this is
not so for weakly hypercentral groups. Kargapolov has constructed in [8] a
weakly hypercentral group with a non-abelian free subgroup. But non-
abelian free groups are not weakly hypercentral. The situation is somewhat
different with normal subgroups.

LEMMA 3.1. If K is weakly hypcercentral in G and M <3 G, then M n K is
weakly hypercentral in G.

Proof. If L is a G-invariant subgroup of M n K, then K/L is Z hyper-
central in G/L and omit repeats. Since M K is normal in G, the series so
obtained is a Z hypercentral series for M n K in G. Since L was arbitrary,
M K is weakly hypercentral in G.

LEMM 3.2. If maps G onto H and K is wealcly hypercentral in G, then
K is weakly hypercentral in H.

Proof. Let L ker t so that without loss of generality, H G/L and
/ is the natural map. The map/ induces a homomorphism from G/(K L)
to G/L whose restriction to K/(K L), r, is an isomorplism. Clearly,
K KL/L, which is the image of r. If M/L is any G/L-invariant subroup
of KL/L, then M a K is a G-invariant subgroup of K. Since K is weakly
hypercentral in G, thele is an invariant (in G) series running from M n K
to K whose factors are centralized by elements of G. Since r is an isomor-
phism, r maps such a series onto a series in G/L running from M/L to KL/L
whose fact)rs are centralized by elements of G/L. It follows that K/(M/L)
is Z hypercentral in (G/L)/(M/L); since M was arbitrary, Kt is weakly
hypercentral in G/L.
We can now prove the following basic fact about weakly hypercentral

subgroups:

THEOREM 3.1. Every group G has a unique maximum subgroup which is
weakly hypercentral in G.

Proof. From the definition, subgroups of G which are weakly hyper-
central in G are normal in G. Well order the set of such subgroups to obtain
the collection IG[0

_
v

_
} (set Go 1). Let H be the subgroup of G

generated by this collection of normal subgroups and let asterisks denote
images of elements of G under a homomorphism. Define

g (G.*[a <_ "),), 0 _< , _< .
Then ifa <:t,K,___Ks,K0 landKx =H*. For < h, wehuve

K+I/K
__

G+I*/ G+* K) T,

which is Z hypercentral in G*/(G+* K). The map from this last group
.onto G*/K maps a Z hypercentral series of T in G*/(G+ * K) onto a
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Z hypercentral series of K+I/K in G*/K. Hence, we may refine the
ascending invariant series {K} to a Z hypercentral series of H* in G*. Since
the homomorphism was arbitrary, H is weakly hypercentral in G. The group
H obviously contains every such subgroup, which proves the theorem.

Remark 3.2. We shall call the unique maximum subgroup of G which is
weakly hypercentral in G the wea hypercenter of G and denote it by (G).
Clearly, a(G) a(G) and Kargapolav’s example in [8] shows that inclusion
may be proper. It is also shown in [8] that every group G has a unique
maximum normal weakly hypercentral subgroup, which we denote by (G).
Since homomorphic images of locally nilpotent groups are locally nilpotent
und the class satisfies the local theorem (see [10, p. 218]), it follows that
(G)

_
(G).

The property of being Z hypercentral in G is a "local" property in the
following sense"

THEOREM 3.2. If H is a subgroup of G and G has a local system {Gg} of
subgroups such that H n G is Z hypercentral in G, for each , then H is Z
hypercentral in G.

Proof. The proof is almost the same as Kurosh’s proof of the local theorem
for SN groups in [10, p. 183]. We will therefore assume the reader has this
text at hand and indicate the necessary modifications. Let @8 be a Z hyper-
central series of H n G in G. For elements h e H and g e G and every G
containing both of these elements let (C., g,) be the jump such that
C,g is the largest member of the system @8 avoiding the non-trivial elements
of {h, g} and C. contains H {h, g}. Then [g, h] e Cg.. Now construct the
local systems linked with pairs and sets of pairs of the form (h, g), h e H,
g e G, as Kurosh does, and form the system {H(a, b)} of subgroups of H.
The completion of this system yields a Z hypercentral series of [H, G] in G.
Add H to this series and the theorem follows.
We now find some conditions under which weak hypercentraiity implies

hypercentrality.

IROIOSITION 3.1. Let K be a Noetherian solvable subgroup of G which is
weakly hypercentral in G. Then K is hypercentral in G.

Proof. Deny the conclusion. Then there is a group G with non-hyper-
central Noetherian solvable subgroup K which is weakly hypercentral ia G.
By passing to the factor group GIn(G) n K) and replacing K by KIn(G) K),
we may assume a(G) n K 1. Since K is solvable, K has a non-trivial
characteristic abelian subgroup which is weakly hypercentral in G by Lemma
3.1. Replace K by this subgroup and we may assume that K is abelian and
K n (G) 1. The set of normal subgroups H of G contained in K such
.that K/H is not hypercentral in G/H is non-empty, since 1 is one of them.
This collection has a maximal element L, since K is Noetherian. By passing
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to the factor group G/L we may assume that K is non-hypercentral in G, but
if M is a proper G-invariant subgroup of K, then K/M is hypercentral in
G/M. Hence, K r Z(G) 1. For if not, then K/K r Z(G)) is hyper-
central in G/K r Z(G)), which implies that K is hypercentral in G, a contra-
diction. If K is not torsion-free, then the periodic subgroup P of G is non-
trivial and characteristic in K, so normal in G. Therefore, P is Z hyper-
central in G. But K is Noetherian, so P is finite and hence K n Z(G) 1,
contradiction. Consequently K is torsion-free. If p is a prime, then K is a
proper characteristic subgroup of K, so K/K is hypercentral in G/Kp. Also,
K/K has order p’, where n is the rank of K. Consequently we have

[K, nG] c_G_ f Klp is prime} 1.

It follows that K is hypercentral in G, a contradiction, and the proof is com-
plete.

COROLLARY 3.1.
hypercentral.

Every Noetherian solvable weatly hypercentral group is

COOLLAY 3.2. If K is wea]dy hypercentral in G and K has an ascending
G-invaviant series whose factors are Noetherian solvable, then K is hypercentral
inG.

Proof. Deny the conclusion. Then K n a(G) < K. By passing to the
factor group of G by K a a(G), we may assume that K a a(G) 1, since the
image of K will be weakly hypercentral in the image of G. However, K has
a non-trivial Noetherian solvable subgroup M which is normal in G. By
Lemma 3.1, M is weakly hypercentral in G. Hence M

_
a(G) by Proposition

3.1, a contradiction.
The automorphism of G is algebraic if for every x e G, the group generated

by S {[x, n]ln >_ 0} can be finitely generated. It is easy to verify that
the group generated by S is the same as the group generated by
{(x)ln >_ 0}. Consequently, if for every x e G there is a non-zero integer
m such that (x) x, then is algebraic.

THEOREM 3.2. Let G be a group; the following are equivalent:
(A) G is a hypercentral group.
(B) (i)

(ii)

(c) (i)
(ii)

(iii)

G is a wealdy hypercentral group.
Non-trivial homomorphic images of G have non-trivial normal
Noetherian solvable subgroups.
G is a weakly hypercentraI group.
Non-trivial homomorphic images of G have non-trivial finitely
generated normal ?I subgroups.
Inner automorphisms of G are algebraic.

Proof. If G is hypercentral, the upper central series of G can be refined
to an ascending invariant series with cyclic factors. Since any homomorphic
image of G also has this property, G satisfies (B) (ii). That G satisfies
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(B) (i) is clear. Conversely, if G satisfies (B), it follows from Corollary 3.2
that G is a hypercentral group.

The equivalence of the conditions (B) and (C) follow from the facts that
an/I group whose inner automorphisms are algebraic is locally Noetherian
[3, Folgerung 4.11] and hypercentral groups are locally nilpotent.

Remart 3.3. The hypotheses of Proposition 3.1, its corollaries and Theorem
3.2 could be weakened if it could be shown that Noetherian weakly hyper-
,central groups are nilpotent, a possibility we have not been able to confirm
or deny.

4. The global descriptions
Conditions under which R(G) and L(G) may be described as finitely

hypercentral (in G) and nilpotent subgroups of G are rather special. Baer
has shown, for instance, that if G e it is sufficient for (G) to satisfy the
maximum condition on abelian subgroups (see [2, p. 257]).
By applying a hypercentrality criterion of Gruenberg, one easily obtains

sufficient conditions for hypercentral descriptions of Engel elements of
groups. Recall that the abelian group A has finite rank n if every finitely
generated subgroup is contained in one generated by at most n elements.

PROIOSITION 4.1. If e(G) has an ascending G-invariant series whose factors
are abelian of finite ran, then pl(G) a(G) and I(G) (G).

Proof. To show that pl(G) a(G) it is sufficient to prove that

(G) Z(G) > ,
since a(G)

_
pl(G) and images in any factor group of ascendant elements are

themselves ascendant elements. But p(G)

_
q(G) so that pl(G) has an

abelian normal subgroup of finite rank and consisting of right Engel elements.
By Proposition 1.1 (ii) of [6],

p(G) Z(G) > 1
and the result follows.

The equality (G) e(G) follows from the fact that e(G) is a locally
nilpotent FI group, so that e(G)

_
l(e(G)) (G).

Remarlc 4.1. If G satisfies the hypotheses of Proposition 4.1 and G e ,
then L(G) e(G), which is the maximum hypercentral normal subgroup of
G, since

(()) p(()) ()

by Proposition 4.1. It also follows from Proposition 4.1 and Theorem 1.2
(iii) that R(G) a(G), the hypercenter of G. In the remainder of this
section we develop a and analogues to these hypercentral descriptions of
Engel elements.

LEMMA 4.1. If K is a G-invariant subgroup of the normal subgroup H of



ON THE THEORY OF ENGEL ELEMENTS IN GROUPS

G, G/H is finite or G/H (gH), were g acts as a left Engel element on K,
KI is an H-invariant series of K and

L K Ig eGI,
then the system {L} yields, after omission of repeats, a G-invariant series for
K.

Proof. Let S be u non-empty subset of the index set F. Since

1 {K li S and g G} 1 { {K t e S} ge G},

intersection of terms of the system belong to the system. Let

g. O {K, 16e S}.

Clearly, IJ {L]6 e S}

_
L. If has a largest predecessor, the converse

equality follows. Suppose , has no largest predecessor and let x e L.
Case 1. G/H is finite. Let {g, g,} T be a complete set of coset

representatives of H in G. Since the K are invariant in H, L {K g e T}.
So there are elements x e K such that

i 1, n.XXi

Hence, there is a such that x e K, i 1, n. It follows that

x e{gglgeT} L.
Case 2. G/H {gH} and g acts as a left Engel element on K. Then the

set {[x, ng] In >_ 0} is finite and contained in L (for L is clearly normalized
by G). Hence, there is a It < such that this finite set is contained in K.
By Lemma 4 of [5], x e L.

In either case, it follows that unions of members of belong to . Clearly
1 and K belong to .
Now suppose that (L, L) isa jump ia. Since {K} is complete, there is

a largest a e 1 such that L L and a smallest p 1 such that L L. It
follows that (K, K) is a jump in {K}. Hence, K <:l K. By definition of
the members of we conclude that L, <1 L. Hence, is a normal series of K
(after omission of repeats).

LEMMA 4.2. If K is a normal (in G) subgroup of right Engel elements of G
which is Z hypercentral in the normal subgroup H of G, and G/H is cyclic or
finite, then K is Z hypercentral in G.

Proof. Let {K} be a Z hypercentral series of K in H. Form the series
{L} as in Lemma 4.1. Since K R(G), elements of G act as left Engel ele-
ments on K. Consequently, {L} is a normal series of K. Clearly, each L
is normalized by G. Let (Lx, L,) be a jump of the series. One sees from the
proof of Lemma 4.1 that we may assume (Kx, K,) is a jump in {K}. There-
fore, if g e G, [H, K]

_
K{, since {K} is a Z hypercentral series in H. It
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follows from the definition of L that [H, L,] Lx. Therefore, {L} is a Z
hypercentral series of K in H.

Again, let (Lx, L) be a jump. Since [H, L,]

___
Lx, the group of auto-

morphisms A of L,/Lx induced by elements of G is a homomorphic image of
G/H, so is finite or cyclic. Let T denote the automorphism induced by g.

Case 1. A (T}, for some g eG. Define A0 L and, inductively,

A,+ {x L [x, g]

Since L,/Lx is abelin, the chuin

Ao_A

_
A,

_
is an increusing chain of subgroups. Since g acts as a left Engel element on
K, L, is the union of all the A.

Case 2. A T, T.}. Then let A0 L and, inductively,

An+ Ix e L, [x, g] e A i 1, ..., m}.

Then if x A+, and g e G, [x, g] e An As in Case 1, we obtain an ascending
chain of subgroups. If x eL, there is a positive integer r such that
[x, rg] 1, i 1, ...,m, sincexeR(G). Therefore, xeA,soListhe
union of ll the A.

In either case we may insert the A into the series {L} at the appropriate
jump. The new series obtained by doing this at every jump is a Z hyper-
central series of K in G, since [G, A+]

___
A. This proves the lemma.

We shall denote by the class of all groups posessing an ascending normal
series with factors which are cyclic or finite. Note that 9

PnOOSTO 4.2. If G is a hyper-L group, then R(G) (G).

Proof. Assume the ascending invariant series

1 G0G_ _G G

hs L factors. Then G is an : group by Corollary 2.2, so that R(G) is
locally nilpotent subgroup of G by Theorem 1.2 (iv). We proceed by induc-
tion to prove that R(G) a G is Z hypercentral in G.

If/ 1 and H is a finitely generated subgroup of G, then R(G) a H is
a normal locally nilpotent subgroup of right Engel elements of H. Con-
sequently, H/(H R(G) has an ascending normal series with cyclic or finite
actors, say

{K/(R(G) H) O

_ _
Induct on the oridinal a to show that R(G) H is Z hypercentral in H. The
case a 0 is clear. If a > 0 and the result is true for series of smaller length,
there are two cases to consider. If a is limt ordinal, then R(G) H is Z
hypercentral in K, tt < a, and H [J {K It < a}. By Theorem 3.2,
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R(G) n H is Z hypercentral in H. If ti - 1, then R(G) n H is Z hyper-
central in K, K/K is finite or cyclic and generated by elements which act
as left Engel elements on R(G) H. By Lemma 4.2, R(G) H is Z hyper-
central inK H, completing the induction. The set of all finitely generated
subgroups of G1 form a local system for G1, so that R(G) G is Z hyper-
central in G by Theorem 3.2.

Inductively, suppose R(G) G is Z hypercentral in G, for all < ,
where

_
p. If is a limit ordinal, then G is the union of all G, ti < t

and R(G) G is Z hypercentral in G; therefore, R(G) G is Z hyper-
central in G by Theorem 3.2.

If t is not a limit ordinal, say 1, then R(G) G has a series
{Mr} making R(G) r G Z hypercentral in G. Let H be generated by G
and a finite number of elements of G. Then H/G is an/9 group. We can
repeat the induction argument used for t 1 to obtain that R(G) G is Z
hypercentral in H. Such H form a local system for G. By Theorem 3.2,
R(G) n G is Z hypercentral in G. We have also shown in the case 1
that the right Engel elements of any L group form a subgroup which is Z
hypercentral in the group. Since any homomorphism maps right Engel ele-
ments onto right Engel elements, it follows that R(G/G) is Z hypercentral
in G/G.

Let T R(G) G. Then TG/G is a normal subgroup of G/G con-
sisting of right Engel elements. Therefore, TG/G is Z hypercentral in
G/G. Let be theusual isomorphism from TG/G onto T/(T G). Con-
sider these groups to be operator groups with conjugation by elements of G
as operators. For e T and G e G, we have

(tT) T G) ((ST)),
so that is an operator isomorphism. If {L} is a Z hypercentral series for
TG/G in G/G, then {Lv} is a series of G-admissible normal subgroups of
T/(T G). Since v is an operator isomorphism, the series {Lv} is a Z
hypercentral series for T/( T G) in G/( T G).

If we take inverse images under the natural map of T onto T/(T G) of
this series and add to this system the terms of a Z hypercentral series for
T G in G, we obtain a Z hypercentral series for T in G this proves that
R(G) G is Z hypercentral in G and completes the induction. Therefore,
R(G) G R(G) is Z hypercentral in G G.

Finally, suppose K is a G-invariant subgroup of R(G). Then G/K is also
a hyper-L group and R(G)/K is a normal subgroup of right Engel elements
of G/K. Since R(G/K) is Z hypercentral in G/K, so is R(G)/K. It follows
that R(G) is weakly hypercentral in G, so R(G)

_
a(G) by Theorem 3.1.

THEOREM 4.1. Suppose the group G has an ascending invariant series
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such that if , then
(1) G+I/G, is Noetherian abelian, or
(2) G+I/G is locallyfinite and the automorphisms induced by G are algebra-

ic; then L(G) (G) and R(G) a(G).

Proof. By Proposition 4.2, R(G)

_
a(G). Suppose this inclusion is

proper. Then there is a first term G containing an element x in a(G) but
not R(G). Clearly is not a limit ordinal, so there is an ordinal t such that
t t -t- 1. Let asterisks denote images of G in GIGs.

Let K xa G+I. Then K* is weakly hypercentral in G* by Lemmas
3.1 and 3.2.

Case 1. Ga+I/Ga satisfies condition (1) of .the theorem. Since K* is
Noetherian abelian, K* is hypercentral in G* by Proposition 3.1. Hence, if
y G, there is a positive integer n such that z Ix, ny] Ga. But a(G) is
normal in G, so that z e a(G) n G. By our choice of , z e R(G), so there is
a positive interger m such that

1 [z, my] Ix, (n+ m) y].

Therefore, x e R(G), a contradiction.

Case 2. Ga+/G satisfies condition (2) of the theorem. Then if
M {[x, ny]ln >_ 0}, where y is any element of G, (M*) is finitely generated
and therefore finite. Since K* is weakly hypercentrM in G*, K* has a Z
hypercentral series in G*. By intersecting (M*) with the series for K*, we
obtain a finite series for (M*), say

1 M0M M (M*).
Furthermore, if 1

_
i < t, there is a jump (K, K) in the Z hypercentral

series for K* such that K n (M*) M and K n (M*) M+. Since
[G*, K]

_
K we obtain that

[(y*, M*}, M+]
___
K (M*} M.

Therefore, the group (M*, y*} is nilpotent and there is an integer n such that
[x, ny] G. Now repeat the argument at the end of Case 1 to obtain a con-
tradiction. We conclude that R(G) a(G).

Since G is an group (Corollary 2.2), we have L(G) (G)

_
(G).

Consider the ascending invariant series {G n (G)} of (G); for < a, the
group

(G+ n (G))/(G n (G))

is isomorphic to a subgroup of G+/G.
finite, an automorphism oi

Furthermore, if G,+/G, is locally

(G.+ n (G) )/G n (G)

induced by an element of (G) is algebraic, since the corresponding auto-
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morphism of G+I/G is algebraic. Therefore, (G) satisfies the hypotheses
of Theorem 4.1. By our previous arguments, R((G)) a((G)) (G).
Therefore, (G) L(G), which proves that (G) L(G).

THEOREM 4.2. If G is a hyper-L group and (G) has a G-invarian ascend-
ing series whose factors satisfy conditions (1) or (2) of Theorem 4.1, $hen L(G)
(G) n (G) and R(G) (G) n a(G).

Proof. Since (G) is weakly hypercentral,

(G) (G) n (G) L(G)

(G . by Corollary 2.2). Also, R(G) (G) by Theorem 1.2 (iv). By
Proposition 4.2, R(G)

___
a(G). The proof of the converse inclusion

() n () R()

is carried out in exactly the same way as the inclusion a(G)J___ R(G) in
Theorem 4.1, except that we replace a(G) by a(G) n (G). This completes
the proof.

Remark 4.2. Theorems 4.1 and 4.2 are partial converses to Proposition
4.2. It seems likely improvements to these theorems can be made. In this
connection, we have not been able to find n /1 weakly hypercentral
group that is not locally nilpotent.

Added in proof. It has come to the author’s attention that the term
"weakly hypercentral" has already been used by R. Baer in his article Das
Hyperzentrum einer Gruppe III, Math. Zeitschrift, vol. 59(1953), pp. 299-
338, where a stronger version of Proposition 3.1 is proved. A more suitable
term for the hypercentrality discussed in this paper is "-hypercentrality".
For more on this notion see the author’s article On -hypercentral normal
subgroups, Arch. l\ath., vol. 21(1970), pp. 344-348.
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