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1. Introduction
Let E be a Banach space over the real or complex field. A sequence {x} in

E is said to be a (weak) basis for E if for every x in E there corresponds a
unique scalar sequence {} such that x -a x, the convergence being
in the norm (weak) topology of E. A basis with continuous coefficient func-
tionals a is called a Schauder basis. In [2], Arsove and Edwards introduced
the concept of an extended Schauder basis, where, by discarding the require-
ment of countability, they carried out the expansion according to a given
directed set. Without proof they have given the following theorem: Every
weak extended Schauder basis for E is an extended Schuuder basis for E.
As already indicated in [2], it is usually assumed that the expansions converge
unconditionally, and so we obtain a slightly stronger definition of an extended
basis: A family {x} (k e A) is said to be a (weak) extended unconditional
basis, or, in short, a (wea) extended basis for E if to each x in E there is a
unique scalar family {ax} such that x lim x ax xx in the norm (weak)
topology of E, where the a’s are finite subsets of A, directed by inclusion, and
where lim y, denotes the limit of a net {y} in E. If, according to Bessaga
and Pelczynski [3], an absolute basis for E denotes a total set in E in which
every sequence of distinct elements forms an unconditional basic sequence, it
turns out that the extended bases for E and the absolute bases for E are the
same. Moreover, it is easy to see that in a separable space the concepts of
extended and unconditional bases are the same. But the example of a (non-
separable) Hilbert space shows that there exist extended bases which are not
bases. However, it is known [3] that there exist Banach spaces, e.g. l, which
have no absolute and hence no extended bases; a negative fact which is not
yet cleared for bases. Since l is an 9-space (p > 1) there are 9-spaces
without extended bases (for the definition see [8]).

It is encouraging that many results from the theory of bases in separable
spaces have their analogues for extended bases. Indeed, as shown in this
note, one can establish necessary and sufficient conditions for E to have an
extended basis, a theorem which formally resembles the theorem of Nikol’skii
which applies to bases for separable Banach spaces. It is also shown that the
weak extended bases coincide with the extended bases and that the extended
bases coincide with the extended Schauder bases. Using the natural ex-
tensions of the notions of shrinking or boundedly complete bases one obtains a
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generalization of the theorem of James to the non-separable case: A Banach
space E with an extended basis is reflexive if and. only if that basis is both
shrinking and boundedly complete. A further theorem is shown which pene-
trates into the structure of E: If E has a boundedly complete extended basis
then E is weakly sequentially complete.

2. Weak extended bases
Let A be an index set of arbitrary cardinality and let 2 be the set of all

finite subsets (including the void set) of A. Then a family {xx} in E (where
), e A) is said to be summable to x in E if limxxx exists in the norm topology
of E. Weak and weak* summability are defined similarly. Let now S be the
set of all scalar families {1 with I1 -< 1, X e A.

LEMMA 1. If {XX} is weakly summable in E, then

sup {]1 I[I s, <
Proof. By definition, lim ’f(xx) exists for every f in E’. Hence from

summability theory of scalar families [11] it is known that

Since the last expression is an upper bound for

sup {I z,
the uniform boundedness principle implies sup {[ x,x xx &} e S, e} <. We now carl a family {xx} in E a (weak, weaE*) extended basis for E if for
each x in E there is a unique scalar family {ax} such that { xx} is (wetly,
weakly*) summable to x. Sometimes use is made of the notation {xx, }
to indicate that {}, defined by fx (x) ax, x e E, is the (unique) family of
linear coefficient functionals of an extended basis {xx}. A (weak, weak*) ex-
tended basis {, ) for E with (weakly, weakly*) continuous coefficient
functionals fx is called a (weak, weak*) exended Schauder basis for E.

LEMMA 2. Let {xx, fx} be a weak extended basis for E. Then the function
!1’ E R, given by

defines an equivalent norm on E.

Proof. By Lemma 1, x ]l’ < o for allx eE. It is easy to see that
il !I’ is a norm on E. The topology on E, induced by is weaker than
that induced by I1’, since

One can show that E is complete in the metric
!1 Ii’ are equivalent.

hence that I! and
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Let the sequence {yn} be II’-Cauchy in E. Consequently,
Cauchy and converges with n to some element y of E. Note that by unique-
ness, each xx is non-zero. Each fx is continuous in the topology induced by

II’ on E, for fx (x) _< x I1’/]1 xx II, x E. This implies that each fx (yn)
converges with n, say to x. By hypothesis there is for every e > 0 an integer
n such that Y Y I1’ < e/3 for all p, q >_ n. Hence

sup {ll -x,/x[fx (y) (yq) ]zx {x} e S, a e } < el3, p, q n.

Taking the limit on q, one obtains

(1) sup {] x, xx(y) ax]xx {x} S, e Z} e/3, p n.

Now, there is a fixed index m n for which y y < e/3, and for each
f e E’ with f 1 there is a r e Z, depending on e and m, such that

Therefore,

Hence a (y) on A, and (1) implies that lim y y ]’ 0. Thus E
is complete in the metric ] ]’ and by this argument the lemma is verified.
The lemma, which is fundamental for subsequent investigations, can now be

used to establish the following important result, which is known for (ordinary)
bases for separable complete metric linear spaces [1, Theorem 2]"

THEOREM 3. Every (weak) exended basisfor E is a (weak) exten&d Schauder
basis for E.

Proof. Let {xx, } be a weak extended basis for E. Since

eh is continuous in the topology induced by I1’ on E nd so lso in the
norm topology of E. Thus, by the fct that liaer functional on E is
wekly continuous if nd only if it is continuous, we hve the theorem.

3. Existence of extended bases
A double family x,/}, x e E, f e E’, e A is called a biorthogonal system

for E if x (f,) ,, , e A, where , denotes the Kornecker symbol. Let
U,} be the family of linear operators in E, defined by U x xfx (x)xx,

x e E, a e . Ovbiously, the operators U are continuous projections of E with
the properties U U, U, , r e .
THEOREM 4. Let {x, fx} be a biorhogonal system for E such hat

supf(Ux) < x e E, f e E’. Then one has



(i) xx} is an extended basis for xx} in E, and
(ii) {fx} is an extended basis for p {fx} in E’.
Up to modifications caused by summability, the proof is similar to that for

the case of ordinary bases given e.g. in [9, p. 31].

T:o. 5. {xx} is a (wea ) extended basis for E if and only if there is a
family {fx} in E such that {xx, fxl is a biorthogonal system for E and
lim, ,fx (x )xx x in the strong (weak) topology of E for eachx in E.

Proof. The sufficiency follows directly from the preceding theorem.
Necessity" According to Theorem 3 each coefficient functional fx belongs to
E and the uniqueness of fx (x) for each x e E implies fx (x)
COaOLLAaY 6. /Xx} is an extended basis for E if and only if it is a weak ex-

tended basis for E.

The following theorem generalizes Nikol’skii’s theorem [10] to extended
bases"

TI-IEOIEM 7. A total family xxl of non-zero elements in E is an extended basis
for E if and only if there is a constant M >_ I such that

for all a, e Z with a c and arbitrary scalars

Again the proof caa be obtained by modifying the proof of Nikol’skii’s
theorem given in [9, p. 57] to the case of extended bases. The proof will then
be based on Theorem 4 and 5.

According to the fact that in every Hilbert space there exists a total ortho-
normal (not necessarily countable) set, such that the inequality of the above
theorem is satisfied with M 1, it is apparent that there is an extended basis
for every Hilbert space. The question naturally arises if every 9"-space or
even every Banach space has such a basis. The answer is negative, as we will
show in a corollary of the next proposition.

THEOaE 8. A total family {xx} is an extended basis for E if and only if every
sequence of different elements from {xx} forms an unconditional basis for its
closed span.

Proof. By a twofold application of the preceding theorem it follows that
every sequence of different elements from an extended basis {xx} is an uncondi-
tional basic sequence. Conversely, let {xx} be a total family in E such that
each sequence of distinct xx’s is an unconditional basic sequence. Then there
is for every x in E a countable subset A0 of A such that x e sp {xx k e

Since {xx ), e h0} is an unconditional basic sequence there is u scalar family
ax e A} with ax 0 for ), A0, such that lim x, ax xx x. We show

this family is unique" Let [fx e A} be another family such that
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lim x x xx x and let. A1 be the (obviously countable) set in A on which
x 0. Then

limAS X fx XX X,

and since {xx k e A0 u A1} is an unconditional basis for its closed span, one
must have #x ax on A.

In other words, every extended basis is an absolute basis, where an absolute
basis for E is defined to be a total set in E such that every sequence of distinct
elements from the set is an unconditional basic sequence. Now, because l has
no absolute basis [3, p. 172], one gets immediately

COROLLAY 9. The Banach space l does not have an extended basis.

Since l is isometrically isomorphic to a space C (S), S compact Hausdorff
[6, p. 445], and since C (S), aswe know [8, p. 76], is an 9:-space for every p > 1,
we obtain another result"

COOLAY 10. For each p > 1, there exists an 9-space with,no extended
basis.

4. Extended bases and reflexivity
Let J be the canonical map of E into E’.

TEORE 11. If {Xx ,fx} is an extended basis for E, then {fx, Jxx} is a weak*
extended Schauder basis for E’. Conversely, if {fx, Fx} is a weak* extended
Schauder basis for E’, then Fx J (E) and {J-F, fx} is an extended basis for E.

Proof. If {xx, fx} is an extended basis for E, it follows that

lim [f , Jxx (f)f] (x) lim f[x ,f (x)xx] O, x e E, f E’.

In order to prove the uniqueness of the coefficients Jxx (f), we assume that
lim x ax fx (x) 0 for all x in E. Then with x x, e A one obtains

a 0 on A and the first part of the theorem follows.

On the other hand, let {f, Fx} be a weak* extended Schauder basis for E’.
Then the weak continuity of the Fx’s implies [12, p. 112] that F e J(E).
Consequently,

f(x) lim x, Fx (f)f (x) lim,f[fx (x)J-Fx], x e E, f e E’.

That {J-Fx, fx} is a weak extended basis and hence an extended basis for E
now follows at once from the assumption

lim f( a, J--Fx O, f e E’,

which by f (J-Fx) Fx (f) x shows that a 0, e A.
We say, in analogy to the case where A is the set of positive integers, that an

extended basis {xx} for E, with associated family of expansion operators
{U a e 2}, is Shrinking if and only if
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lim, sup {ij’(x U, x) li II x II 1} 0

for each f E’. This is equivalent to saying that lim, IIf ll, 0, f e E’, where
II f If, is the norm of the restriction of f to the subspace (I U)(E) and I is
the identity ofE (this is a consequence of the uniform boundedness principle).

THEORE 12. Let {xx fx} be an extended basis for E. Then the following
statements are equivalent"

(i) {1 hrnina.
(ii) /fx} is an extended basis for E’.
(iii) {h} oa n F’.

Proof. (i) (ii). If {xx, fx} is shrinking, then for all f E’,
0 lim sup {If(x- II ll 1}

lim, sup {I If x. Jxx (f)fx] (X)) II x ]]

_
1}.

Since Jxx (f) f (xx) x, it follows from Theorem 5 that {fx, Jxx} is an
extended basis for E’.

(ii) (iii) is obvious.
(iii) (i). {fx, Jxx} is biorthogonal system for E’. Since sups If(Us x) <

m, x E, f E’ we infer from Theorem 4 that {fx} is an extended basis for
E’, say with corresponding biorthogonal family {Fx} in E" (which exists by
Theorem 5). But

Jxx (f) Jxx[lims 7’,s F (f)f] Fx (f), f E’.
Thus

0 lims [If- x,sJxx(f)fxll lim, sup {If(x Usx)! {[xll -< 1},

which shows (i).
An extended basis for X is said to be boundedly complete if

converges for each scalar family {ax} with sups II x,s oa xx II <
THEOREM 13. If {Xx, fx} is an extended basis for E which is shrinking, then

{fx, Jxx} is a boundedly complete extended basis for E’.

Poof. As a corollary to the preceding theorem one gets the assertion that
{fx, Jxx} is an extended basis for E’. Let {ax} be such that

Since ;- {xx} E and , lim x,, x A (x,), A, one can invoke the
Banach-Steinhaus theorem to infer that g(x) lira x, ax (x) exists
for each x in E, and that g E’. Consequently, g (x,) a, on h and so

g lim, x., Jxx (g)fx lim, x. ax

which shows that {fx, Jxx} is boundedly complete.

THEOREM 14. Let {xx, fx} be an extended basis for E such that {fx} E’.
Then E is reflexive if and only if that basis is boundedly complete.
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Proof. If E is reflexive s- {Jxxl E". A twofold application of Theorm
12 implies that {fx, Jxxl is an extended basis for E’ which is shrinking. Thus
{Jxx} is a boundedly complete extended basis for E" and, since J is onto,
{xx} is also boundedly complete. Conversely let U and V be the unit balls
in E and E" respectively, and let F e E" be arbitrary. Since J (U) is weakly*
dense in V, there is a sequence {y.} in U with F (f) lira. Jy,, (f), f E’.
Therefore,

ll F (f,,)z,, II II lim, x,, Jy, (.fx)xx II

If {xx, fx} is boundedly complete, there must be an x E such that

for all e A.
prove.

Thus, due to sp {fxl E’, one has F Jx as we wished to

The next theorem is the analogue of the James theorem [7] which is valid
for separable Banach spaces,

THEOREM 15. A Banach space E with an extended basis is reflexive if and
only if that basis is both shrinking and boundedly complete.

Proof. If {xx, fx} is a shrinking and boundedly complete extended basis for
E, then s- {fx} E’ and, by the last theorem, E must be reflexive. For the
argument in the other direction, let E be. reflexive and have an extended basis
{xx, fx}. Then {fx, Jxx} is a biorthogonal system for E’ and for each x E
and f E’ one obtains

Jx (f) f(x) lim ’x, fx (x)f(xx) lim Jx[x, Jxx (f)fx].

Due to Theorem 5 and Corollary 6, {fx, Jxx} thus is an extended basis for E’, so
{xx} has to be shrinking. By the preceding theorem it finally follows that
{xx} is boundedly complete and we are done.

It is very instructive to see that Corollary 91 can now also be derived from
some fundamental properties of the space l (i) Weak and weak* convergence
of sequences are equivalent in (l)’ [4, p. 109] and (ii) every weakly compact
linear transformation from l into a Banach space maps weakly convergent
sequences into strongly convergent sequences [6, p. 445-494] (based on these
properties, Dean [5] proved that l does not have a Schauder decomposition).
Now, it can be shown that (i) implies that every weak* extended basis for
(l)’ is an extended basis for (l)’. Thus, in view of Theorems 11 and 14, an
extended basis for l cannot be boundedly complete. Suppose now that {xx}
is such a basis, then it is possible to establish a sequence {} of mutually dis-

The author realized Theorem 8 only near the end of his work on this paper and it
provided a more direct proof of Corollary 9.
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joint sets in 2 and a sequence of unit vectors {y} with y e sp {xx X ea} which
converges weakly to zero. To this sequence one can find a, bounded biorthog-
onal sequence {gl in (lo)’ such that Z {g} in (1)’ is reflexive. The eval-
uation map T of l into Z’ is then weakly compact [6, p. 483]. Hence by (ii),
{Ty} converges strongly in Z’, and the limit must be zero. This contradicts
the fact that {Ty} is bounded away from zero, which shows that l does not
have an extended basis.

5. Connections with the structure of the space
LEMMA 16. Let xx be an extended basis for E and let ax and be scalar

families such that

where ]1’ is the norm on E given in Lemma 2.

Proof. Without loss of generality one may assume that x 0 on a. The
lemma now follows directly from the estimate

sup {11

TffEOE 17. IfE has a boundedly complete extended basis, then E is weakly
sequentially complete.

Proof. Let {xx, } be n extended bsis for E nd {y} ny wekiy con-
vergent sequence in E. Then there is constant M > 0 with sup ]] y I M.
Defining ax lim (y), one gets

sup x
Since {xx, fx} is boundedly complete, there is y e E such that
lim x, ax xx y, and ax A (Y) on A.
We prove the theorem by contradiction. Let {y} have no weak limit in E.

In particulur y then is not
of norm one, an e > 0 and a subsequence {y} of {yi} such that y y,
Re f(z) > for all j. By hypothesis, there is a sequence {a} with
a a and an increasing sequence {n} of integers such that a0 is the
void set, n 1, [ z, U z, < and U z.+ [] < , where > 0
shall be fixed later on. Using Lemmas 2 and 16, one obtains for any scalar
sequence
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> [ge-- 2(gw 1)] 1],
where K is constant in (0, 1]. But

1 Znt (I] V + M) 1 IJ I"
Choosing a < eK/2 (K + 1 i is clear that he linear ransformaion

T" IE,
defined by T{&} lims z, {} e l, is bounded. Due to

T{fl} ]] [ge 2(g W 1)] fl} [[,
T is topological isomorphism nd so T (l) is weakly sequentially complete
since l is. {z} is in T (l) E (one has z T{yi} ), and by hypothesis
and the Hahn-Banach theorem, lim g (z.) exists for aft g e T (l)’. Hence
{zi} converges to a z e T (l) in the weak topology of T (lx) and

z lim x,
lim x. xx lim (z)
lim x, xxx (y) lim (yi)]
lim x, xx[ax limi (y)] 0.

Since now {y’} and hence {y} converge weakly to y (which contradicts our
ssumption), E is weakly sequentially complete.
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