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BY
Bruno J. MUELLER!

1. Main results

A ring is called semi-perfect if every finitely generated R-right-module has
a projective cover. Equivalent conditions are: B = R/J, J the Jacobson-
radical, is semi-simple artinian and idempotents can be lifted modulo J;
or every simple R-right-module is of the form eR/eJ, e = ¢’ ¢ R. These rings
have been studied recently by numerous people (e.g. Bass [1], Lambek [7],
Mares [9], Kasch and Mares [5], Wu and Jans [11]), and most of the classical
structure theory for artinian rings can be obtained for them. It is well
known that for a semi-perfect ring R, every primitive idempotent e is local
(eRe is a local ring, a ring with unique maximal ideal). Apparently it has
not been observed that this property characterizes semi-perfect rings (cf.
Lambek [8, §3.7, Prop. 3]).

TurOREM 1. The following are equivalent for any ring R: (1) R s semi-
perfect; (2) the unit 1 ¢ R is the sum of orthogonal local idempotents; (3) every
primitive tdempotent s local and there doesn’t exist an infinite set of orthogonal
idempotents in R.

The (up to isomorphism finitely many ) local rings eRe determine the struc-
ture of a semi-perfect ring R to a large extent. As an illustration we show

TaEOREM 2. A semi-perfect ring R s lefi-perfect, respectively semi-primary,
if and only if all the local rings eRe are left-perfect, respectively semi-primary.

The theorem of Kaplansky [4] that every projective module over a local
ring is free, generalizes to semiperfect rings as follows:

TaeoREM 3. Every projective module over a semi-perfect ring is the direct
sum of primitive ideals.

2. Semi-perfect rings are generalized matrix-rings over local rings

Starting from a semi-perfect ring B and a decompositionl = ¢, + .-+ e,
into primitive orthogonal idempotents we construct an additive category
(cf. Mitchell [10]) as usual: Let 1, - - - , n be the objects, e; ey, the set of maps
from ¢ to k, composition of maps by ring-multiplication. Conversely begin-
ning with an additive category with finitely many objects 1, - .-, n whose
endomorphism-rings are local, and sets X of maps from ¢ to k, we construct a
generalized matrix-ring whose elements are matrices (Zi)ik=1, Zie Xu.
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Since the X,; are local rings, this matrix-ring is semi-perfect, by Theorem 1.
Since any two decompositions of the unit 1 of a semi-perfect ring are related
by an inner automorphism, we obtain

TaeEoREM 4. The above constructions yield a one-to-one correspondence be-
tween the isomorphism-types of semi-perfect rings, and of additive categories with
Jinitely many objects whose endomorphism-rings are local.

In such a category, the multiplication mappings
Xi X Xa—Xa, XaXXu—Xa

turn the Xy (¢ 5 k) into X — Xu-bimodules, and the X;; X X — Xg
(¢ # j, 7 # k) factor over the tensor-products, producing bimodule-homo-
morphisms
Siim s Xig ®@xyy X = Xar

satisfying appropriate associativity conditions. It follows that a semi-per-
fect ring is describable, in an essentially unique way, by a system (X,
X, fijr) of local rings, bimodules over these rings and bimodule-homomor-
phisms (cf. Chase [2], Harada [3]).

For example, taking X,;; = D; division-rings, X; arbitrary D; — Dy-
bimodules and all fi% = 0, the associativity conditions are certainly satisfied,
and we obtain precisely the self-basic semi-perfect rings R with J* = 0 and
eJe = 0 for all primitive idempotents e (cf. Zaks [12]).

3. Remark on a paper by K. Koh

The content of this paper is a characterization of those rings for which
every simple right-module has a projective cover. For commutative R this
is shown to be equivalent to B = R/J being semi-simple artinian and idem-
potents being liftable, in other words with R being semiperfect. For general
R a seemingly weaker condition is given: R semi-simple artinian, and for every
non-zero idempotent ¢ in B there exists a non-zero idempotent ¢ in B with
éc = é.

We observe first that this condition implies the liftability of idempotents,
hence that R is semi-perfect. For ée = & yields & e Re, and if ¢ is primitive
then Re = Re and there is an inner automorphism of E mapping ¢ into e:
Zex ' = e. Thenz is invertible in R and zex™ is a lift of &. The standard
procedure of lifting sets of orthogonal idempotents allows then to lift finite
orthogonal sets of primitive idempotents, and since each idempotent in R is
the sum of such a set, all idempotents can be lifted.

This result—all simple R-right-modules have projective cover if and only if
R 1s semi-perfect—is very shortly proved as follows. If X is simple, we have
a projective extension 0 — I — R — X — 0 with a maximal right-ideal I,
hence the projective cover is 0 — I n eR — eR — X — 0 with an idempotent
eof R. Since I n eR is small in eR hence in R, it is contained in the radical;
consequently I n eR = eJ and X = eR/eJ, and R is semi-perfect.
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4. Proof of Theorem 1

The non-trivial implication is that from (2)to (1). Inl =¢ 4+ -+ + ¢,
let e;, e; be isomorphic idempotents, non-isomorphic to ¢,. Then no map
¢; R — ex B — ¢; R will be an isomorphism and therefore ¢; Re, Re; C e; Je;
since e; Re; is semilinearly isomorphic to e; Re; which has the unique maximal
submodule e;Je;. Let e denote the sum of all the idempotents in
1=-¢e+ :++ + e, that are isomorphic to ¢;, and f = 1 — e; then we obtain
eRfRe < eJe. This implies that I = eRf -+ eJe is a right-ideal; and if M
were any maximal right-ideal not containing I, we would get
R=I4+M,1=cxf+ee+me=c¢jet+meeJ + M=M,I] CeRC M;
consequently I is contained in every maximal right-ideal and I < J. Then

eRf + eJe =1 C eJ = eJf + ele
hence eRf = eJf and e; Rex, = e; Jey, .
Now we consider any e;xee; R, ¢¢;J. Then
e,-xfee;Rf b e,-Jf

and therefore there exists e; xe; ¢ e; Je;. Then e; xe; will be “invertible” in
¢; Re;/e; Je; (which is semi-isomorphic to the division-ring e;Re;/e;Je;):
We get

e;we;y = e; and e;zR = e; R,

and e; R/e;J is simple. It follows immediately that every simple R-right-
module is isomorphic to some e; B/e;J, which means that B is semi-perfect.

5. Proof of Theorem 2

Since eJe is the radical of eRe, one direction is obvious. Suppose now that
all e; Re; are left-perfect hence all e;Je; left-T-nilpotent where

l=e-+ - +e

is a decomposition into primitive orthogonal idempotents, and assume J
not left-T-nilpotent. Then there exists a sequence ™ eJ with2® - .- 2™ 0
for all m. Set

(m) n m) (m)
BT = DT el Tk > Tl € Cig b ;

then > a{, «-+ z{™. # 0 for all m.
Ay = {(ks, -+, kn) | there exists z1h, +++ Zim, ¥ 0}

is finite and non-empty; hence by Konig’s Graph Theorem there exists a
sequence k,, such that z{i, - + - 2{™.. # 0 for all m; observe this forces 4,41 = k,
hence z{3, «++ TA™ i, #= O for all m. One index k will occur infinitely often
in the sequence k., and multi;;;lying appropriate factors together we get
terms a® ¢ e, Je, with a® -+ a® 5 0 for all ». This contradicts the left-T-

nilpotence of e, Jer .—The statement for semi-primary rings follows similarly.
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6. Proof of Theorem 3

We sketeh the proof which follows closely Kaplansky’s argument. By his
results it is sufficient to show that every element x of the projective (right-)
module P is contained in a direct summand which is a finite direct sum of
primitive ideals. A quasi-basis of a module X shall be a family of elements b,
such that there exists a family of primitive idempotents e, with b, e, = ba
and that every zeX has a unique representation & = Y byZa, Ta € 6o R.
The projective module P is direct in a free module, P @ @ = F; let y’ denote
the projection of y ¢ F in P. A free module has a quasi-basis, and we choose
such a quasi-basis of F that the given z ¢ P has a minimal number of non-zero
components;

T = ZaeBbaxa, ze # 0.
We obtain & = 2/ = D aesbu®a; ba = 2 bsCoa, Coa € €5 Req ; hence
Tg = D wen Cpalte forall BeB.

The minimality condition on the quasibasis implies that e, is not a left-mul-
tiple of éx — Caa DOT Of caa (B 5% a); hence ca in invertible in the local ring
ea Ren , and cga € €5 Je, if €, €, are isomorphic. If eg, e, are non-isomorphic
we also have cga € €s Re, = egJe, (cf. proof of Theorem 1). Consequently
the matrix C = (cga)s,aez has an “inverse’” D such that CD, DC have e,’s
in the main diagonal, zeros elsewhere. This implies that bs (8 ¢ B), ba
(o ¢ B) is a quasibasis of F, hence

P = (@pes béepR) @ (OapbaeaRnP) and =ze @g.gbéepR > @gpesR.
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