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Introduction
There re currently vilble two equiwlent descriptions for the class group

of Noetherin integrally closed domain. The older, more direct pproch,
cn be surizeds follows" Let A be Noetherin integrally closed domain
nd let D denote the free belian group with the prime ideals of A of height
one s generators. Let x 0 be n element of A nd consider the element

= l(A/xA). of D. Let R denote the subgroup of D generated by
11 such elements. Then the class group of A, C(A), is the group D/R.
The second pproch will now be described. Let A be Noetherin inte-

grally closed domain. Let denote the ctegory of 11 finitely generated
A-modules M such that M 0 for ll prime ideals of height less thn i. In
other words, e Supp M if nd only if the height of is t least i. From the
exact sequence of ctegories

0 / 0/ 0/ 0

derives n exact sequence of Grothendieck groups

(/) (oI) g(oi) O.

Now K(o/) is Z; the isomorphism is given by

M dime(F @ M)

where F is the field of quotients of A. Therefore

g(o/) Z Im (g(/)).

Im (K(/)) cn be identified s the class group, C(A), of A [2, Chp. 7,
4, n 7, Prop. 17].
In this rticle we generalize both these definitions to prime ideals of height

greter thn 1. Generalizing from the first description sequence of groups,
to be clled C(A (0 i dim A), is obtained; from the second description
sequence of groups, to be clled W(A) (0 i dim A), is obtained.
The groups W(A) re defined for ech commutative Noetherin ring A.

The groups C(A) re defined for those commutative Noetherin rings A
which re locally Mculy.
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Following the definition of the groups C and W in Section 1 we give in
Section 2 an alternative treatment of the groups W. In Section 3 connec-
tions between the two sequences are obtained by using the alternative descrip-
tion of the Wi given in Section 2.

It is convenient to discuss following Section 3 some relations between the
groups Wi and the Grothendieck group of the category of finitely generated
A-modules, which we do in Section 4. In Sections 5 through 8 we consider
some "functorial" properties which these groups enjoy. These properties
are strict analogues of those of the ordinary class group. In Section 5 we
give a general mapping principle for flat algebras over A. We use this princi-
ple to examine the particular algebras As, where S is a multiplicatively closed
subset of A, (Section 6) and A[X], X an indeterminant (Section 7). Section
8 contains results which connect the groups of A with groups of A/I when I
is a particularly well behaved ideal of A.

Section 9 contains several miscellaneous results, among which is the fact
that C(A) 0 when A is a power series ring over a complete discrete rank
one valuation ring or a field. In Section 10 we compute the groups C and W
for various rings. These computations show that some results are best possi-
ble.
We close the article with a brief discussion, in Section 11, of relations of

these groups with algebraic geometry. We also pose several problems which
remain.

Several conventions need mention. A always denotes a commutative
Noetherian ring. Whenever the groups C are being discussed we assume, as
well, that A is locally Macaulay.
Any A-module is unitary and finitely generated. The length of an A-

module M is denoted by l.(M), and occasionally the subscript A is omitted
when no confusion can arise. Upper and lower case denotes, almost with-
out exception, a prime ideal in A, and ht denotes its height in A.

1. Definitions
Let A denote a Noetherian, locally Macaulay ring. For each i,

0

_
i

_
dim A, let D D(A) denote the free abelian group based on the

symbols (3) where 3 is a prime ideal of height i of A.
By an A-sequence of length i is meant a sequence of elements xl, x of

A such that

fork- 0,...,i- 1.

It follows that if x, x is an A-sequence, then

_
xA is an unmixed

ideal of A of height i or is A. To each A-sequence of length i, x, x,
attach the element

_.,,t . e(x ,... x, A)()

in D here e(xl, x[ A) denotes the multiplicity of the ideal x. A
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on the module A (and we take it to be zero if A x. A). SinceA
is a Macaulay ring, e(xl x A) is simply l(A/x A).
Now let R R(A) denote the subgroup of D generated by all A-sequences

of length i. The ith class group of A is D(A)/R(A) which we denote by
C(A). For convenience denote I0_<i C(A) by Co(A).

If is a prime ideal of A of height i, then the image of () in C(A) is de-
noted by cl().
As the only A-sequence of length 0 generates the 0-ideal of A, R0 consists of

the cyclic, subgroup generated by ht ..ol.(A)(). This yields at once
the fact t’hat Co(A) is torsion if and only if 0 is a primary ideal of A, and
Co(A) 0 if and only if A is a domain. When A is an integrally closed do-
main, C1(A) is the ordinary class group of A.

Suppose that A is a commutative Noetherian ring. Following the notation
of the introduction, let l (A) be the category of finitely generated
A-modules M such that e Supp M only if ht >_ i. If

0-- M’ -- M -- M" -*0

is an exae sequenee of A-modules, then Supp M Supp M’ U Supp M" [2
Chap. II, 4, n 4, Prop. 16]. Thus M is in ffr if and only if M’ and M" are
in i). Hence i). is a Serre subcategory of for j >_ i (see [6] for termi-
nology).
For a cateory , let K() denote the Grothendieck group of .
For each triple. (i 1, i, i W 1) of integers there is a functor

/+ _/:+

induced from the inclusion functor -. 9_ and which in turn induces a
homomorphism

K(,/,+) K(vg,_/+).
Let W(A) be the image of this homomorphism. In the next section we
show that in fact W(A) is a direct summand of K(_I/+).
By convention set Wo(A) (0). Let W.(A) denote I.0< W(A).
When A is integrally closed, W(A) C1(A), as remarked in the introduc-

tion.

2. Alternative description of W(A)
If is category and C is an obiect in , then [C] denotes the class of C in

K(e).
If M is in i) and 3 is a prime ideal of A of height i, then M has finite

length as an Aw-module.
LEMMA 2.1. For each M e let xi(M) t= l(M).
(a) If O--M--M--M’--O is an exact sequence in 9 then

x(i) x(i’) -k- x(/’).
(b) M gs’in,,9+ if and only if x(M) O.
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Proof. (a) follows from the additivity of l$ for each . As for (b), if
M e )r+l, thenM 0 for each prime ideal of A of height i, so x(M) 0.
On the other hand x(M) 0 implies that l.(M) 0 for each prime ideal, ht i. HenceM 0 for these prime ideals, so M e 9+1.
COROLLARY 2.1. Each object of 9/9+1 is of finite length.

Proof. That xi is a length function follows directly from the lemma.

LEMMA 2.3. Let M be a simple object in 9/9+ Then there is a unique
prime ideal 3 of height i such that M

Proof. Since M is simple x(M) 1, so there is a prime ideal of height
i such that 1.(M) 1 and 1.a(Ma) 0 for all other prime ideals of
height i. Hence e Ass M. Thus there is an exact sequence of A-modules

Now Na 0 for all prime ideals of height i, so N e +, hence A/? M
is an isomorphism in

Let $i be the semisimple full subcategory of 9/+ whose objects are
sums of the simple objects. In the terminology of [6], we know that $ is
both substantial and bisubstantial in /)]Z+x (see [2, Chap. IV, 1, n 4,
Thm. 2]). Then by (9.4) and (9.5) of [6] the inclusion functor induces iso-
morphisms

K($) --- K(ggdgT+) and

By (7.5) of [6], the sequence of abelian groups

K1(_/9,) K(9,/9+1) - K(_/9+) K(9_/i) -- 0

is exact. We now proceed to describe these groups and the homomorphisms
in terms of A and its ideals. The group W(A) is just Im L.

PROPOSITION 2.4.

is an isomorphism.

X: K(9/9+) D defined by

X,([M]) h,l.(M)(?)

Proof. We use the isomorphism

I() K(,/v,+).
Each object in $ is isomorphic to an object of the form IIh -- (A/)((A/) is a direct sum of n copies of A/!) where all but a finite number of
the no are zero. Thus an element of K($i) can be written in the form
__

m[A/], m Z, almost all m 0. It is clear that K($) is free
on the set {[A/] ht i}. The proposition now follows from the defini-
tion of X.

PROPOSITION 2.5. KI(/+I) is isomorphic to IIt --- (A/?A)*.
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Proof. Once again we use the isomorphism established above and consider
the group KI(&). Let S e & and denote by S() the subobject of S which is
the sum of the simple submodules of S isomorphic to A/?. Then
S I_Iht = S() with S() (0) for almost all }. If a is an automor-
phism of S then the composite

is zero unless ’ (where the end maps are the injection and projection in
the finite direct sum). If ’, then this homomorphism is an automor-
phism which we denote by a().
Hence the pair (S, a) (I_[ S(), II a()), so in K (&),

We now consider the pair (S(), a()) (T, r), where T is a direct
sum of n copies of A/ and r is an automorphism of T. Then r can be con-
sidered to be a matrix (r) with r in Hom$ (A/, A/) which is a division
ring.

L:EMMA 2.6. Hom$ (A/, A/!) A/?A.
Remark. The referee has suggested the proof below which is shorter than

the original proof.

Proof. Let A/. Then

Hom$ (.zi, .i) Hom/+, (.zi, i) Hom (M’, /N’)
where the limit is over those M’ (resp. N’) such that fii/M’ e + (resp.
N’ e li+) (see page 365 of P. Gabriel, Des Categories Abeliennes, Bull. Soc.
Math. France, vol. 90(1962), pp. 323-448). Hence

Homs, (i, i) ]i_.m Homa (, ei) U- /

where a runs through all the ideals of i and R is the field of quotients of .i.
To complete the proof of 2.5 we only remark that now one can use elemen-

tary row operations to get that [T, r] [A/?, det r] in K(&). This defines
a homomorphism

g($,) -+ It =, (A/A)*
which is easily checked to be an isomorphism.
We now describe the homomorphisms , and v in terms of the descriptions

of the groups just obtained.
Let () e H=- (A/A)*. Then the vector (a) is the product of

its components a, so we may tell what happens to each component, since
i((a)) 8(a). Write a / with a, b e A both not in .
Then

a() [A/( + boA)] [A/( -k aA)]
in K (/+l).
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is the canonical homomorphism induced from the inclusion of the cate-
gories.

v(M) ht =,-x/a(M)().
Because K(_x/) is a free group, the epimorphism v splits to give

K(_1/,+1) Ker @ D_I(A) Ira, D_x(A) W(A) D_(A)

by the definition of W(A).
KNow Im, (i),/+x)/Ker, D(A)/Im 6. The description of i

given above shows that Ker, Im 6 is generated by the elements
[A/(7 + xA )] where is a prime ideal of height i 1 of A and x . This
element is just ht a= 1.a(Aa/a + xAa)() in D(A).

3. Relations between C(A) and W(A)
The relation which is easiest to obtain is that C(A) is a stronger invariant

than is W(A), for each i.

PROPOSITION 3.1. For each i, 0 <_ i <_ dim A, there is an epimorphism
C(A ---, W,(A ).

Proof. It suffices to show that each relation r e R(A) maps to zero under
the homomorphism

K -, K
Let r =l(A/xA)(} where x, x is anA-sequence of
length i. Then the sequence of A-modules

o -, A A 0

is exact. So

in K (_/+).

PROPOSITION 3.2. Suppose that C(A) 0 for some i. Then the epi-
morphism C+(A -- W+(A of Proposition 3.1 is an isomorphism.

Proof. Using the description of Im in Section 2 one sees that to prove the
proposition it is sufficient to show that each element [A/( W xA )] (ht i,
x ) in K(+I/+) is in the subgroup R+(A) of D+(A).

Since C(A) 0 there are A-sequences x, x k 1, m and
integers n, n such that

Among the prime ideals of height i which are associated with at least one of
the A-sequences above, let , , contain x, while ,+, , do not
contain x. Since .-+ [J= ., we can choose an element w e A such
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thatw=r+l.whilewforj 1,...,r. Thent x+wisnotin
any and the sequences x, ..., x, t; k 1, m are A-sequences.
We now compute the element

Apply the associativity law for multiplicities [8] to

laa(Aa/xAa + tAa) e(xt x
to obtain

e(xa x Aa) a ,=,e(x x A)e(t

Substituting in (a) we get

We rearrange (b) to obtain

ht a=,+t a ,= ,. l((A/)a/t(A/)a) () (where 6 is Kronecker

[A/% + xA].

The penultimate equality follows since x implies w e , so

+ tA % + (x + w)A +
ConoAaV 3.3. UA is a domain, then Wt(A is isomorphic to Ct(A ).

Cooav 3.4. C.(A 0 ff and ly ff A is a domain and W.(A O.

In Section 10 we give an example which shows that C(A) W(A) for
a domuin A. . Connections with K(A)
The inclusion functor for j i induces a group homomorphism

,. K() W()
whose cokernel is (/). For each pair (i, j), i j, let Gi(A)
denote the age of. Let i j, j k; then , , so for ed i,
the G give a filtration on the group (). Since K(i/i+t) Di(A)
is free, the group G,i+t is u direct suund of ().

PnoPostTtON 4.1. Let i be an integer, 0 i dim A.
(a) G/G,,,+, D,(A).
(b) For each j, i < j, G/Gi,+x is a homomorphic image of W
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KProof. G./Gi,+ Coker ,+ (M/M+) so (a) follows from
Proposition 2.4.
To prove (b) consider the commutative diagram

Ko() ’ K(,)

K(/+)

But Im -l,j Wj(A), so ,._x is the desired epimorphism.

COROLLARY 4.2. The groups Go give a filtration on the Grothendiec] group
of the category of finitely generated A-modules K(0) whose associated graded
group is a homomorphic image ofDo(A) E W.(A and hence ofDo(A C.(A ).

COROLLAnV 4.3. If A is such that W.(A 0, and (Krull) dim A , ,
then K(o) Do(A).

Proof. Do(A) is a direct summand of K(flZ0). The statement now fol-
lows from Cor. 4.2.

In Section 10 we show that when A is the coordinate ring of the real three-
sphere (J R[X0, X1, X2, X3]/(X -q- Z -q- X + Z 1))
then K(OZo(A)) Z, but W3(A) Z/2Z. So the converse of 4.3 does not
hold. This example also shows that the next prroposition is best possible.

PnOPOSITON 4.4. Let A be an integrally closed domain with K(gT0) Z.
Then W A 0 and W2 A O.

Proof. K(Z0) _-- Z implies that K(0/9Z) Z for all i, in particular
for i 2. Hence WI(A) O. So A is a unique factorization domain [2,
Chap. 7, 4, n 4, Prop. 17]. We show that K(O3Z) D. Since
K(0) Z, the homomorphism

K(Zo/Z) K(Zl)
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is an epimorphism, so each element of K(91) is of the form [A/xA] [A/yA]
x, y 0 in A. If x uv, then the sequence

U-- A/uA --* 00 A/vA A/xA
is exact. Hence [A/xA] [A/uA] + [AlvA]. Since A is a UFD we may
factor x and y into irreducible elements, say x pl p, y q q,.
Hence

[A/xA] [A/yA] [A/pA] [A/qA].

But this element is in D(A). Hence

K() D(A ), so K(/3) DI(A

therefore W2(A) 0.

5. The mapping principle
Let B be an A-algebra which is flat as an A-module, nd which is Noethe-

rian. We show that under these hypotheses there are natural homomorphisms
W(A) -- W(B) and when A and B are locally Macaulay C(A) -+ C(B)
for all i, 0 _< i _< dim A.
The groups C can be treated as follows. Let be a prime ideal of A of

height i. Since A is locally Macaulay, there is an A-sequence x, x
such that is a minimal prime ideal associated with I _- x- A. Then
each prime ideal associated with oB will be an associated prime ideal of
IB [2, Chap. IV, 2, n 6, Thin. 2], and so ht i (x, x is also a
B-sequence since B is fiat as an A-module). To each element
of D(A assign the element

__
n I(B/oB) () of D(B).

If a relation in R(A) goes to a relation in R(B), this homomorphism
D(A) -. D(B) induces the desired homomorphism C(A -+ C(B). This
we now check.

TEOnEM 5.1. The homomorphism

D,(A D(B) (} ht v= 1,v(B/B)
induces a homomorphism C(A ---> C(B).

Proof. The discussion above shows that it is sufficient to prove that R(A)
is mapped into R(B). Let x, ..., x be an A-sequence of length i and
consider the relation = la(A/I) () where I .__1 x. A. Applying
the homomorphism we obtain the element

of D(B). Using the Theorem of Transition [8, 19.1] applied to A nd
[8, 19.2] we obtain
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and so our element is ht- ls(B/IB) ( which is in R(B) since
xl, x is a B-sequence.
To treat the groups W, let 9TA(A) and 9Z 9T(B) for each i.

If M ei then B (R)a M e 9Z [2, Chap. II, 4, n 4, Prop. 18]. We therefore
have a commutative diagram of categories

induced by the functor B (R) a -. Since B is a fiat A-module, there is induced
a commutative diagram of Grothendieck groups

K vl,/,) K ,_,I+)

Since W,i(A) Im f, the desired homomorphism is

e: ImfImg W(B).

Summarizing, we obtain the following

THEOREM 5.2. If B is a noetherian A-algebra which is fiat as an A-module
then there is a homomorphism W(A) W(B) obtained by sending [M] to
[B (R)A M].

In the next two sections we apply these homomorphisms to the cases
B As, S a multiplicatively closed subset of A, and B A IX], and obtain
more precise information.

6. From A to As
Throughout this section, S denotes a multiplicatively closed subset of A.

Let B As. The homomorphism D(A) -- D(As) given in Section 5
can be described as follows. Let be a prime ideal of A of height i. Then

Since oB B if n S 0 or if oB , this element becomes (oB)if
n S i and 0 otherwise.
To obtain further information, the next lemma is required.

LEMMA 6.1. Let S be a multiplicatively closed subset of A. If yl

is an As-sequence, then there is an A-sequence x x such that

Proof. It is sufficient, by induction, to treat the case i 1. Let
(0) q n q, be an irredundant representation of (0) as the intersection
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of primary ideals of A. Let be the radical of q, i 1, ..., s. Since
A is locally Macaulay, ht 0 for each i. Assume that Pl, k meet
S, while k+l, do not meet S. It may be assumed (multiplyiag by an
element of S if necessary) that

y yen n.
Choosew qk+l n n q, U__ . Set x y + w. Thenx for
1 _< i

_
s, and since wA

Remark. We are indebted to the referee for the above proof which repre-
sents a substantial simplification of the original argument.

The content of this lemma is that every element of R(As) comes from an
element of R(A). This yields the following as corollaries.

THEOREM 6.2. (cf. [2, Chap. VII, 1, n 10, Prop. 17]). Let S be a multi-
plicatively closed subset of A. Then for each i >_ O, there is an epimorphism

C,(A C,(As)

deduced from () -- 0 if S and () -- (As) if n S . The kernel
is generated by the set {cl

COOLLnV 6.3. (cf. [10, Lemma 1.7]). If S implies that cl()) 0
for all prime ideals of A of height i, then the epimorphism

C,(A C,(As)
is an isomorphism.

COROLLARY 6.4. If C(As) O, then C(A) is generated by the set {cl(O)}
where ht o i and O n S O.
PROPOSITO 6.5. There is an epimorphism

deduced from
Proof. Clearly D(A) is isomorphic to I- D(A) under the assign-

ment () --* (DA). All that needs to be remarked is that if x, x is an
A-sequence of length i, then xl, x is an A,-sequence of length i.
We now treat the groups W.
THEOnEM 6.5. Let S be a multiplicatively closed subset of A. The homo-

morphism W(A ---. W(As) of Section 5 is an epimorphism. The kernel is
generated by the [A/?] in K(_/+) where ? ranges over the prime ideals
of A of height i with

Proof. As in Section 5, let (A) and 9 (B). The functor
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is onto the objects, for glZi(As) is equivalent to i)r6(A)/a:i, where denotes
the Serre subcategory of r(A) consisting of those N e 9]Zi with Ns 0.
Thus we get induced functors glZ/gT. --+ 9L/gZ which are onto the objects.

Hence the commutative diagram

K (,/,+) -, K (-/+)

K (/+) -, Ko(_/+)

0 0

has exact columns. If z W(As) then there is a d’ K(gZ/OZ+I) whose
image is z. Let d K(/9Z+I) be a preimage of d’ and x the image of d
in K(gTi-1/i)T+l). Then z is the image of x.
To compute the kernel note that if n S O, then As (R). A/ 0 so

[A/] is in the kernel. On the other hand, if x W(A)is in the kernel,
then there is a y e K(/+I) whose image is x. But y is the sum of the
requisite classes, so also is x.

COROLLARY 6.6. Let A and S be as in Theorem 6.5. If S 0 implies
[A/7] 0 in W(A for each prime ideal 7 of A of height i, then the epimor-
phism W(A -- W(As) is an isomorphism.

COROLLARX 6.7. If Wi(As) O, then W(A) is generated by [A/] as
runs through the set of prime ideals of A of height i which meet S.

PROPOSITION 6.8. The morphisms W(A) -+ W(A), ht 7 i, induce
an epimorphism W(A ---> IIh, .- W(A).

Proof. Let M e 9T6. Then M 0 for almost all prime ideals of A
with ht i. Hence W(A) --+ IIt--- Wi(A) has its image in

II= W(A). The fact that the homomorphism is onto follows easily.

7. From A to A [X]
Since A[X] is a fiat A-module we apply the considerations of Section 5 to

obtain homomorphisms C(A) --+ C(A[X]) which sends cl () to cl (oA[X])
if is a prime ideal of A of height i.
Our first result shows that, under a mild assumption satisfied for instance

by all regular rings, these homomorphisms are onto.

PROPOSITION 7.1.
that Ci_I(A,) O.

Assume for each prime ideal of height i 1 of A,
Then C(A -- C(A[X]) is an epimorphism.

Proof. It must be shown that C(A[X]) is generated by the set {cl (0A[X])}
where ranges over the prime ideals of A of height i.

Let be a prime ideal of AIX] with ht i. If ht ( A) i, then
(? A)A [X], so this case is trivial.

Otherwiseht (A) i- 1;setO aA. Lety, ...,y_bean
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A-sequence and choose an A-sequence xl, ..., x_l such that

x-A yA.
Let

I xA qnqln nqr

be an irredundant decomposition of I into primary ideals where is the radical
of q and is the radical of q 1 _< j _< r. Let

v qn nq..

Let S be the complement in A of the set (J (J U . Choose
e and e in As such that e and e map onto (0, 1) and (1, 0) respectively
in the ring As/IAs As/qAs $ As/rAs. Then e ills, i 1, 2, for
some f e A, s e S.
Note that ?A,[X]/oA[X] is generated by a monic polynomial h in

A/oA[X]. Since As/oAs A/oA, g’ monic may be chosen in As[X]
such that the image of g’ in As/oAs[X] is h. Write g’ g/t for some g A[X],
tS.
A straightforward check shows that

Xl Xi-1, fl "" f2 g

is an A[X]-sequence. Let I’ be the ideal in AIX] generated by this sequence.
If ![9 is a prime ideal of A[X], ht ! i, such that !

_
Ir, then f2 e !,

since fl f2 e q n : I. But f2 is in no , i 1, r, so we have ! n A
implies ht (! n A) i (cf. [3, proof of Prop. 7-1]).
One sees that if I n1 n n is the irredundant decomposition

of I into primary ideals in A[X], where Iv, then each prime ideal
associated with is an extension of a prime ideal of height i of A. Let

be the radical of. Then our A[X]-sequence gives the element

I(A[X]/I) (} + /__,: l(A[X]/)(?)
in R(A[X]). Since I(A[X]/I) I(A/IA), the hypothesis on C_(A)
yields the proposition.

COROLLARY 7.2. Let dimA n < . Suppose C,(A) O for each
prime ideal of height n. Then C,+(A[X]) 0.

TheOREM 7.3. (Cf. [2, Chap. VII, 3, n 5, Cot. to Theorem. 2]). C.(A) 0
implies C. A [X]) 0.

Remark. Theorem 7.3 does not hold or power series adjunction as Sam-
uel’s exumple in [10] shows.

COROLLAnV 7.4. If F is a field then C.(F[XI X]) 0.

It is known from the theory of Krull domains that CI(A) -- C(A[X])
is an isomorphism when A is a Krull domain [2, 1, n 10, Prop. 18]. Although
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we have not been able to prove the complete analogue of this result for the
groups C we do have the following:

TIEOE 7.5. Let A contain on infinite field K.
C(A) -- C(AIX]) is a monomorphism.

Then the homomorphism

Proof. It must be shown that if an element of Di(A[X]) of the form
’=1 nj (. A[X]), where each is a prime ideal of A with ht i, is in
R,(A[X]), then n. () is in Ri(A).

Let fl, ..., fi, k 1, ..., m, be the A[X]- sequences which, when
multiplied by suitable integer coefficients, yield the relation n ( AIX]).
Using the fact that X k and X X’ are relatively prime if
we see that for all but a finite number of elements k of K, both f, fik,
X k and X k, fk, fik are A[X]-sequences. For it is no trouble to
choose X k such that the first is an A[X]-sequence, since no two X
can be in the same associated prime ideal of f AIX]. Suppose that k has
been chosen so that X k, fk, f, < i, is an A[X]-sequence. If,
for any infinite number of k,

7’+AIX] (X k)A[Z] -t- z_,’-I f AIX]

and f+. is in some associated prime ideal of (X X)A [X] + ’=lf A[X],
then f+l, is in an infinite number of prime ideals of height - 1 which
contain the elements f, f. That is, f+l, is in the radical of the
ideal .= f A[X] which contradicts the assumption that f, fi is an
A [X]-sequence.
Now let be a prime ideal of A[X] of height i containing I }=if A[X]

for some k, 1 _< k _< m. If is of the form oA[X] where ht i, a prime
ideal of A then - (Z- X)A[X]

is a prime ideal of height i -t- 1 containing J I + (X X)A [X]. Now
by the associative law for multiplicities [8], we huve

() l(A[X]a/Ja) __l(A[Z]/I)l(A[Z]a/(a + (Z )A[Z]a)).

At this point we restrict yet further so that if ht 9 i and 9 I but
is not an extended ideal then

_
+ (X ) AIX].

Were this not possible, we would get

9 c_ I’lx -t- (X x) A[X] ,
where the intersection extends over any infinite subset of K. Therefore, with
the exception of a finite number of , 9 ? + X ) A[X]. With this
last restriction (a) becomes

(b) l(A[Xla/Ja) l(A[X]/Ix).

Finally we can show that the A-sequences f(X), ..., f(X) multiplied
by the same coefficients as f, ..., fk gives the original relation. For let
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) be a prime ideal of A, ht p i. If p is a , 1 _< j _< s, then

l(A,/ ...f,(X)A,) l(A[Z]a/Ja) l(A[Z]:/I**,,)

by (b). ( oA[X]- (X- X)A[X].)
If is no ., then

l(A/ fjk()A) l(A[X]a/Ja)

qa,ht q-, l(A[Z]q/I,)l(A[Z]a/(q.a + (X X)A[X])).

When the coefficients are multiplied and we sum, by assumption, the
contribution from non-extended prime ideals will cancel, while for extended
rime ideals q oA[X] + (X X)A[X], the contribution is__

I(A[X]/I,).
Since I q implies a zero contribution, we again get that the sum over the

extended q A[X], 1 <_ j <_ s is zero, hence the result.

COROLLARY 7.6.
C,(A O.

If A contains an infinite field, then Ci(A[X]) 0 implies

Remark. Both in the proof of Theorem 7.5 above and in the proof below
of the corresponding fact for the groups W it would be sufficient to assume
that A/m is infinite for every maximal ideal m of A.

We now treat the properties of the homomorphism Wi(A) W(A[X]).

THEOREM 7.7.
for each i.

The homomorphism W(A W(AIX]) is an epimorphism

Proof. Recall that the homomorphism W(A) W(A[X]) is given by
[A/o] -- [A [X]/oA [X]] where ht i. We need to show that the image of
this homomorphism is all of W(A[X]).

Let be a prime ideal of A IX], ht i. If ht ( n A) i,
then ( r A)A[X], so [A[X]/?] is an image. Therefore we may con-
cern ourselves with those prime ideals 3 of A[X] with ht (3 A) i 1.

Let 3 A. The ideal 3/oA[X] is principal and non-zero in
A,[X]/oA[X]. Let f A[X] be such that its image in A[X]/oA[X] generates
?/oA[X]. Let pA[X] - fA[Z].

Let n r n n a be an irredundant decompo-
sition of a into primary ideals where (resp., ) has radical (resp., j) and such thatht iandht II: > i. Then 3andeach

oA[X]whereO jnA. For ifhto < i, theno . Hence
() 3 since both contain f. Hence

3 (3) n A[X] 3 n A[X]
a contradiction.
In K(i_(A[X])/+x(A[X]) ),

[A[XI/a] [A[XI/A[XI + SA[XI] [A[XI/A[X]] [A[XI/oA[X]] 0
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since the sequence

0 A[X]/A[X]/.Z, A[X]/A[X] A[X]/a 0

is exact. But also [A[X]/a] [A[X]/3] + --1 [A[X]/], so

[A[X]/3] ;= [A[X]/].

In K(,(A[X])/O,+(A[X]) ),

[A[X]/] l( (A[X]/))[A[X]/ A[X]].

By combining these lst two equations we get the result.

Remark. If dim A n < oo, then W,+(A[X]) 0.

COOLLA 7.8. W.(A 0 implies Wo(A[X]) O.

COrOlLArY 7.9. W.(F[X X,]) 0 where F is afield.
We en lso prove the nlogue of Theorem 7.5 for the group W(A).

ThEOrEM 7.10. If A contains an infinite field, then the epimorphism
W(A --* W(A[X] is an isomorphism.

Proof. For simplicity, let MIX] AIX] (R) a M for n A-module M.
Suppose M, N in 9(A) re such that [M[X]] [N[X]] in W(A[X]).

By Lemm 2.1 of [6], there re objects U, V, W in _(A[X])/+(A[X])
nd homomorphisms such that

0"-+ U --+ MIX] @ W ---> V --->0
nd

0 -- U .--+ N[X] @ W --+ V -- 0

re exact. Since A contains an infinite field, K, there is an elementf X X,
X e K which is outside of all the associated prime ideals of U, W and V. Hence,
the obiects U/fU, W/fW nd V/fV are in r_(A)/cr+(A). Further-
more, by the serpent lemma [2, Chap. I, 1, n 4, Prop. 2], the sequence

0 U/fU ---. M @ (W/fW) --> V/fV 0
is exact since

Ker (V - V)
is zero. Likewise

0 U/fU ---+ N @ (W/fW) ---+ V/fV 0

is exact. Hence [M] [N] in W(A).

COaOLLAV 7.11. If A contains an infinite field, then W(A[X]) 0
implies W(A O.

8. From A/I to A
Throughout this section A denotes locally 1Vieuly ring. Under

certain circumstances, if I is n ideal of A of height/ there is homomorphism
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C(A/I) -- C+k(A). The following proposition is an instance of this

])ROIOSITION 8.1. Let I be an ideal generated by an A-sequence xl xk

of length k. Then there is a homomorphism C(A/I) -, C+(A ).

Proof. First we define a homomorphism D(A/I) -- D+.(A) by the
assignment (/I} -- (} for a prime ideal of A of height i + ] containing
I. This homomorphism is onto the subgroup of D+,(A) generated by the
prime ideals which contain I. Since (for ?/I)

l(A/r),((A/I)/ -- xj+(A/I)) 1.(A/ + xj A),

it is clear that relations go to relations.
From the descriptions of the homomorphisms in Proposition 8.1 and the

results of Section 5 we obtain the following results which are useful for com-
putational purposes.

PROeOSTON 8.2. Let u be an A-sequence. Then

Ci(A/uA C+(A ---. C,+l(A[u-]) 0
is exact.

COOLLRY 8.3. (a) If C(A/uA O, then

C+(A -- C,+(A[u-]).
(b) If C/I(A [u-]) O, then C+(A is generated by the set

{cl()lue, ht i- 1}.

COROLLARY 8.4. Ci(A 0 implies C+(A[X]) -- C+ (IX, X-]).
COROLLhnV 8.5. If A contains an infinite field and C(A O, then

C+(A -- C,+(A[X, /-1]).
As for the groups W, i > 0, we have the following:

PnOPOSTON 8.6. If I is an unmixed ideal of A of height ], then there is a
homomorphism W(A/I) -- W+(A induced by considering each A/I-module
as an A-module. The image is generated by the set

{[A/o]:hto =iW], IC__O}.

Proof. Let B A/I. The functor gotten from considering each B-
module as an A-module induces functors

9, ,(B) --+ +k(A) ,
for each i. These in turn induce group homomorphisms making the following
diagram commutative:

K 9/9,+ .---> K 9_/9+

K(9+/+,+) -- K(_,+/ji+,+).
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As in such previous situations, e induces the desired homomorphism.
The following corollaries, direct analogues of the corollaries of Proposition

8.1, are listed here for the convenience of the reader.

COOLLRY 8.7. Let u be an A-sequence. Then the sequence

W,(A/uA -- W+(A -- W+(A[u-]) -- 0
is exact.

COROLLARY 8.8. Let u be an A-sequence.

(a) If W,(A/uA O, then W+(A " W+(A[u-])
(b) If W+(A[u-]) O, then W+(A is generated by the set

{[A/]:ht i+ 1, up}.

COnOLLAnY 8.9. (a) W(A) 0 implies

W+I(A[X]) -- W,+I(A[X, X-l]).
(b) If A contains an infinite field, then Wi(A 0 implies

W,+(A W+(A[X, X-l]).

9. Miscellaneous results

THEOREM 9.1. If F is afield, then C.(F[[X1, Xn]]) 0.

Proof. Let be a prime ideal of R F[[X, Xn]] with ht 3 i.
Let f, fw be a set which generates . We can find an automorphism
a of R so that each f, f is a polynomial in X, i.e., har a set of
generators in F[[X, ..., X_I]][X].
So assume that is a prime ideal of height i in R which has a generating

set in R,_[X]. Set n R,_I[X,]. Then 3 oRs. Assuming, by
induction, that C.(Rn_) 0, it follows that C.(Rn_[Xn]) O. Setting
A R,_[X,], B R,, the situation can be summarized as follows. is a
prime ideal of B, n A is such that oB (it is easy to check that
ht ht , since B is a flat A-module) and cl () 0. Then under the
homomorphism C(A) C(B) of Theorem 5.1, cl () -- cl (3). There-
fore cl () 0, so we are finished.

PnOOSITION 9.2. If A is a complete discrete rank one valuation ring, then
Co(A[[X, ..., Z]]) 0.

Proof. Let r denote a generator of the maximal ideal of A, and let
be a prime ideal of height i in B A[[X, X]]. If r e 3, then ?/rB
is a prime ideal of height i 1 in A/A[[X, X]], so cl () 0 by
the previous theorem. Otherwise let fl, ..., f generate . Since ,
we may assume that no f is in vB. Applying the Theorem of Preparation i
the form given in [2, Chap. 7, 3, n 9, Prop. 6], one sees that it is again
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possible to choose a set of generators for lying in A[[X1,
The proof now concludes as in Theorem 9.1.

x._,ll[X].

COROLLARY 9.3. If A is a field or a complete discrete rank one valuation
ring, then W.(A[[X1, Xn]]) 0.

]ROPOSITION 9.4.
re(l), .-., re(k).

Let A be a semi-local ring with maximal ideals
Assume ht re(j) n. Then C(A) . ’=x C,(Am()).

Proof. By Proposition 6.5, there is an epimorphism
kC,(A) -- @= C,(Am()).

To see that it is one-to-one, let y, yn be an A (.) seqaaence for some j.
Let xl, xn be an A-sequence such that k-- xk Am(.) =1 y A().
SetI xA. ChoosezeAsuchthat

z,---- x, (mod m(j)I(.) hA) and z, 1 (mod re(k)), k j

by the Chinese Remainder Theorem. It is easy to see that xx, xn_, z,
is an A-sequence which yields the relation l(A m()/I,,()) (re(j)) in D,(A).

PROPOSITION 9.5. Suppose that A, is regular for every prime ideal of
A, ht k. Then if (1), O(r) are prime ideals of height ] of A and
nx n are non-negative integers, then there is an A-sequence xa x
such that

l(A()/ x A()) n for i 1,2, r.

Proof. It is clear that for each i such that 1 _< i _< r, there is an A-se-
quence x, xk such that

l(A(,)/ _,= x, A(,))

Set I =1 x. A. Let S be the complement in A of
and in the semi-local ring As choose an As-sequence yx, y such that

y---x (mod(o(i)I)()nAs) for i 1, ...,r.

Then an A-sequence x, x such that’ x As x As satisfies the
requirements of the proposition.

PROPOSITION 9.6. Let A and B be ane rings over a field It. Suppose that
A is regular and C.(K (R) B) 0 for any field extension K of k. Then there
is an epimorphism

C.(A C.(A (R) B)

induced by () ( (R) B)for a prime ideal of A.

Proof. (R) means @ throughout this proof.
Note that the hypothesis C.(K (R) B) 0 implies, in particular, that
(R) B is a prime ideal of A (R) B for each prime ideal of A.
Now let be a prime ideal of height i of A (R) B; we will proceed, by in-
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duction on k i ht ( n A), to show that cl (9) is in the subgroup gen-
erated by {el ( (R) B)} whereht i, a prime ideal of A. If k 0,
there is nothing to prove, and the induction is on its way.
Assume now that ht j < i, where n A. Choose an A-sequence

xl, x such that x A oA (this is possible since A is regular).
LetI xA nrwhereOl, ..., are the prime ideals of height
j of A containing r. Let S (resp. T) be the complement of

(resp.,OuOlu... uOv) in A.

Since A r/Ir At/or A/r,r, let el and e2 denote elements of A r which
map onto (0, 1) and 1, 0) respectively. Let e f/t for suitable

fiA, tT.

Consider the ring As (R) B. Since n A , extends to a prime ideal

’ in As (R) B, and the image, t, of ’ in

(As (R) B)/(Is (R) B) (As/Is) (R) B (A/p)s (R) B

is such that cl (t,) 0(since(A/o)sisafield). Thusthereare((A/I) (R) B)s-
sequences yi+l, y,, which (when multiplied by suitable coeffi-
cients) display the fact that cl (") 0. Choose A/I (R) B-sequences
z.+.,, z., which generate the same ideal as the corresponding se-
quences of y’s at S and let z+,, z. be preimages in A (R) B. By the
construction x, x, zi+., z. is an A (R) B-sequence for each m.
We now show that x, x, z.+l,, f + f2zi, is an Ar (R) B se-

quence. It is only necessary to show that if !, say, is a prime ideal of height
i 1 of A r (R) B which contains the first i 1 terms of this sequence, then
f fz q !. Suppose the contrary. Sincef e I

_
!, and z !, by

assumption, we see that both f and fie !. But !

_
or ! for some

n 1, 2, v and we get ! I’l A or ! A for some n. But then
!(Ar (R) B) Ar (R) B, a contradiction.

Finally, starting at the (j + 1) th element, choose an A (R) B-sequence
x, x., x.+l,, x which generates the same ideal in A r (R) B as
does the sequence x,..., x., z.+,,..., z for each m. By reasoning
similar to the above, it is seen that if is a prime ideal of A (R) B, ht i,
and contains {x, xi}, then n A or ht n A > j.

It is now a straightforward exercise to show that the element of D(A (R) B)
obtained from the last sequences with the same coefficients is

and the induction hypothesis finishes the proof.

Remark. In the following section this result will enable us to conclude that
(for example) C.(B:+ (R)c B+) 0 where B denotes the affine coordinate
ring of the complex n-sphere.
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PROPOSITION 9.7. Let A be a one-dimensional domain such that the integral
closure A of A in the field of quotients of A is a finitely generated A-module.
Then C1(A is finitely generated over a homomorphic image of CI(Ar). In par-
ticular, if A is a principal ideal domain, then CI(A is finitely generated.

Proof. A’ is a Dedekind domain. If denotes the conductor of A’ over A,
then # (0) and A is integrally closed if and only if [. Let , 0k
be the prime ideals of A contMning and choose 0 # x in 0k. Then
everything follows from the exact sequence

Co(A/xA ---. C(A C(A[x-I]) -- 0

by noting that A[x-1] At[x-l].
Remark. If A has only one prime ideal such that A is not integrally

closed and C(A) 0 then C1(A) C(A). For example

C(Z[/ -3]) Z/2Z and C(R[x, y]) Z/2Z (x + y 0).

10. I:xtmples
First we. give an example of a domain A such that C2(A) # W2(A). (Note

that since A is a domain, CI(A) W(A).) Let B Z[v/-3],
B’ Z[1/2(1 + /--3)]. Set A B[X]. The integral closure of A in
Q(/-3)(X) is B’[X] A’. Let m be the ideal of A generated by
2, 1 +/ 3, X} and t the ideal of A’ generated by 1/2 1 +x/-3), X}. It

is clear that n is the only maximal ideal of A’ lying over m and also that
[A’/n A/m] 2. We know from Theorem 7.7, that W2(A O.

PROPOSITION 10.1. C(A) # O. In fact C.(A,) O.

Proof. Applying formula 8 of [12, p. 299], we obtain the equation

[A: A,]e(f fi. A) [A:/nA: A,/mA,.]e(f
where f, fi is an A-sequence. That is e.(f,
which establishes the assertion.

Remark. This establishes, by the way, that C(A) # 0. From the remark
in Section 9 above we can conclude that C(A) --- Z/2Z.

Let now An denote the coordinate ring of the real affine n-sphere; i.e.

An R[X0,XI, ,Xn]/(X + X + + X 1) R[x0,x, "",

We proceed to compute C.(An) for n 1, 2, 3.

PROeOSlTIOI 10.2. For any n, Cn(An) Z/2Z.

Proof. Let m be the maximal ideal generated by x0 1, x, x, x. of
An. It will be shown that cl (m) # 0, while 2 cl (m) 0. The latter fol-
lows immediately by noticing that
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q (x0- 1)An -t- xlA - -t- xn_IAn

is primary of length 2 for m.
Suppose f, f is an An-sequence and let F1, rk be the irreducible

curves defined by fl 0,... ,fn 0 in real affine n-t-1 space. Let
F, Fk be the closures of I’, Fk in real projective n W 1 space.
Consider the intersection of I’, say, with the projective closure of the n
sphere in complex projective n - 1 space. There will be an even number of
intersections (properly counted). The complex points fall into conjugate
pairs; therefore there are an even number of real points of intersection (prop-
erly counted) and all of these lie in the finite part of n W 1 space since the
n-sphere is bounded for real points.
The upshot is that in the relation going with the A-sequence f, fn,

the sum of the coefficients on the maximal ideals m’ such that Anita’ is R is
divisible by 2. This demonstrates that cl (m) 0.
We conclude by showing that cl (m) generates Cn(A,). Clearly if m’ is

another maximal ideal such that An -- R, then cl (m) -t- cl (mt) 0. If
n is a maximal ideal such that An/n _-- C then let be the residue of x modulo, and note that the equations of the line joining (s0, a) to (50, &)
form an An-sequence displaying the relation cl (n) 0.

PIOPOSITION 10.3. (i) C(AI) Z/2Z. (ii) C(A2) O, C2(A2) Z/2Z.
(iii) C(A) O, C(A) O, Ca(A) Z/2Z.

Proof. Since An is a UFD for n >_ 2, the only group remaining to be found
is C(A).

Consider

A[T, T-] R[Xo x x x T, T-] R[y0, y, y, ya, T, T-1] B,
say, where y - y -t- y-[- y T 0. Setting U T- y0, and
V T - y0, we canwrite this last relation as

Y -t- Y Y UV.
We have the exact sequence C(B/UB) -- C(B) -- C(B[U-]) -, O. Now

B/UB R[y y y V T-]
where y + y + y 0; but

C(R[y, y, ya]) 0

[11, p. 36, example 3], so we get C(B/UB) O, hence C(B) _. C(B[U-]).
But

B[U-] R[yl y:, ya, U, U-, T-]
where y, y, y, U are Mgebraically independent over R. Therefore
C.(B[U-]) O, so C2(B) O. Since

C:(B) C.(A[T, T-])
_

C.(Aa)
by Corollary 8.5, we are done.
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Considering A3, we have 0 CI(A3) C2(A), while C(A) Z/2Z.
This gives at once that 0 Wo(A3) WI(A) W2(A) and W(A) Z/2Z
by Proposition 3.2. We now note that Proposition 4.4 is best possible/by
sketching a proof of the fact that K()0(A)

_
Z. Recall that it suffices to

show that if [A3/m] is the class of the A-module A/m in K(0), then
[A3/m] 0.
To show this it is sufficient to take a projective resolution of A/m. If one

can be found with all the projectives free, then [As/m] 0 as a rank count will
show.
Now the homological dimension of A/m is 3, and a free resolution of Aim is

0 ---+ A’ LA
_
A Y_ A _L> A/m --> O,

where the homomorphisms are to be given, e is the augmentation.

p(a, b, c, d) ax b x. c x + d(xo 1).

p.(a, b, c, d, e,f, g) (-ax2 bx C(Xo 1) + gx,

ax dx e(xo 1) + gx.,

bx + dx. -f(xo 1) + gx,

p is the injection of the kernel of p2 into A, so we must show that the ker-
nel is free. It is projective and has rank 4, so any 4 elements which generate
it will be a basis. A straightforward calculation shows that Ker p is gener-
ated by the eight vectors

v (x, 0, 0, -xa, -x0 1, 0, x)

v (0, x0 1, -x, 0, 0, x, 0)

v3 (0, x, 0, x, 0, --Xo 1, x)

v (--Xo + 1, 0, x2,0, --x, 0, 0)

v (x, -x., 0, x, 0, 0, 0)

V6 (0, 0, Xl 0, X2, X3, X0 1)

v (x., x, Xo + 1, 0, 0, 0, --xl)

vs= (0,0,0, Xo-- 1,--x,x,0).

Now lete v v.,e va - v,e3 v - v,e v-vs. Then
e, e2, ea, e generate Ker p. For

2v (Xo 1)el - x e x ea -t- xa e,

-2va x el (xo - 1)e - x e3 - x. e,

2v x. e - x e. + (xo 1)ea Xl e4
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and

Hence the other v. may be obtained as well.
Let Bn denote the affine coordinate rng of the complex n-sphere, i.e.,

Bn C[X0, X, X,]/(X -.[- ....-[- X 1) C[x0, x].

We compute C.(B,) for all n (the results of the computations show that
W.(B,) C.(B,) ).

PROPOSITION 10.4. Let F be a field such that i w/- 1 F and the char-
acteristic of F is not 2. Let D, F[xo, x,] where x 1. If n is
odd, then C. D, O.

Proof. Let n 2k + 1. We go by induction on /c. If k 0, then
D, F[xo xx] with x -i- x 1. Setu xo + ix v xo ix to trans-
form D, into Flu, v] where uv 1. Thus

C(D,) C(f[u, u-]) 0.

Suppose C.(D_) 0 for k 1. D+, by change of variable, can
be transformed into

A F[yo, ya, y, y.+]

where y0 y -k- -k- y y+ 1. Consider the exact sequence

C.(A/yo A) C.+(A C.+(A[y]) O.
We have

A/yo A -- F[y y ya y y+]

where y. ya -[- -t- y y.+ 1, so

A/yo A " D_[y],

hence C.(A/yo A) 0 by induction. Furthermore

A[y] F[y, yo, y, ya, y.,, y:+x]

where y0, y, y+a ure algebraically independent over F, so
C.+(A[y-]) 0 also. Co(A) 0 since A is domain. Hence C.(A) O.

PROPOSITION 10.5. Let n be even, say n 2k. Then C,(B,) 0 for
i k, while C(B.)

_
Z.

Proof. For k 0, B0 C[x0], x 1. Thus B0 C @ C, so Co(Bo)
_

Z.

Now consider B: for k > 0. By the usuul change of variable, transform
B into A C[y0, ya, y,] where y -t- y y. -t- -t- y:,-a y., 1. Using
the exact sequence

C(A/yA C+x(A ---. C,+(A[y-] 0
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[Yl ]) 0, so we havewe compute, as above, that C+I(A -1

C,(A/y A) ---+ C,+(A O,

exact. But A/yA -- D2k_[y2]. Hence if i k 1, C+(A) 0 since
C(D2k_) O. Also we know that Ck(A) is a cyclic group. This yields
at once that W(B2k) 0 if i k, and Wk(B.k) Ck(B) is cyclic.
We will now establish the proposition fully (in light of Corollary 4.2) by

showing that the rational rank of K(91Z0(B)) is at least 2.
Let X denote the complex projective 2k sphere, X’ the intersection of X

with the hyperplane at infinity. Then X’ is the complex projective (2/ 1)-
sphere and X X’ is the affine 2It-sphere.
With these X’, X, X X’, apply the exact sequence

K(X’) K(X) ---, K(X X’) 0

of Grothendieck groups [1, Prop. 7, p. 115].
We know that the homomorphism A (Y) --, K(Y) has torsion kernel [5,

p. 151], where here A (Y) denotes the Chow ring of Y. Supplying the compu-
tations of [7, Theorem 1, p. 238] we find that the rational rank of K(X X’)
is indeed at least 2. Now K(X X’) K(91zo(Dk) ), so we are done.

Remark. We are indebted to K. Mount for suggestions which led to our
computations above. The referee has suggested the following theorem and
its proof. Let K(A) denote K(91Zo(A)) for i 1, 2.

THEOREM. K(B) K (B_) for k >_ 2. In particular

K(B) .. K(Bo) " Z Z k even

K(B) . K(BI) Z k odd

Proof. Let u x_l q- i xk, / x_l i x. The following sequence is
exact

KI(B) --, KI(B[u-1]) ----> K(B/uB) K(Bk) ---, g(B[u-1]) O.

As before -1 -1B[u C[X, ..., X_, X_], so

g(B[u-1]) Z and K1(Be[u-I]) __
X Z

(see Theorems 1 and 2 of H. Bass, A. Heller and R. G. Swan, The Whitehead
group of a polynomial extension, Publ. mth. I. H. E. S., n 22, Paris (1964)).

KFrom this it follows that K(B) (B/uBk). But B/uB ._ B_.[a], so
K(B) --_ K(B_.).
The calculation of K(B1) is implied by Proposition 10.4 and that of K(Bo)

is in the proof of Proposition 10.5.
The full conclusion of Proposition 10.5 now follows s above.

11. Concluding remarks
Theorem 9.2 would be quite powerful if we had the analogue of FIori’s

lemma for the groups Wwe could then conclude that W.(A 0 for every
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unramified regular local ring A. Concerning a regular local ring A, the fol-
lowing questions merit consideration.

Does W.(fl) 0 imply W.(A) 0 (fl denotes the comple-Question 11.1
tion of A ?

Question 11.2.

Question 11.3.

Is w.(A) o
Is (i 1)! W,(A) 0 (cf. [5, p. 1501)?

A generalization of Question 11.3 which the computation of W.(Aa) and the
results in [5] suggest is

Question 11.4. Suppose A is a regular ring and K(o(A)) Z.
(i- 1)! Wi(A) O?

Is

In the geometric setting, both Ci and Wi are concerned with chains--but if
we restrict A to be, say, the coordinate ring of a non-singular affine variety,
then C and W both derive from the group of cycles.
The group W(A ), where A is a regular ring, seems to be the analogue of the

z component of the Chowring (cf. [9, Theorem 10]); in general there is prob-
ably no possibility of making Wo(A) into a graded ring. Question 11.4 above
is one of many leading to an investigation of how serious the loss of the ring
structure is.
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