GENERALIZATIONS OF THE NOTION OF CLASS GROUP::?

BY
LuraEr CrLABORNT AND RoBERT Fossum

Introduction

There are currently available two equivalent descriptions for the class group
of a Noetherian integrally closed domain. The older, more direct approach,
can be summarized as follows: Let A be a Noetherian integrally closed domain
and let D denote the free abelian group with the prime ideals of A of height
one as generators. Let z % 0 be an element of A and consider the element
> bt p=1 la,(Ay/xAy)-p of D. Let R denote the subgroup of D generated by
all such elements. Then the class group of 4, C(A), is the group D/R.

The second approach will now be deseribed. Let A be a Noetherian inte-
grally closed domain. Let 9; denote the category of all finitely generated
A-modules M such that M, = 0 for all prime ideals of height less than 7. In
other words, p ¢ Supp M if and only if the height of p is at least 2. From the
exact sequence of categories

0— 9!’6;/51’62 fd mo/ﬁng g mo/fml —0

derives an exact sequence of Grothendieck groups
K°(9M/9) — K°(Mo/My) — K°(Mo/9My) — 0.
Now K°(9M,/9%;) is Z; the isomorphism is given by
M — dims(F ® 4 M)

where F is the field of quotients of A. Therefore

K (9Mo/Mz) = Z @ Im (K°(9M/9,)).
Im (K'(9M/9M:)) can be identified as the class group, C(4), of A [2, Chap. 7,
§4, n° 7, Prop. 17]. ,

In this article we generalize both these definitions to prime ideals of height
greater than 1. Generalizing from the first description a sequence of groups,
to be called C;(4) (0 < 7 < dim A), is obtained; from the second description
a sequence of groups, to be called W;(4) (0 < 7 < dim 4), is obtained.

The groups W;(A) are defined for each commutative Noetherian ring 4.

The groups C;(A) are defined for those commutative Noetherian rings 4
which are locally Macaulay.
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Following the definition of the groups C; and W, in Section 1 we give in
Section 2 an alternative treatment of the groups W;. In Section 3 conneec-
tions between the two sequences are obtained by using the alternative deserip-
tion of the W, given in Section 2.

It is convenient to discuss following Section 3 some relations between the
groups W, and the Grothendieck group of the category of finitely generated
A-modules, which we do in Section 4. In Sections 5 through 8 we consider
some ‘“functorial”’ properties which these groups enjoy. These properties
are strict analogues of those of the ordinary class group. In Section 5 we
give a general mapping principle for flat algebras over A. We use this prinei-
ple to examine the particular algebras As , where S is a multiplicatively closed
subset of 4, (Section 6) and A[X], X an indeterminant (Section 7). Section
8 contains results which connect the groups of A with groups of A/I when I
is a particularly well behaved ideal of 4.

Section 9 contains several miscellaneous results, among which is the fact
that C;(4) = 0 when A is a power series ring over a complete discrete rank
one valuation ring or a field. In Section 10 we compute the groups C; and W,
for various rings. These computations show that some results are best possi-
ble.

We close the article with a brief discussion, in Section 11, of relations of
these groups with algebraic geometry. We also pose several problems which
remain.

Several conventions need mention. A always denotes a commutative
Noetherian ring. Whenever the groups C; are being discussed we assume, as
well, that A is locally Macaulay.

Any A-module is unitary and finitely generated. The length of an A-
module M is denoted by 1,(M), and occasionally the subsecript A is omitted
when no confusion can arise. Upper and lower case p denotes, almost with-
out exception, a prime ideal in 4, and ht p denotes its height in A.

1. Definitions

Let A denote a Noetherian, locally Macaulay ring. For each ¢,
0 <7< dimA,let D; = D;(A) denote the free abelian group based on the
symbols (B) where P is a prime ideal of height 7 of A.

By an A-sequence of length 7 is meant a sequence of elements 2, , - - - , z; of
A such that

Z'}=1x,-A:xk+1A=Z’}=1xjA fOI'k"—‘O,"',’I;‘—l.

It follows that if 2, , - - - , ; is an A-sequence, then Y i.qz;A is an unmixed

ideal of A of height 7 oris A. To each A-sequence of length ¢, z;, --- , z;,
attach the element

th g=i€(®1, -+, x| Ap)(P)
in D, ; here (21, -++ , ;| Ag) denotes the multiplicity of the ideal Yz, Ay
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on the module Ay (and we take it to be zero if Ay = Y x; Ay). Since Ay
is a Macaulay ring, e(x;, - -+ , ;| Ag) is simply lA,,(Aqs/E xjAg).

Now let R; = Ri(A) denote the subgroup of D; generated by all A-sequences
of length 7. The ¢** class group of A is D;(A)/R:(A) which we denote by
Ci(A). For convenience denote [Joci Ci(4) by C.(4).

If B is a prime ideal of A of height ¢, then the image of (B) in C;(4) is de-
noted by cl(B).

As the only A-sequence of length 0 generates the 0-ideal of A, Ry consists of
the cyclic subgroup generated by 2 n¢ g0 lag(Ag)(B). This yields at once
the fact that Co(A) is torsion if and only if 0 is a primary ideal of A4, and
Co(A) = 0if and only if 4 is a domain. When A is an integrally closed do-
main, C;(A4) is the ordinary class group of A.

Suppose that A is a commutative Noetherian ring. Following the notation
of the introduction, let 9; = M;(4) be the category of finitely generated
A-modules M such that B ¢ Supp M only if ht B > 2. If

0O—-M ->M—->M —0

is an exact sequence of A-modules, then Supp M = Supp M’ U Supp M” [2
Chap. 11, §4, n° 4, Prop. 16]. Thus M is in 9%; if and only if M’ and M” are
in 9;. Hence 9M; is a Serre subecategory of 9NM; for j > ¢ (see [6] for termi-
nology).

For a cateory @, let K°(€) denote the Grothendieck group of €.

For each triple (¢ — 1, %, ¢ + 1) of integers there is a functor

Wi/ M — M/ Nia

induced from the inclusion functor 9; — N, and which in turn induces a
homomorphism

K (IMy/Miga) — K'(Mimg/Misa).

Let Wi(A) be the image of this homomorphism. In the next section we
show that in fact W;(4) is a direct summand of K°(9M;y/Miy1).

By convention set Wo(4) = (0). Let W.(4) denote Hosi W.(4).

When A is integrally closed, W1(A) = Ci(A), as remarked in the introduc-
tion.

2. Alternative description of W,(A)

If @ is a category and C is an object in @, then [C] denotes the class of C in
K'(e).

If M is in 9%; and P is a prime ideal of 4 of height ¢, then Mg has finite
length as an Ag-module.

Lemma 2.1, For each M ¢ Wi, let xi(M) = Dt 9=i lag(M3).

(a) If 0->M —->M—>M"—0 4s an exact sequence in 9IM; then
xi(M) = xi(M') + x:(M").

(b) M dsiin My #f and only if x:(M) = 0.
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Proof. (a) follows from the additivity of lg for each P. As for (b), if
M €94, then Mg = 0 for each prime ideal B of A of height 7, so x:(M) = 0.
On the other hand x:;(M) = 0 implies that l44(My) = O for each prime ideal
B, ht B = 7. Hence My = 0 for these prime ideals, so M e N,y .

CoroLLARY 2.1. Each object of MM;/M;1 is of finite length.

Proof. That x; is a length function follows directly from the lemma.

LEmmaA 2.3. Let M be a simple object in 9M;/Mir1 . Then there is a unique
prime ideal B of height © such that M = A/P in M/ My .

Proof. Since M is simple x;(M) = 1, so there is a prime ideal B of height
¢ such that l,4(Ms) = 1 and l4o(Mo) = O for all other prime ideals Q of
height 7. Hence P e Ass, M. Thus there is an exact sequence of A-modules

0—»A/P—-M-—N-—O0.
Now Ng = 0 for all prime ideals Q of height 7, 80 N € 91,41 , hence A/P — M
is an isomorphism in N/, .
Let 8; be the semisimple full subcategory of 9M;/9N;,; whose objects are
sums of the simple objects. In the terminology of [6], we know that §; is
both substantial and bisubstantial in 9,/ (see [2, Chap. IV, §1, n° 4,

Thm. 2]). Then by (9.4) and (9.5) of [6] the inclusion functor induces iso-
morphisms

K'(8:) = K'(9Mi/Miyy) and  K'(8:) = K'(9Mi/Mis1).
By (7.5) of [6], the sequence of abelian groups
K (Mia/Ms) > KO(Mi/Miga) > KO (Mia/ M) 2 K (Miy/IM;) — 0

is exact. We now proceed to deseribe these groups and the homomorphisms
in terms of A and its ideals. The group W;(A) is just Im ..

ProposITION 2.4. X, : K'(9W;/9M:y1) — D; defined by
Xi(IM]) = Zne pmi lag (M) (B)

18 an isomorphism.
Proof. We use the isomorphism
K0(8¢) E Ko(mi/mi+1).

Each object in 8; is isomorphic to an object of the form [Jue =i (4/%)"®
((A/B)" is a direct sum of n copies of A/P) where all but a finite number of
the ng are zero. Thus an element of K°(S;) can be written in the form
Eht g mg[A/PB], mg € Z, almost all mg = 0. It is clear that K°(S;) is free

on the set {[A/P] : ht B = 7}. The proposition now follows from the defini-
tion of X;.

ProposITION 2.5. K'(9N;/M:41) is ssomorphic to T1se o= (Ag/BAg)*.
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Proof. Once again we use the isomorphism established above and consider
the group K'(8:). Let S € 8; and denote by S(PB) the subobject of S which is
the sum of the simple submodules of S isomorphic to A/P. Then
S = JJut 5=s S(P) with S(PB) = (0) for almost all B. If « is an automor-
phism of S then the composite

S(B) > 85 8S— 8(P)

is zero unless B = P’ (where the end maps are the injection and projection in
the finite direct sum). If P = P’, then this homomorphism is an automor-
phism which we denote by «(P).

Hence the pair (S, @) = (J] S(B), [T «(B)), so in K'(s:),
(S, o] = ILus o=: [S(B), a(B)].

We now consider the pair (S(B), «(B)) = (T, ), where T is a direct
sum of 7 copies of A/P and 7 is an automorphism of 7. Then 7 can be con-
sidered to be a matrix (7;;) with 7;; in Homg, (4/%, A/P) which is a division
ring.

Lemma 2.6. Homg, (4/B, A/P) =2 Ag/BAs.

Remark. The referee has suggested the proof below which is shorter than
the original proof.

Proof. Let A = A/P. Then
HomSi (A7 A) = Homsme/m;“ (A’ A.) = li_I_)nHomA (M,7 A/N’)

where the limit is over those M’ (resp. N’) such that A/M’ e M1 (resp.
N’ € 9M;y1) (see page 365 of P. Gabriel, Des Categories Abeliennes, Bull. Soc.
Math. France, vol. 90(1962), pp. 323-448). Hence

Homsi (A.’ A) = E‘_I_n')i HOmA (a’ A) = Uﬁ_l i K

where @ runs through all the ideals of A and K is the field of quotients of 4.
To complete the proof of 2.5 we only remark that now one can use elemen-
tary row operations to get that [T, 7] = [A/, det 7] in K*(8;). This defines
a homomorphism
K'(8:) — Hht P=i (A$/$A$)*

which is easily checked to be an isomorphism.

We now describe the homomorphisms 8, ¢ and » in terms of the descriptions
of the groups just obtained.

Let (£3) € ][t 9=im1 (A8/BAs)*. Then the vector (&g) is the product of
its components &y, 50 we may tell what happens to each component, since
3((Zg)) = g d(Ty). Write Ty = dy/bg with ap, by e 4; both not in P.
Then

3(zg) = [A/(P + dpd)] — [A/(B + asd)]
in Ko(mi/m,‘+1).
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¢ is the canonical homomorphism induced from the inclusion of the cate-
gories.

v(M) = D nsgmict Lag(M3){P).
Because K°(9M,_;/9N;) is a free group, the epimorphism » splits to give
K (9M;_1/Mipy) = Kerv @ D;3(A) = Im o @ D;3(A) = Wi(A) @ D;4(A)

by the definition of W;(A4).

Now Im ¢ = K°(9,/9M:4)/Ker o = D,(A)/Imé. The description of
given above shows that Ker: = Imé is generated by the elements
[A/(B + zA)] where P is a prime ideal of height 7 — 1 of A and z ¢ B. This
element is just D ne omi lag (Ao/Be + z40)(Q) in Di(4).

3. Relations between C;(4) and W.(4)

The relation which is easiest to obtain is that C;(4) is a stronger invariant
than is W;(4), for each <.

ProrositioN 3.1. For each 7, 0 < ¢ < dim A, there is an epimorphism

Proof. It suffices to show that each relation r ¢ R;(A) maps to zero under
the homomorphism

K (9Mi/Mipa) — K (Mia/Mia).
Let r = D ngms lag(As/ > x; Ag)(P) where z; , - - - , z; is an A-sequence of

length 2. Then the sequence of A-modules
0> A/ 2 imiz; A—> A/ 2idia;A—A) 2jmz; A—0
is exact. So
[4/ Ziawj Al = [4/ XiGw; Al — [4/ Xihe; Al = 0
in K (Miy/Mip1).

ProrosiTioN 3.2. Suppose that C;(A) = 0 for some i. Then the epi-
morphism Ciya(A) — Wina(4) of Proposition 3.1 is an isomorphism.

Proof. Using the description of Im 6 in Section 2 one sees that to prove the
proposition it is sufficient to show that each element [A/(B + z4)] (ht P = 7,
z ¢ P) in K'(Miy1/Miye) is in the subgroup Ri1(A) of Dsi(A).

Since C;(A) = 0 there are A-sequences &y, *** , Zap 5 6 = 1, -+, m and
integers ny, - - - , Ny such that

B) = i1 e 2ont pmi Lay (Ay/ 2t i A3)p)-

Among the prime ideals p of height < which are associated with at least one of
the A-sequences above, let p;, - -+, p, contain z, while p,41, -+, p; do not
contain . Since Nj—,1p; & Uj_ p;, we can choose an element w ¢ A such
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that w € Nj—pt1 p; while w ¢ p;forj = 1,---,r. Thent = x + w is not in
any p; and the sequences zy, -+, a, t; k = 1, .-+, m are A-sequences.
We now compute the element

(a)  mame 2neamitilag(Ado/ Diazide + tAa)(Q) in Riya(4).
Apply the associativity law for multiplicities [8] to

lig(Ao/ 2z Aa + tAa) = e(@u, -+, 2, t| An) .
to obtain

e(@w, Tyt An) = Dnepmie(@u, o, Ta | Ay)e(t| Ao/pAn).
Substituting in (a) we get
(b) 2001 Dot omig1 M Do pemi Lay (Ay/ 225 @ A,)U(A/9)0/t(A/D) 0) Q).
We rearrange (b) to obtain
2ont omidt Dot pmi Dt Malay (Ay/ 20 @i Ay)I((A/0)/H(A/9)0)(Q)
= D bt 0mitt Dbt p=i Op,3 L((4/D)0/t(A/) ) (Q) (Where § is Kronecker 5)
= D nto—it1 lag(Ae/(B + tA)o) (Q)
= 2 oheomist lag (Ao/ (B + z4)s) (Q)
= [4/P + zA].
The penultimate equality follows since & ¢ P implies w € B, so
P+id =P+ (z+wd ="+ z4.
CoroLLARY 3.3. If A is a domain, then W1(A) s tsomorphic to C1(4).
CoroLLARY 3.4. C.(4) = 01 and only if A s a domain and W.(A) = 0.

In Section 10 we give an example which shows that C2(4) = W,y(4) for
a domain A.

4, Connections with K°(A)
The inclusion functor 9; — M, for j > ¢ induces a group homomorphism
@i 2 K'(M;) — K (M)
whose cokernel is K°(9M,;/9%;). For each pair (4, j), 1 < 7, let Gij(4) = Gy;
denote the image of ¢;;. Let ¢ < j, 7 < k; then gu = @i 05 , so for fixed 2,

the G;; give a filtration on the group K°(91;). Since K*(IM:/M:y1) = Di(A4)
is free, the group G; i1 is a direct summand of K°(9;).

ProprosiTION 4.1. Let © be an integer, 0 < ¢ < dim 4.
(a) Gii/Giipn = Dy(4).
(b) Foreachj,t < j, Gij/Gi i1 18 @ homomorphic image of W ; .
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PTOOf. Gii/Gi,i-i-l = Coker Qi il = KO(M,'/M¢+1) SO (a) fOllOWS from
Proposition 2.4.
To prove (b) consider the commutative diagram

KO(om,/o%;,.,) by

o w/
K°(amy) K@)
yﬂ @, ;+/'

K°@m/m;,.,)

1 $i-1j K'0M4,) @i
ﬁ-l,i“ %;\_\
0, 0,
L Ken.) v ()
nat, w
KMy /M141) i1 ’ KO (IM:/Mj41)

Now
Gii/Gi i = Im @i = Im @s,59 $ja,j -

But Im ¢;4,; = W;(A4), s0 &1 is the desired epimorphism.

CoROLLARY 4.2. The groups Gy; give a filtration on the Grothendieck group
of the category of finitely generated A-modules K°(9M,) whose associated graded
group s a homomorphic tmage of Do(4) @ W.(A) and hence of Do(A) @ C.(4).

CoRrOLLARY 4.3. If A is such that W.(A) = 0, and (Krull) dim A < o,
then K°(9M,) = Do(A).

Proof. Do(A) is a direct summand of K°(9,). The statement now fol-
lows from Cor. 4.2.

In Section 10 we show that when A is the coordinate ring of the real three-
sphere (A4 = R[X,, X1, X», XgJ/(X§ + XI + X3 + X3 — 1))
then K°(9(A)) = Z, but W3(A) = Z/2Z. So the converse of 4.3 does not
hold. This example also shows that the next prroposition is best possible.

ProposiTiON 4.4. Let A be an integrally closed domain with K°(9,) = Z.
Then Wi(A) = 0 and W(4) = 0.

Proof. K°(9M,) = Z implies that K°(9My/9M;) = Z for all 4, in particular
for 1 = 2. Hence Wi(A) = 0. So A is a unique factorization domain [2,
Chap. 7, §4, n° 4, Prop. 17]. We show that K°(9%) = D;. Since
K°(9M,) = Z, the homomorphism

K'(9M/M) — K°(9)
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is an epimorphism, so each element of K°(91) is of the form [4 /zA] — [4/yA]
z,y # 0in A. If x = ww, then the sequence

0— A/vA > A/zAd — AJud — 0

is exact. Hence [A/zA] = [A/ud] + [A/vA]. Since A is a UFD we may
factor # and y into irreducible elements, say ¢ = p1 ++- Dr, ¥ = @1 " s -
Hence

[A/zA] — [A/yA]l = 20 [A/pd] — 20 14/g:Al
But this element is in D;(4). Hence

K (9) = Di(4), so K'(9M/9M;) = Dy(4);
therefore W,(A) = 0.

5. The mapping principle

Let B be an A-algebra which is flat as an A-module, and which is Noethe-
rian. We show that under these hypotheses there are natural homomorphisms
Wi(A) — Wi(B) and when A and B are locally Macaulay C;(4) — Ci(B)
forall?,0 < ¢ < dim 4.

The groups C; can be treated as follows. Let p be a prime ideal of A of
height 7. Since A is locally Macaulay, there is an A-sequence z;, «-- , ;
such that p is a minimal prime ideal associated with I = D i ; A. Then
each prime ideal P associated with pB will be an associated prime ideal of
IB [2, Chap. IV, §2, n° 6, Thm. 2], and so ht P = ¢ (21, ---, z; isalso a
B-sequence since B is flat as an A-module). To each element  u; y—i 72, (b)
of D;(A) assign the element D ng g 2 nt y=i Ty Ung (Bg/pBs) (B) of Di(B).
If a relation in R;(A) goes to a relation in R;(B), this homomorphism
D;(A) — D;(B) induces the desired homomorphism C;(4) — C;(B). This
we now check.

TuroreM 5.1. The homomorphism
Di(A) — Di(B) : {p) = 2t 9=i lg(Bs/pBs) (P)
induces a homomorphism C;(A) — Ci(B).

Proof. The discussion above shows that it is sufficient to prove that R;(A4)
is mapped into Ri(B). Let x;, ---, z; be an A-sequence of length 7 and
consider the relation X ug p—s la,(A,/1,) (p) where I = > iix;A. Applying
the homomorphism we obtain the element

Dbt $mi Dot ymi Lay(44/13) Lng (Bs/pBy) (B)

of D;(B). Using the Theorem of Transition [8, 19.1] applied to 4, and Bg
[8, 19.2] we obtain

lsy(Bs/IBy) = lig(Ay/1y)lsy(Bs/vBs)



GENERALIZATIONS OF THE NOTION OF CLASS GROUP 237

and so our element is 2 n¢ g lsg(Bg/IBg) (PB) which is in R;(B) since
21, +++, ®; is a B-sequence.

To treat the groups W,, let M; = IM,;(4) and ¢, = IN,(B) for each 7.
If M e9; then B ® 4 M € 9; [2, Chap. II, §4, n° 4, Prop. 18]. We therefore
have a commutative diagram of categories

M/ M1 — Mimr/Mipa
i)

Wi/ Miya = Wit/ Tiga

induced by the functor B ® 4 —. Since B is a flat A-module, there is induced
a commutative diagram of Grothendieck groups

K (9/Mi1) —L KO(Mimy/Mig1)

J L
K (90/Fipn)—L K (Fimt/Tig1)
Since W;(A) = Im f, the desired homomorphism is
e:Imf— Img = WiB).
Summarizing, we obtain the following

TaEOREM 5.2. If B is a noetherian A-algebra which is flat as an A-module
then there s a homomorphism Wi, (A) — W;(B) obtained by sending [M] to
[B ®.4 M].

In the next two sections we apply these homomorphisms to the cases
B = Ay, S a multiplicatively closed subset of 4, and B = A[X], and obtain
more precise information.

6. From A to Ag

Throughout this section, S denotes a multiplicatively closed subset of A.
Let B = As. The homomorphism D;(4) — D;(Ag) given in Section 5
can be described as follows. Let p be a prime ideal of A of height . Then

(®) = 2 nt 9 lag(Bs/pBy) (PB).

Since pBg = Bg if pn S ## @ or if pB # P, this element becomes (pB) if
pn S = @ and 0 otherwise.
To obtain further information, the next lemma is required.

LemMma 6.1.  Let S be a multiplicatively closed subset of A. If y1, -+, yi
s an A g-sequence, then there is an A-sequence z, , - - - , &; such that

Dimrids = D iy As.

Proof. It is sufficient, by induction, to treat the case ¢ = 1. Let
(0) = q1n -+ n g, be an irredundant representation of (0) as the intersection
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of primary ideals of A. Let p; be the radical of q;, ¢ = 1, -+, s. Since
A is locally Macaulay, ht p; = O for each 7. Assume that p;, --- , p. meet
S, while 9441, - -+ , §s do not meet S. It may be assumed (multiplying by an

element of S if necessary) that
Yy = ylepln .. npk.

Choose w ¢ Gzs3 0 -+ n g — Uiyip;. Set & = y + w. Then x ¢ p; for
1 <7< s,and since wds = 0 we get 245 = yds.

Remark. We are indebted to the referee for the above proof which repre-
sents a substantial simplification of the original argument.

The content of this lemma is that every element of R;(As) comes from an
element of R;(4). This yields the following as corollaries.

TueoreM 6.2. (cf. [2, Chap. VII, §1, n° 10, Prop. 17]). Let S be a multi-
plicatively closed subset of A. Then for each © > 0, there is an epimorphism

Ci(4) — Ci(4s)

deduced from () > 04fpn S # @ and (p) — WAs) fpn S = @. The kernel
1s generated by the set {cl (p)} wherepn S = 0.

CoroLLARY 6.3. (cf. [10, Lemma 1.7]). Ifpn S = 0 implies that cl(p) = 0
for all prime ideals p of A of height 1, then the epimorphism
C.(A) g C,(A,g)
18 an isomorphism.

CoROLLARY 6.4. If C;(As) = 0, then C;(4) s generated by the set {cl(p)}
wherehtp = tandpn S = 0.

ProrosITION 6.5. There is an epimorphism
Ci(A) = JTne vmi Ci(4,)
deduced from (p) — (HA,).

Proof. Clearly D;(A) is isomorphic to ] Jns y=i Di(4,) under the assign-
ment {p) — (p4,). All that needs to be remarked is that if 2;, -+, 2;is an
A-sequence of length ¢, then a;, - -+, 2, is an A,-sequence of length <.

We now treat the groups W, .

TueorEM 6.5. Let S be a multiplicatively closed subset of A. The homo-
morphism Wi(A) — Wi(As) of Section 5 is an epimorphism. The kernel is
generated by the [A/P] in K*(Mi_a/Miy1) where P ranges over the prime ideals
of A of height i with Bn S 5~ 0.

Proof. As in Section 5, let 9; = IM;(A) and 9¢; = M(B). The functor
M;— N : M — Mg
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is onto the objects, for 9M;(A4;) is equivalent to 9M;(A)/ &K; , where X; denotes
the Serre subcategory of 9;(A) consisting of those N e 9%; with Ny = 0.

Thus we get induced functors 9N,;/NT; — 9,/ ; which are onto the objects.
Hence the commutative diagram

K (9N /Miy1) — K (IMimr/Miys)

! !
K(9/Mip1) = K(Fis/Miza)

| |
0 0

has exact columns. If z e Wi(As) then there is a d’ ¢ K* (/1) whose
image is z. Let d ¢ K°(9M;/M;41) be a preimage of d’ and z the image of d’
in Ko(mi—l/mi.l_l). Then 2 is the image of x.

To compute the kernel note that if B n S = @, then Ay ®4 A/B = 0 so
[A/P] is in the kernel. On the other hand, if x ¢ W;(A4) ‘is in the kernel,
then there is a y ¢ K°(%i/%:11) whose image is . But y is the sum of the
requisite classes, so also is z.

CoOROLLARY 6.6. Let A and S be as in Theorem 6.5. If Pn S # @ implies
[A/B] = 0in W,(A) for each prime ideal P of A of height <, then the epimor-
phism W (A) — W (Ag) is an isomorphism.

CoROLLARY 6.7. If W;(Ag) = 0, then W.,(A) s generated by [A/PB] as
B runs through the set of prime ideals of A of height © which meet S.

ProrosiTioN 6.8. The morphisms W (A) — Wi(As), ht B = 4, induce
an epimorphism Wi(A) — [Ius 9= Wi(4ds).

Proof. Let M € 9,;. Then Mg = 0 for almost all prime ideals P of 4
with ht § = 4. Hence W;(4) — Hht g—: Wi(Ag) has its image in
Hht p—: Wi(Ag). The fact that the homomorphism is onto follows easily.

7. From A to 4 [X]

Since A[X] is a flat A-module we apply the considerations of Section 5 to
obtain homomorphisms C;(4) — C.;(A[X]) which sends ¢l (p) to cl (pA[X])
if p is a prime ideal of 4 of height <.

Our first result shows that, under a mild assumption satisfied for instance
by all regular rings, these homomorphisms are onto.

ProposiTioN 7.1. Assume for each prime ideal p of height ¢ — 1 of A,
that C;_1(A,) = 0. Then C;(4) — Ci;(A[X]) is an epimorphism.

Proof. It must be shown that C;(A[X]) is generated by the set {cl (pA[X])}
where p ranges over the prime ideals of 4 of height <.

Let P be a prime ideal of A[X] with ht = . If ht (B n A) = <, then
B = (P n A)A[X], so this case is trivial.

Otherwise ht (PnAd) =7 — 1;setp = Pnd. Lety, -+, yi1 bean
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A,-sequence and choose an A-sequence ;, -+, x;,; such that

2xiAy = 2 yid,.

I = Zw,-A,,=qnq1n--~nq,

be an irredundant decomposition of I into primary ideals where p is the radical
of q and p; is the radical of q; ;1 < 7 < r. Let

Let

T=qn- - nNg.

Let S be the complement in A of the set p Up, U --- Uyp,. Choose
e; and e, in Ag such that ¢; and ¢; map onto (0, 1) and (1, 0) respectively
in the ring Ag/IAg = Ag/qAs ® Ag/tAds. Then e; = fi/s, 1 = 1, 2, for
some f; e A, s € S.

Note that PA4,[X])/pA,[X] is generated by a monic polynomial % in
A,/pA,[X]. Since Ag/pAs = A,/p4,, ¢’ monic may be chosen in A44[X]
such that the image of ¢’ in Ag/pAs[X]is h. Write g’ = g/t for some g ¢ A[X],
teS.

A straightforward check shows that

X1y * 0y Tiaa, f1+f29

is an A[X]-sequence. Let I’ be the ideal in A[X] generated by this sequence.
If W is a prime ideal of A[X], ht B = 7, such that W 2D I’, then fi e W,

sincefy freqnr=1I. Butfiisinnop;,i=1,---,r,sowehave Wn A %
implies ht (W n 4) = 7 (cf. [3, proof of Prop. 7-1]).
One sees that if I' = Q nQy n -+ - n Yy is the irredundant decomposition

of I' into primary ideals in A[X], where Qg = I s, then each prime ideal

associated with Q; is an extension of a prime ideal of height ¢ of 4. Let

PB; be the radical of Q;. Then our A[X]-sequence gives the element
UA[X]o/Ts) (B) 4+ 25 UAIX]s./Qus,) (B)

in R;(A[X]). Since l(A[X]g;/I;;) = [(4,/IA,), the hypothesis on C;;(4,)
yields the proposition.

COROLLARY 7.2. Let dim A = n < . Suppose C,(A,) = 0 for each
prime ideal p of height n. Then C,1(A[X]) = 0.

TrroreM 7.3. (cf. [2, Chap. VII, §3, n° 5, Cor. to Theorem. 2]). C.(4) =0
implies Co(A[X]) = 0.

Remark. Theorem 7.3 does not hold for power series adjunction as Sam-
uel’s example in [10] shows.

COROLLARY 7.4. If F is a field then Co(F[Xy, --- , Xa]) = 0.

It is known from the theory of Krull domains that Ci(4) — Ci(4[X])
is an isomorphism when A is a Krull domain [2, §1, n° 10, Prop. 18]. Although
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we have not been able to prove the complete analogue of this result for the
groups C; we do have the following:

TureoreM 7.5. Let A contain on infinite field K. Then the homomorphism
Ci(A) — C;(A[X]) is a monomorphism.

Proof. It must be shown that if an element of D;(A[X]) of the form
> am; (p; A[X]), where each ; is a prime ideal of A with ht p; = ¢, isin
Ri(A[X]), then > n; (p;) is in R:(4).

Let fuy +-+, fu, & = 1, -+, m, be the A[X]- sequences which, when
multiplied by suitable integer coefficients, yield the relation Y n; (p; A[X]).
Using the fact that X — A and X — \ are relatively prime if \, M e K, A 5= N,
we see that for all but a finite number of elements A of K, both fi., - -+, fa,
X —rand X — N, fix, -, fir are A[X]-sequences. For it is no trouble to
choose X — X such that the first is an A[X]-sequence, since no two X — A
can be in the same associated prime ideal of >, f A[X]. Suppose that \ has

been chosen so that X — N\, fue, -+, fu, ! < 7, is an A[X]-sequence. If,
for any infinite number of \,

AIX] # (X = NAX] + 2255 fa AIX)

and fi41,% is in some associated prime ideal of (X — N)A[X] + Dii fie A[X],
then fiy1,x is in an infinite number of prime ideals of height I 4+ 1 which
contain the elements fiz, ---, fu.. That is, fi4a, is in the radical of the
ideal >’y fix A[X] which contradicts the assumption that fy , -« - , fir is an
AlX]-sequence.

Now let B be a prime ideal of A[X] of height ¢ containing I = D iy fi A[X]
forsome k, 1 < k < m. If P is of the form pA[X] where ht p = <, p a prime
ideal of A then

Q=P+ (X —NA[X]
is a prime ideal of height ¢ 4+ 1 containing J = I 4+ (X — MNA[X]. Now
by the associative law for multiplicities [8], we have
(a) UA[Xlo/Ja) = Doms sei (A X/ In) U(A[X]o/ (Re + (X — N A[X]e)).

At this point we restrict A yet further so that if ht ® = ¢ and i D I but
is not an extended ideal then R $ B+ (X — N A[X].
Were this not possible, we would get

RS MP + (X — N AIX] =P,

where the intersection extends over any infinite subset of K. Therefore, with

the exception of a finite number of A, R $ B+ (X — N) A[X]. With this
last restriction (a) becomes

(b) WAX]o/Jo) = UA[X]yam/Tpam).

Finally we can show that the A-sequences fiz(N\), « -, fa(\) multiplied
by the same coefficients as fir, -+, fir gives the original relation. For let
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p be a prime ideal of A, htp = 4. Ifpisayp;,1 <j <s, then
WAy 25 fa(MNA,) = UAIX]e/Ta) = UAIX]am/Tyam)

by (b). (L = pA[X] + (X — NA4[X].)
If p is no p; , then

WA,/ 22 fa(N4,) = (AlX]e/Js)
= 2 aco.ns o=i LAIX]/I)U(AIX]o/ (ge + (X — MAX]0)).

When the coefficients are multiplied and we sum, by assumption, the
contribution from non-extended prime ideals will cancel, while for extended
rime ideals q C pA[X] 4+ (X — NA[X], the contribution is
%qso U(A[X]o/Io).
Since I $ g implies a zero contribution, we again get that the sum over the
extended q # p; A[X], 1 < j < sis zero, hence the result.

COROLLARY 7.6. If A contains an infinite field, then C;(A[X]) = 0 implies
C,(A) = 0.

Remark. Both in the proof of Theorem 7.5 above and in the proof below
of the corresponding fact for the groups W; it would be sufficient to assume
that 4 /m is infinite for every maximal ideal m of 4.

We now treat the properties of the homomorphism W;(4) — W;(A[X]).

TueorEM 7.7. The homomorphism W ,(4) — Wi(A[X]) s an epimorphism
for each 1.

Proof. Recall that the homomorphism W,(4) — W;(A[X]) is given by
[A/p] — [A[X]/pA[X]] where ht p = 4. We need to show that the image of
this homomorphism is all of W;(A[X]).

Let ® be a prime ideal of A[X], ht B = <. If ht (B n 4A) = 1,
then P = (B n 4)A[X], so [A[X]/P] is an image. Therefore we may con-
cern ourselves with those prime ideals B of A[X] with ht (Pn 4) =7 — 1.

Let p = B n A. The ideal PB,/p4,[X] is principal and non-zero in
A,[X1/p4,1X]. Letf e A[X] be such that its image in 4,[X]/p4,[X] generates
PBo/pA,[X]. Let a = pA[X] + FAIX).

Let a =QnQin---nQ,nS;n .- nS, be an irredundant decompo-
sition of a into primary ideals where Q (resp. Q;, &;) has radical P (resp.
B;, T,) and such that ht B; = 7z and ht T; > 7. Then O = P and each
B; = p; A[X] where p; = B n A. Forif ht p; < 7, then p; = p. Hence
(B;), = B, since both contain f. Hence

PB; = (Bi)y n A[X] = P, n A[X] = P,
a contradiction.
In K'(9M:a(A[X]) /M1 (A[X])),
[A[X]/a] = [A[X]/pA[X] + fAIX]] = [A[X]/pA[X]] — [A[X]/pA[X]] = O
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since the sequence
0 — A[X]/pA[X] L A[X]/pA[X] — A[X)/a — 0
is exact. But also [A[X]/a] = [A[X)/P] + X i [A[X]/Q], so
[AIX)/B] = — 25 [AIX)/Q]).
In K°(91:(A[X]) /9N (ALX])),
[A[X]/Q,] = I((A[X]/Q))s;)[A[X]/p; A[X]].
By combining these last two equations we get the result.
Remark. If dim A = n < o, then W,1(4[X]) = 0.
CoroLLARY 7.8. W.(A) = 0 implies W.(A[X]) = 0.
CoroLLARY 7.9. W.(F[X,, -+, X,]) = 0 where F is a field.
We can also prove the analogue of Theorem 7.5 for the group W;(4).

TaeorEM 7.10. If A contains an infinite field, then the epimorphism
Wi(A) — W, (A[X]) is an isomorphism.

Proof. For simplicity, let M[X] = A[X] ® «+ M for an A-module M.

Suppose M, N in 9M;(A) are such that [M[X]] = [N[X]] in W.(A[X]).
By Lemma 2.1 of [6], there are objects U, V, W in 9,4 (A[X])/M;1(A[X])
and homomorphisms such that

0O-U—->MXleoeW—->V-—>0

and
0—-U—-NX|eW-—->V-—->0

are exact. Since A contains an infinite field, K; there is an element f = X — A,

M e K which is outside of all the associated prime ideals of U, W and V. Hence,

the objects U/fU, W/fW and V/fV are in M;1(A)/M11(4). Further-

more, by the serpent lemma [2, Chap. I, §1, n° 4, Prop. 2], the sequence
0—-U/fU>M @ (W/fW)—>V/fV -0

is exact since

Ker (V-5 V)
is zero. Likewise

0—-U/fU—>N®® (W/fW)—>V/fV -0
is exact. Hence [M] = [N]in W;(4).

CoroLLARY 7.11. If A contains an infinite field, then W ;(A[X]) = 0
implies W;(A) = 0.
8. From A/l to A

Throughout this section A denotes a locally Macaulay ring. Under
certain circumstances, if I is an ideal of A of height k there is a homomorphism
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Ci(A/I) — Ci(4). The following proposition is an instance of this
ProrosiTion 8.1. Let I be an ideal generated by an A-sequence xy , - -+ , &
of length k. Then there is a homomorphism Ci;(A/I) — Cii(4).

Proof. First we define a homomorphism D;(4/I) — D (4) by the
assignment (B/I) — (P) for a prime ideal P of A of height ¢ + k containing
I. This homomorphism is onto the subgroup of D;,z(A) generated by the
prime ideals which contain I. Since (for p = PB/I)

Ly ((A/1)s) 2im wisa(A/1)y) = lag(A9/ 2058 7, As),

it is clear that relations go to relations.

From the descriptions of the homomorphisms in Proposition 8.1 and the
results of Section 5 we obtain the following results which are useful for com-
putational purposes.

ProrosiTiOoN 8.2. Let u be an A-sequence. Then

Ci(A/ud) — Ciza(A) = Cipa(A[u™]) — 0
18 exact.

CoroLrLARY 8.3. (a) IfC.(A/ud) = 0, then
Cin(A) = Copa(Alu™).

(b) If Cina(A[u™]) = 0, then Ciy1(A) is generated by the set

{cl (B)|ueB, htP =<+ 1}.
COROLLARY 8.4. C;(4) = 0 implies Ci1a(A[X]) = Cipy ([X, X7).
CoROLLARY 8.5. If A contains an infinite field and C;,(A) = 0, then

Cin(A) = Cia(A[X, X7Y).

As for the groups W, ¢ > 0, we have the following:

ProrosiTioN 8.6. If I is an unmized ideal of A of height k, then there is a
homomorphism Wi(A/I) — Wi (A) induced by considering each A/I-module
as an A-module. The image is generated by the set

{{d/pl thtp =s+ &, I Sy}
Proof. Let B = A/I. The functor gotten from considering each B-
module as an A-module induces functors
M = M(B) — Miyx(4) = My
for each 2. These in turn induce group homomorphisms making the following
diagram commutative:
K (90i/ig1) — K (Fi1/Misa)

e
K (Miyr/Mig1) — K° (Mg g/ M1 4k) -
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As in such previous situations, e induces the desired homomorphism.
The following corollaries, direct analogues of the corollaries of Proposition
8.1, are listed here for the convenience of the reader.

CoroLLARY 8.7. Let u be an A-sequence. Then the sequence

Wi(A/uA) — Wipn(A) = Wia(A™]) — 0
18 exact.

CoroLLARY 8.8. Let u be an A-sequence.
(a) If Wi(A/ud) = 0, then Woa(A) = Wia(Al™])
(b) If Win(A[w™) = 0, then Wi 1(A) is generated by the set
{{A/p] :htp =44+ 1, uep.
CoROLLARY 8.9. (a) W.(4) = 0 implies
Win(A[X]) = Wi (41X, X7)).
(b) If A coniains an infinite field, then W;(A) = 0 tmplies
Win(A) = Win(AIX, X7)).
9. Miscellaneous results

TuroreM 9.1. If F is a field, then Co(F[[Xy, -+ , Xall) = 0.
Proof. Let P be a prime ideal of R, = F[[X;, -+, X,]] with ht B = 4.

Let fi, -+, fu be a set which generates . We can find an automorphism
o of R, so that each f1, -+, fu is a polynomial in X, , i.e., B° har a set of
generators in F[[X;, -+, X,a]][X.].

So assume that P is a prime ideal of height ¢ in R, which has a generating
set in R,4[X.]. Set p = P n R,4[X,]. Then P = pR,.. Assuming, by
induction, that Ce(R,._;) = 0, it follows that C.(R.[X.]) = 0. Setting
A = R.,4[X,], B = R,, the situation can be summarized as follows. P is a
prime ideal of B, B n A = p is such that pB = P (it is easy to check that
ht P = ht p, since B is a flat A-module) and ¢l (p) = 0. Then under the
homomorphism C;(4) — C;(B) of Theorem 5.1, ¢l (p) — ¢l (P). There-
fore ¢l (B) = 0, so we are finished.

ProrositTioN 9.2. If A is a complete discrete rank one valuation ring, then
C.(AllXy, --+, Xa]l) = 0.

Proof. Let = denote a generator of the maximal ideal of 4, and let P
be a prime ideal of height 7 in B = A[[X;, -+, X4]l. If = ¢ P, then P/xB
is a prime ideal of height 7 — 1 in 4/7A[[X,, --+, X.]], so cl (B) = 0 by
the previous theorem. Otherwise let fi, -, fr generate P. Since = ¢ P,
we may assume that no f; is in #B. Applying the Theorem of Preparation in
the form given in [2, Chap. 7, §3, n° 9, Prop. 6], one sees that it is again
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possible to choose a set of generators for $° lying in A[[X1, -+ , Xn-all[Xal.
The proof now concludes as in Theorem 9.1,

CoroLLARY 9.3. If A ids a field or a complete discrete rank one valuation
ring, then We(A[[Xy, «--, Xa]l) = 0.

ProrosiTioN 9.4. Let A be a semi-local ring with mazimal ideals
m(1), ---, m(k). Assume ht m(j) = n. Then Co(A) = @5 Co(Ane).

Proof. By Proposition 6.5, there is an epimorphism
Cu(A) = ®fa1 Cu(Ancp)-

To see that it is one-to-one, let y1, -+, y. be an A, sequence for some j.
Let 21, --- , &, be an A-sequence such that D sy x Am = 2 b=t Yo A mii) -
Set I = Dz, A. Choose 2, ¢ A such that

Zn = T (mod M(f)Imypn n A) and 2z, = 1 (mod m(k)), k#j

by the Chinese Remainder Theorem. It is easy to see that @1, ««+ , Zu_y, 2a
is an A-sequence which yields the relation I(A wej/Imne) (m(5)) in D.(4).

ProrosiTiON 9.5. Suppose that A, is regular for every prime ideal b of
A, htp = k. Then if (1), ---, p(r) are prime ideals of height k of A and
Ny, +++, Ny are non-negative integers, then there is an A-sequence &, --- , T
such that

WApw/ 2225 Apwy) =ni for 5=1,2,---,m

Proof. It is clear that for each ¢ such that 1 < ¢ < r, there is an A-se-
quence Zi;, - , &xs such that

WAww/ Db @i Apwy) = ma.
Set I, = D 52 A. Let S be the complement in 4 of p(1) u --- u p(r)
and in the semi-local ring 4 5 choose an A s-sequence y; , - - - , ¥& such that
yi =5 (mod (p(D)I)ywynds) for ¢=1,---,n

Then an A-sequence xy, --- , 2 such that Y, z; A5 = Z x; Ag satisfies the
requirements of the proposition.

ProrosiTioN 9.6. Let A and B be affine rings over a field k. Suppose that
A is regular and C.(K ®; B) = 0 for any field extension K of k. Then there
18 an eptmorphism

C.(A) — C.(A ®; B)
induced by (p) — M ®x B) for a prime ideal p of A.
Proof. ® means ®; throughout this proof.
Note that the hypothesis C.(K ® B) = 0 implies, in particular, that

p ® B is a prime ideal of A ® B for each prime ideal p of 4.
Now let B be a prime ideal of height ¢ of A ® B; we will proceed, by in-
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duction on & = 7 — ht (B n A), to show that ¢l (P) is in the subgroup gen-
erated by {cl (h ® B)} where ht p = 7, p a prime ideal of A. If k = 0,
there is nothing to prove, and the induction is on its way.

Assume now that ht p = j < 7, wherep = B n A. Choose an A-sequence
Z1, -+, x; such that Y, 2; A, = pA, (this is possible since A is regular).
LetI = > 2, A = pnr wherep, ---, p, are the prime ideals of height
j of A containing r. Let S (resp. T') be the complement of

p (resp,pupu---up) in 4.

Since Ar/Ir = Ar/pr @ Ar/tr, let ¢ and e, denote elements of A, which
map onto (0, 1) and (1, 0) respectively. Let e; = f./t for suitable

fieA, teT.

Consider the ring As ® B. Since Bn A = p, P extends to a prime ideal
B’ in Ag ® B, and the image, B”, of P’ in

(As ® B)/(Is ® B) = (4s/Is) ® B = (4/p)s ® B

issuch thatcl (B”) = 0 (since (A/p)sisafield). Thusthereare ((4/I) ® B)s-
sequences Yjiii,m 5 ‘- 5 Yim , which (when multiplied by suitable coeffi-
clents) dlsplay the fact that ¢l (B”) = 0. Choose A/I ® B-sequences
z,+1 my z, m which generate the same ideal as the corresponding se-
quences of y’s at S and let 2j41,m, -+ + , 2i,m be preimages in 4 ® B. By the
construction @y, - ++ , L, Zj41,m, - ° » 2i,m 18 an A ® B-sequence for each m.

We now show that &y, -+, ¢,, 2Zjqa,m, *** , f1 + fa2im is an Ar ® B se-
quence. It is only necessary to show that if 8, say, is a prime ideal of height
i — 1 of Ay ® B which contains the first ¢ — 1 terms of this sequence, then
fi + fo2im ¢ W.  Suppose the contrary. Since fife e I & B, and 2, ¢ W, by
assumption we see that both f; and fz e W. But % D por W®W D p, for some
n=12---,vandweget ®NA 2 por® N A 2 p,forsomen. But then
B(Ar ® B) = A, ® B, a contradlctlon

Finally, starting at the (5 + 1)® element, choose an A ® B-sequence

Ty, ", X, Listm, ", Tim Which generates the same ideal in Ar ® B as
does the sequence x;, +++ , Zj, 2j41,m, - * » 2im fOr each m. By reasoning
similar to the above, it is seen that if € is a prime ideal of A ® B, ht & =
and £ contains {x;, -+ + , Tim},thenn A =porhtnd > j.

It is now a straightforward exercise to show that the element of D;(A ® B)
obtained from the last sequences with the same coefficients is

<gB> + th (2oN4)>; Mo (@}
and the induction hypothesis finishes the proof.

Remark. In the following section this result will enable us to conclude that
(for example) Ce(Byyy ®c Bauy1) = 0 where B, denotes the affine coordinate
ring of the complex n-sphere.
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ProrosiTioN 9.7. Let A be a one-dimensional domain such that the integral
closure A’ of A in the field of quotients of A s a finitely generated A-module.
Then Cy(A) is finitely generated over a homomorphic tmage of C1(A’). In par-
ticular, of A’ is a principal ideal domain, then Cy(A) s finitely generated.

Proof. A’isa Dedekind domain. If f denotes the conductor of A’ over 4,
then f  (0) and 4, is integrally closed if and only if p P f. Let pr, -+, M
be the prime ideals of A containing f and choose 0 % z in p; --- p;,. Then
everything follows from the exact sequence

Co(A/zA) — Ci(4) — Ci(A[z™]) — 0
by noting that A[z™"] = A'[z7.

Remark. If A has only one prime ideal p such that A, is not integrally
closed and Cy(4’) = 0 then Ci(A) == Ci(4,). For example

Cy(ZIv =3]) = Z/2Z and Cy(Rlz,y]) = Z/2Z (2" + o = 0).

10. Examples

First we give an example of a domain A such that Co(A4) # W.(4). (Note
that since A is a domain, Cy(4) = Wi(4).) Let B = Z[v/ —3],
B =2Z[3(1 4+ + —3)]. Set A = B[X]. The integral closure of 4 in
Q(v/ —38)(X) is B[X] = A’. Let m be the ideal of A generated by
{2,14++/ —3, X} and n the ideal of A’ generated by { 1(1 ++/—3),X}. It
is clear that n is the only maximal ideal of A’ lying over m and also that
[A’/n: A/m] = 2. We know from Theorem 7.7, that W,(4) = 0.

Proposition 10.1. C:(A4) # 0. In fact Co(An) # 0.
Proof. Applying formula 8 of [12, p. 299], we obtain the equation
[An: Anlean(fi, fo| An) = [Au/ndy: Aw/mAulea,(fi, f2] Ad)

where fi, f; is an A-sequence. That is es,(fi, fo| An) = 2ea:(f1, fo| A7)
which establishes the assertion.

Remark. This establishes, by the way, that C1(4) % 0. From the remark
in Section 9 above we can conclude that C,(4) = Z/2Z.
Let now A4, denote the coordinate ring of the real affine n-sphere; i.e.

A, =R[Xo, X1, , X/ (Xo+Xi+ - +Xo—1) =Rz, 21, , Zal.
We proceed to compute Ce(4,) forn = 1, 2, 3.
ProrogiTioN 10.2. For any n, C.(4.) = Z/2Z.

Proof. Let m be the maximal ideal generated by xo — 1, 21,22, «++ , &n of
A, . It will be shown that ¢l (m) 5 0, while 2 ¢l (m) = 0. The latter fol-
lows immediately by noticing that
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g=(t0o— DAn + 1140+ -+ + 201 da
is primary of length 2 for m.

Suppose f1, * ++ , fa is an A,-sequence and let Ty, - - - , T be the irreducible
curves deﬁ,ned by i=0,---,f, =0 in real affinen 4+ 1 space. Let
Ty, -+, Tk be the closures of Ty, ---, I in real projective n + 1 space.

Consider the intersection of T, say, with the projective closure of the n
sphere in complex projective n + 1 space. There will be an even number of
intersections (properly counted). The complex points fall into conjugate
pairs; therefore there are an even number of real points of intersection (prop-
erly counted) and all of these lie in the finite part of n + 1 space since the
n-sphere is bounded for real points.

The upshot is that in the relation going with the 4,-sequence fi, - -, fu,
the sum of the coefficients on the maximal ideals m’ such that 4,/m’ is R is
divisible by 2. This demonstrates that el (m) = 0.

We conclude by showing that cl (m) generates C,(A,). Clearly if m’ is
another maximal ideal such that 4,/m’ = R, thencl (m) + ¢l (m’) = 0. If
n is a maximal ideal such that 4,/n = C then let «; be the residue of z; modulo
1, and note that the equations of the line joining (g, - -+ , o) to (&, <« , &)
form an A,-sequence displaying the relation cl (n) = 0.

ProrosiTion 10.3. (i) Ci(44) = Z/2Z. (ii) C1(4:) = 0,C:(A.) = Z/2Z.
(iii) Ci(43) = 0, C2(43) = 0, C3(A4;) = Z/2Z.

Proof. Since A, is a UFD for n > 2, the only group remaining to be found
is Cz(As).
Consider

A3[T, T_l] = R[xO y L1, X2, X3, T’ T—l] = R[yO y Y1, Y2, Ys, T: T_ll = B’

say, where yo + 45 + 3 + y5 — T° = 0. Setting U = T — y, and
V =T + yo, we can write this last relation as

vi+ i+ ys = UV.
We have the exact sequence Cy(B/UB) — Cy(B) — Co(B[U']) — 0. Now
B/UB =Ry, ¥:, 4, V, T7]
where yi + y2 + y: = 0; but
Ci(Rlyr, ¥z, ys]) = 0

[11, p. 36, example 3], so we get C1(B/UB) = 0, hence Co(B) = Cy(B[U™)).
But
B[U_—I] = R[yl sy Y2, Ys, U’ U-l7 T—I]

where %1, ¥, ¥s, U are algebraically independent over R. Therefore
Cy(BIU™)) = 0,50 Co(B) = 0. Since

Co(B) = Cy(A4T, T™) = Co(As)
by Corollary 8.5, we are done.



250 LUTHER CLABORN AND ROBERT FOSSUM

Considering 4;, we have 0 = Cy(4;) = C2(4;), while C3(4;) = Z/2Z.
This gives at once that 0 = Wy(A43) = Wi(A;) = We(4;) and Wi(A4;) = Z/2Z
by Proposition 3.2. We now note that Proposition 4.4 is best possible by
sketching a proof of the fact that K°(9%e(4s)) = Z. Recall that it suffices to
show that if [4s/m] is the class of the Asg-module 4s/m in K°(91,), then
[As/m] = 0.

To show this it is sufficient to take a projective resolution of 4;/m. If one
can be found with all the projectives free, then [4;/m] = 0 as a rank count will
show.

Now the homological dimension of Az/m is 3, and a free resolution of A/m is
0— A3 25 A7 2% A3 2, Ay 5 Ay/m — 0,

where the homomorphisms are to be given. ¢ is the augmentation.
m(a, b, ¢, d) = ax; + bxs + cas + d(zo — 1).

pa(a, b, ¢c,d, e, f,9) = (—axy — by — c(xo — 1) + g1,
ax; — dxs — e(xy — 1) + gxs,
bry + dx, — f(zo — 1) + gas,
cx1 + exz + frs + g(zo + 1)).

ps is the injection of the kernel of p, into 43 , so we must show that the ker-
nel is free. It is projective and has rank 4, so any 4 elements which generate
it will be a basis. A straightforward calculation shows that Ker p, is gener-
ated by the eight vectors

n = (2,0,0, —x3, —xo — 1, 0, z5)
v, = (0,20 — 1, —25,0,0,2,, 0)
v3 = (0,21,0,2,,0, —29 — 1, 23)
vy =(—20+ 1,0,2,, 0, —21, 0, 0)
vs = (3, —22,0,2,,0,0,0)

ve= (0,0,21,0,2,%,2 — 1)
= (22,%,2 + 1,0,0,0, —z)
vs = (0,0,0, 20 — 1, —a5, 2, 0).

Nowlet e = v1 + 2,6 = v5 + 4,6 = v5 + v6, e = v7 + vs. Then
e, 6, e, e generate Kerp,. For

20, = (g — 1)es + 2160 — Ta€3 + Tz 64,
_21)3 =6 — (130+ 1)62 +x363 +x264,

2’l)e = X3 6 + X3 €2 + (xo -_ 1)63 — X1 €4
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and
—203 = —I3 €1 + X €2 + X1 €3 + (wo -_ 1)64 .

Hence the other v; may be obtained as well.
Let B, denote the affine coordinate ring of the complex n-sphere, i.e.,

B, =C[Xo, Xy, ,Xa/(Xo+ -+ X2 — 1) = Clao, -+, Tal.

We compute C.(B,) for all n (the results of the computations show that
W.(B,) = C.(B,)).

ProrosiTion 10.4. Let F be a field such that ¢ = +/—1 ¢ F and the char-
acteristic of F is not2. Let D, = Flag, -+ , x,] where 2 o a7 = 1. Ifnis
odd, then Co(D,) = 0.

Proof. Let n = 2k 4+ 1. We go by induction on k. If & = 0, then
D, = Flay, x;) with 25 + a3 = 1. Set u = @ + @y, v = 2 — 3 to trans-
form D, into Flu, v] where uv = 1. Thus

Cu(D,) = Cu(Flu, u™) = 0.

Suppose Ce(Da—y) = Ofork =1 — 1. Dy, by a change of variable, can
be transformed into

A =Flyo,y1, ", Yo Youa
where ¥ ¥1 + -+ + Y Y1 = 1. Consider the exact sequence

Co(A/yo A) — Cosa(A) = Cosa(Alys’]) — 0.
We have

A/yOA-%,F[yl,gh?yf*’ e 7y2k’y2k+1]
where yo y3 + - -+ + Yo Y1 = 1, 50

A/yo A = Dyalyi],
hence C.(4/yo A) = 0 by induction. Furthermore
A[:‘/-O_l] = F[y:)—l) Yo, Yo, Ysy ) Yo ’!/2k+l]

where Yo, Y2, -, Ymwy1 are algebraically independent over F, so
Ces1(Alyo’]) = Oalso. Co(A) = O since A is a domain. Hence C.(4) = 0.

ProrosiTioN 10.5. Let n be even, say n = 2k. Then C;(Bx) = 0 for
i # k, while Ci(By) = Z.

Proof. Fork = 0,B, = Clzg], 25 = 1. Thus By = C @ C, s0 Co(B,) = Z.
Now consider By, for £ > 0. By the usual change of variable, transform
By into A = Clyo, %, - -+ , Y] Where yo + 172 + -+ + Yur1 Yy = 1. Using

the exact sequence

Ci(A/y14) — Cinr(4) = Cina(Alyr] — 0
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we compute, as above, that Ciy1(A[y:']) = 0, so we have
Ci(A/y A) — Cia(4) — 0,

exact. But A/y1 4 =2 Dyo[y.]. Hence if ¢ # k — 1, C;ya(A) = 0 since
Ci(Da—) = 0. Also we know that C,(4) is a eyclic group. This yields
at once that Wi(Bx) = 01if ¢ # k, and Wi(Bx) = Ci(Bx) is eyelic.

We will now establish the proposition fully (in light of Corollary 4.2) by
showing that the rational rank of K’(9Wo(Bx)) is at least 2.

Let X denote the complex projective 2k sphere, X’ the intersection of X
with the hyperplane at infinity. Then X" is the complex projective (2k — 1)-
sphere and X — X’ is the affine 2k-sphere.

With these X', X, X — X', apply the exact sequence

K(X)>KX)->K(X—-X)—0

of Grothendieck groups [1, Prop. 7, p. 115].

We know that the homomorphism A(Y) — K(Y) has torsion kernel [5,
p. 151], where here A(Y) denotes the Chow ring of Y. Supplying the compu-
tations of [7, Theorem 1, p. 238] we find that the rational rank of K(X — X’)
is indeed at least 2. Now K(X — X’) = K"(9(Dx)), so we are done.

Remark. We are indebted to K. Mount for suggestions which led to our
computations above. The referee has suggested the following theorem and
its proof. Let K'(A4) denote K*(9My(A4)) forz = 1, 2.

TuroreM. K'(B:) = K'(Bi,) for k > 2. In particular
K'(By) =K' (B)) XZ®Z keven
K'(By) = K'(B) =12 k odd
Proof. Letu = xpy + 221, @ = 21 — ¢2,. The following sequence is
exact
K'(Bi) — K (Bdu™]) — K'(Bi/uB:) — K'(By) — K'(Bi[u™']) — 0.
As before Biju "] = C[Xy, -+, Xi1, X, s0
KBuw") =Z and K'(BJu"]) =C*X 2z

(see Theorems 1 and 2 of H. Bass, A. Heller and R. G. Swan, The Whitehead
group of a polynomial extension, Publ. math. I. H. E. S., n° 22, Paris (1964)).
From this it follows that Ko(Bk) = KO(Bk/uBk). But Bk/’l.tBk = Bk..z['lZ], 80
K"(B:) = K"(Bi_s).

The calculation of K°(B,) is implied by Proposition 10.4 and that of K°(By)
is in the proof of Proposition 10.5.

The full conclusion of Proposition 10.5 now follows as above.

11. Concluding remarks

Theorem 9.2 would be quite powerful if we had the analogue of Mori’s
lemma for the groups W; —we could then conclude that W.(4) = 0 for every
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unramified regular local ring A. Concerning a regular local ring 4, the fol-
lowing questions merit consideration.

Question 11.1 Does W.(A) = 0imply W.(4) = 0 (4 denotes the comple-
tion of A)?

Question 11.2. Is W.(4) = 0O?
Question 11.3. Is (z — 1)! Wi(4) = 0 (cf. [5, p. 150])?

A generalization of Question 11.3 which the computation of W.(4;) and the
results in [5] suggest is

Question 11.4. Suppose A is a regular ring and K*(9Me(4)) = Z. Is
(z— 1D W,(4) =0

In the geometric setting, both C; and W, are concerned with chains—but if
we restrict A to be, say, the coordinate ring of a non-singular affine variety,
then C; and W, both derive from the group of cycles.

The group W (A4 ), where A is a regular ring, seems to be the analogue of the
i™ component of the Chow ring (cf. [9, Theorem 10]); in general there is prob-
ably no possibility of making W.(4) into a graded ring. Question 11.4 above
is one of many leading to an investigation of how serious the loss of the ring
structure is.
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