SOME EXAMPLES OF SPECTRAL OPERATORS

BY
D. R. SMART

Examples of spectral operators will be produced by two processes:

(i) If T is a given bounded linear operator in a Banach space It with eigen-
vectors ¢1 , ¢z, - -+ , and N is the subspace of vectors & = Y ci¢; for which
the series converges unconditionally, we can renorm 9 (§2) to make N a
Banach space. Then T restricted to 9t becomes a spectral operator (§3). A
similar procedure (sketched in §4) can be followed for unbounded operators.

(i1) If T has the Fourier series as its eigenfunction expansion, then on a
subspace of L” consisting of functions with lacunary Fourier series, T is a
spectral operator (§5).

1. Preliminaries

For our terminology on spectral operators and resolutions of the identity we
refer the reader to [2}, [3], where various properties of these objects will also be
found. The notation » ; will mean 7 @; , where the x; are vectors in a
Banach space and convergence means convergence in norm.

By unconditional convergence of D, x; to x, I mean that all rearrangements
of the series converge to x; in other words, reordered convergence as defined in
[11; ie.,

(B) D p converges to z for each permutation p(%) of the positive integers.
Following [1] we speak of subseries convergence, if
(D) 2 n converges for each increasing sequence n () of positive integers,
and of bounded-multiplier convergence, if
(E) Y a;z; converges for each bounded sequence (a;) of real numbers.
We require
Lemma 1.1. (B) & (D) & (E).

Day [1] proves that (D) = (B), and the proof that (B) = (D) is similar.
Clearly (E) = (D). The following proof that (D) = (E) was kindly sup-
lied by Professor Day. We first note that it is enough to consider non-nega-
tive sequences in (E).

If > a; is not bounded-multiplier Cauchy, then there is a sequence (i),
0 < t; < 1 for all 4, for which E t;x; is not Cauchy. Hence there exists a

convex neighborhood U and disjoint blocks B; of terms such that
Ziij t:x:¢ U. As o runs over the subsets of a set B;, 2 €; runs over the
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corners of a parallelopiped which contains D s ;tixi . Therefore, for each j
there is a corner _ ., ; : which does not belong to the convex neighborhood U.
Hence the subseries of ), 2; which is made up of all terms in all the ¢; is not
convergent.

Convention. In expressions of the form

sup; (--+) or sups(---),

J varies over all subsets of the natural numbers and I varies over all finite
subsets.

Lemma 1.2. If Y x, is unconditionally convergent, then

Mell] = sups || 2s2a |l = supr|| Zran |l < .
This follows from Lemma 1.1.

LemMa 1.3. If D ya s unconditionally convergent and (b,) is a bounded
sequence, then Z b Yn 18 unconditionally convergent and

1l 22 baya Il < 2 sup [ Ba |- 1]} 22 yn [I]-

Proof. I, = b, y, , then Y z, satisfies (E) and so is unconditionally
convergent.
From the proof quoted for Lemma 1.1, we see that if 0 < b, < 1 and

(%) by has only a finite number of non-zero values

then || 2 batnll < |l 2= walll. Moreover, this is true without (), since
b. y» converges. It follows that

I 22 baya | < 2sup |- || 22 walll

for each bounded real sequence (b, ), and hence that

Il 22 by [l < 2sup [ ba |-[I] 22 9 ll

for these sequences.

Lemma 1.4. If Y 2, is unconditionally convergent, then for each & > 0 there
exists K > 0 such that

| Sraall <& ifi> Kforalliinl.

For if not, choose a sequence I, I, --- of disjoint finite sets of natural
numbers such that || 2_s, 2, || > ¢ for each r; this gives a non-convergent sub-
series of D z, .

We can restate this as

Lemma 1.5. If D 2, is unconditionally convergent to x, then

Il 22% 2 Il = 0;

ie, |||l — 2 Ta.]|| =0,as K — +,
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2. The space N

Let I be a Banach space and let (¢.) be a linearly independent sequence
in 9 such that no ¢, is in the closed span of {¢; : 7 % n}. Equivalently, there
exists a sequence (¢,,) in M™* such that ¥u(on) = dme. Thus,ifz = 2 cioi,
we must have ¢; = ¢.(x).

DErFINITION. N s the set of vectors & such that Y, Yi(x)e; is unconditionally
convergent to x, with the norm

Nzl = sup:s | 2or v(@)e:l.
(By Lemma 1.2, the right side is finite.)
THEOREM 2.1. N ¢s a Banach space with the norm |||-|||.

Proof. 1t is sufficient to show that N is complete. Let x, e N (n > 1) and
||| zn — Zm|]] = 0. Then || 2, — xm | — 0 so that there exists an = such that
|z» — x| = 0. Thus, for each finite set of integers I, putting

E(Dx = 2rvdx)ei,

1Bz — B(Dzll £ 2]l #ilzn — 2)ex|
< 2l llen — |l e:ll = 0.
Since we have ||| 2, — zu ||| < € for m, n > K(&), then for each I,
lE(Dxw — E(I)zw| < ¢ form,n > K(e).
Thus || E(I)x. — E(I)x|| £ e forn > K(¢) and hence
|z — z]|| £ & forn > K(e).
Lemma 2.2. M* < N,
Proof. This is obvious since |||-||] > ||-]|.

3. Behaviour of T in i

With I, ¢. and ¢, as before, let T' be a bounded linear operator in I having
the ¢, as eigenvectors with eigenvalues N\, (which are not necessarily distinct).

THEOREM 3.1. TN € N and T s bounded in N.

Proof. Since T is bounded, then |N;| < ||7|. Thus, by (1.3), if
t= 2 Yix)p:isin N, then Tz = X N;¢i(x)e; will be in N.  Also by (1.3),
T is bounded in N with bound at most 2 sup |\ |-

To show that 7T is a spectral operator in R, write

E(r)x = me Yi(T)e:

for each = D ¢:(x)e; in M and each subset 7 of the complex plane. Clearly
E(7) is a projection operator in N.

we have
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TreoRrEM 3.2. E(7) is a resolution of the identity and is countably additive
on the Boolean algebra & of all subsets of the plane.
Proof. 'The properties () of [2, p. 324] are obvious with the exception of
(%) I E(o)|l < K.
To prove (*) with K = 2, note that
I E(z ||| = sups || 2sanetbs(@)eil] < 2|2 ]ll-

By countable additivity I mean that E(r,)x — E(r)z forallzinRifr, T 7.
('This implies Dunford’s property (¢).) Infaect, (1.5) gives

| E(r)x — E(ra)z ||| = 0.
TuroreM 3.4. T s a spectral operator in N.

Proof. (® can consist of all subsets of the plane, or of all Borel subsets and
T can be the whole of %t*.) The fact that T commutes with all E(r) is ob-
vious, but the property

(3.5) o(T; E(r)N) C 7
must be proved. Let u¢7. For zin E(r)N;ie., z = Qv @), define
Sz = 2 N — w) ()i

Since [(A; — »)™'| < d where d is the distance from u to 7, then Sz exists.

By (1.3), .
Szl < 2d7 ||| «]l].
Thus S is bounded and

S(T — e = (T — u)Szx ==z
on E(7)N.
We can show that T is a scalar type operator.

TrEOREM 3.6. T = [ NE(d\) in the uniform operator topology.

Proof. Let Ly, L, ---, L, be disjoint sets with diameter less than &
whose union is the disc of radius || T ||. Choose £;in L;. Then

Il Tz — 22 & B(Laa ||
= [l 2N ¥i(@)er — 206 2onjens Ectri(@)es ||
= 1 226 2onjens N — E¥i(2)es |
< 2sup [N — &[] 225 wi@)e || (by (1.3)
< 2|z ]|

4. Unbounded operators

Let M, ¢, and ¥, be as before. Let T be a closed linear operator in I for
which the ¢, are eigenvectors with the eigenvalues \, ; let [N\, | — ®. As be-
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fore we can define E(7) and show that it is a uniformly bounded resolution of
the identity. Since M is not necessarily invariant under 7' we define a new
operator S in N by

D(S) ={z:2zeD(T)nN and Tz N}
Sz = Tz forxin D(8).

Since T is closed in I, S is closed in N. If N is not equal to some \;, then
(8 — N)7'is closed. If x is a finite linear combination of the ¢;, i.e.,
z = 2.1 ¥ix)e:, then

(8 —AD7'a = 208 (N — N 7Ti()es
and [||(S — M) 7z||| < 2sup [N — N)7H|-|[|z]|||. Since (S — M) is
closed, bounded and defined on a dense subset of 9 it is bounded on N to N.
By §3, (S — N)7'is a scalar type spectral operator. Thus we can regard S
as a speetral operator. (For the definition of [4], (S — AI)™ must be com-

pact, which is true since, by (3.6), (S — N\ )™ can be approximated by finite-
dimensional operators.)

5. Spaces of lacunary series

Fix a sequence n; < me < - - - of positive integers such that n.1/n. > Q@ > 1
for some Q. Consider the subspace € of L” consisting of functions of the form

> v (a,cosn,x + by sinn, ).

From [5, Theorem V.8.20] it follows that the " norm on § is equivalent to the
I’ norm (for r > 1). Since the Fourier series is unconditionally convergent
in I’, it is unconditionally convergent in €. Thus any operator in L having
the functions cosn,x and sin n. z as eigenfunctions will be a spectral operator
in €.
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