SOME EXAMPLES OF SPECTRAL OPERATORS

BY D. R. Smart

Examples of spectral operators will be produced by two processes:

- (i) If T is a given bounded linear operator in a Banach space \mathfrak{M} with eigenvectors φ_1 , φ_2 , \cdots , and \mathfrak{N} is the subspace of vectors $x = \sum c_i \varphi_i$ for which the series converges unconditionally, we can renorm \mathfrak{N} (§2) to make \mathfrak{N} a Banach space. Then T restricted to \mathfrak{N} becomes a spectral operator (§3). A similar procedure (sketched in §4) can be followed for unbounded operators.
- (ii) If T has the Fourier series as its eigenfunction expansion, then on a subspace of L^p consisting of functions with lacunary Fourier series, T is a spectral operator (§5).

1. Preliminaries

For our terminology on spectral operators and resolutions of the identity we refer the reader to [2], [3], where various properties of these objects will also be found. The notation $\sum x_i$ will mean $\sum_{i=1}^{\infty} x_i$, where the x_i are vectors in a Banach space and convergence means convergence in norm.

By unconditional convergence of $\sum x_i$ to x, I mean that all rearrangements of the series converge to x; in other words, reordered convergence as defined in [1]; i.e.,

- (B) $\sum x_{p(i)}$ converges to x for each permutation p(i) of the positive integers. Following [1] we speak of *subseries convergence*, if
- (D) $\sum x_{n(i)}$ converges for each increasing sequence n(i) of positive integers, and of bounded-multiplier convergence, if
- (E) $\sum a_i x_i$ converges for each bounded sequence (a_i) of real numbers.

We require

Lemma 1.1. $(B) \Leftrightarrow (D) \Leftrightarrow (E)$.

Day [1] proves that $(D) \Rightarrow (B)$, and the proof that $(B) \Rightarrow (D)$ is similar. Clearly $(E) \Rightarrow (D)$. The following proof that $(D) \Rightarrow (E)$ was kindly suplied by Professor Day. We first note that it is enough to consider non-negative sequences in (E).

If $\sum x_i$ is not bounded-multiplier Cauchy, then there is a sequence (t_i) , $0 \le t_i \le 1$ for all i, for which $\sum t_i x_i$ is not Cauchy. Hence there exists a convex neighborhood U and disjoint blocks B_j of terms such that $\sum_{i \in B_j} t_i x_i \notin U$. As σ runs over the subsets of a set B_j , $\sum_{i \in \sigma} x_i$ runs over the

Received September 27, 1966.

corners of a parallelopiped which contains $\sum_{i \in B_j} t_i x_i$. Therefore, for each j there is a corner $\sum_{i \in \sigma_j} x_i$ which does not belong to the convex neighborhood U. Hence the subseries of $\sum x_i$ which is made up of all terms in all the σ_j is not convergent.

Convention. In expressions of the form

$$\sup_{I}(\cdots)$$
 or $\sup_{J}(\cdots)$,

J varies over all subsets of the natural numbers and I varies over all finite subsets.

LEMMA 1.2. If $\sum x_n$ is unconditionally convergent, then

$$\|\|x\|\| \equiv \sup_{J} \|\sum_{J} x_{n}\| = \sup_{J} \|\sum_{I} x_{n}\| < \infty.$$

This follows from Lemma 1.1.

Lemma 1.3. If $\sum y_n$ is unconditionally convergent and (b_n) is a bounded sequence, then $\sum b_n y_n$ is unconditionally convergent and

$$|||\sum b_n y_n||| \leq 2 \sup |b_n| \cdot ||| \sum y_n|||.$$

Proof. If $x_n = b_n y_n$, then $\sum x_n$ satisfies (E) and so is unconditionally convergent.

From the proof quoted for Lemma 1.1, we see that if $0 \le b_n \le 1$ and

(*) b_n has only a finite number of non-zero values

then $\|\sum b_n y_n\| \le \|\sum y_n\|$. Moreover, this is true without (*), since $\sum b_n y_n$ converges. It follows that

$$\|\sum b_n y_n\| \le 2 \sup |b_n| \cdot ||| \sum y_n|||$$

for each bounded real sequence (b_n) , and hence that

$$|||\sum b_n y_n||| \le 2 \sup |b_n| \cdot ||| \sum y_n|||$$

for these sequences.

Lemma 1.4. If $\sum x_n$ is unconditionally convergent, then for each $\varepsilon > 0$ there exists K > 0 such that

$$\|\sum_{I} x_n\| < \varepsilon$$
, if $i > K$ for all i in I .

For if not, choose a sequence I_1 , I_2 , \cdots of disjoint finite sets of natural numbers such that $\|\sum_{I_r} x_n\| > \varepsilon$ for each r; this gives a non-convergent subseries of $\sum x_n$.

We can restate this as

LEMMA 1.5. If $\sum x_n$ is unconditionally convergent to x, then

$$|||\sum_{K}^{\infty}x_{n}|||\rightarrow 0;$$

i.e.,
$$|||x - \sum_{1}^{K} x_n||| \rightarrow 0$$
, as $K \rightarrow +\infty$.

2. The space \Re

Let \mathfrak{M} be a Banach space and let (φ_n) be a linearly independent sequence in \mathfrak{M} such that no φ_n is in the closed span of $\{\varphi_i: i \neq n\}$. Equivalently, there exists a sequence (ψ_n) in \mathfrak{M}^* such that $\psi_n(\varphi_m) = \delta_{mn}$. Thus, if $x = \sum c_i \varphi_i$, we must have $c_i = \psi_i(x)$.

DEFINITION. \mathfrak{N} is the set of vectors x such that $\sum \psi_i(x)\varphi_i$ is unconditionally convergent to x, with the norm

$$|||x||| = \sup_{I} || \sum_{I} \psi_{i}(x) \varphi_{i} ||.$$

(By Lemma 1.2, the right side is finite.)

THEOREM 2.1. \mathfrak{R} is a Banach space with the norm $||| \cdot |||$.

Proof. It is sufficient to show that \mathfrak{N} is complete. Let $x_n \in \mathfrak{N}$ $(n \geq 1)$ and $|||x_n - x_m||| \to 0$. Then $||x_n - x_m|| \to 0$ so that there exists an x such that $||x_n - x|| \to 0$. Thus, for each finite set of integers I, putting

$$E(I)x = \sum_{I} \psi_i(x)\varphi_i,$$

we have

$$|| E(I)x_{n} - E(I)x || \leq \sum_{I} || \psi_{i}(x_{n} - x)\varphi_{i} ||$$

$$\leq \sum_{I} || \psi_{i} || || x_{n} - x || || \varphi_{i} || \to 0.$$

Since we have $|||x_n - x_m||| < \varepsilon$ for $m, n > K(\varepsilon)$, then for each I,

$$||E(I)x_n - E(I)x_m|| < \varepsilon \text{ for } m, n > K(\varepsilon).$$

Thus $||E(I)x_n - E(I)x|| \le \varepsilon$ for $n > K(\varepsilon)$ and hence

$$|||x_n - x||| \le \varepsilon \text{ for } n > K(\varepsilon).$$

Lemma 2.2. $\mathfrak{M}^* \subset \mathfrak{N}^*$.

Proof. This is obvious since $|||\cdot||| \ge ||\cdot||$.

3. Behaviour of T in \mathfrak{N}

With \mathfrak{M} , φ_n and ψ_n as before, let T be a bounded linear operator in \mathfrak{M} having the φ_n as eigenvectors with eigenvalues λ_n (which are not necessarily distinct).

Theorem 3.1. $T\mathfrak{N} \subseteq \mathfrak{N}$ and T is bounded in \mathfrak{N} .

Proof. Since T is bounded, then $|\lambda_i| \leq ||T||$. Thus, by (1.3), if $x = \sum \psi_i(x)\varphi_i$ is in \mathfrak{R} , then $Tx = \sum \lambda_i \psi_i(x)\varphi_i$ will be in \mathfrak{R} . Also by (1.3), T is bounded in \mathfrak{R} with bound at most $2 \sup |\lambda_n|$.

To show that T is a spectral operator in \mathfrak{N} , write

$$E(\tau)x = \sum_{\lambda_i \in \tau} \psi_i(x) \varphi_i$$

for each $x = \sum \psi_i(x)\varphi_i$ in \Re and each subset τ of the complex plane. Clearly $E(\tau)$ is a projection operator in \Re .

THEOREM 3.2. $E(\tau)$ is a resolution of the identity and is countably additive on the Boolean algebra $\mathfrak B$ of all subsets of the plane.

Proof. The properties (α) of [2, p. 324] are obvious with the exception of (*) $||E(\sigma)|| \leq K.$

To prove (*) with K = 2, note that

$$|||E(\tau)x||| = \sup_{I} || \sum_{i \in I, \lambda_i \in I} \psi_i(x) \varphi_i || \leq 2 |||x|||.$$

By countable additivity I mean that $E(\tau_n)x \to E(\tau)x$ for all x in \mathfrak{N} if $\tau_n \uparrow \tau$. (This implies Dunford's property (ε) .) In fact, (1.5) gives

$$|||E(\tau)x - E(\tau_n)x||| \to 0.$$

Theorem 3.4. T is a spectral operator in \mathfrak{N} .

Proof. (\mathfrak{B} can consist of all subsets of the plane, or of all Borel subsets and Γ can be the whole of \mathfrak{R}^* .) The fact that T commutes with all $E(\tau)$ is obvious, but the property

(3.5)
$$\sigma(T; E(\tau)\mathfrak{N}) \subseteq \bar{\tau}$$

must be proved. Let $\mu \in \bar{\tau}$. For x in $E(\tau)\mathfrak{N}$; i.e., $x = \sum_{\lambda_i \in \tau} \psi_i(x) \varphi_i$, define

$$Sx = \sum (\lambda_i - \mu)^{-1} \psi_i(x) \varphi_i.$$

Since $|(\lambda_i - \mu)^{-1}| \leq d^{-1}$ where d is the distance from μ to τ , then Sx exists. By (1.3),

$$|||Sx||| \le 2 d^{-1} |||x|||.$$

Thus S is bounded and

$$S(T - \mu I)x = (T - \mu I)Sx = x$$

on $E(\tau)\mathfrak{R}$.

We can show that T is a scalar type operator.

Theorem 3.6. $T = \int \lambda E(d\lambda)$ in the uniform operator topology.

Proof. Let L_1 , L_2 , \cdots , L_n be disjoint sets with diameter less than ε whose union is the disc of radius ||T||. Choose ξ_i in L_i . Then

$$||| Tx - \sum \xi_{i} E(L_{i})x |||$$

$$= ||| \sum \lambda_{j} \psi_{j}(x) \varphi_{j} - \sum_{i} \sum_{\lambda_{j} \in L_{i}} \xi_{i} \psi_{j}(x) \varphi_{j} |||$$

$$= ||| \sum_{i} \sum_{\lambda_{j} \in L_{i}} (\lambda_{j} - \xi_{i}) \psi_{j}(x) \varphi_{j} |||$$

$$\leq 2 \sup |\lambda_{j} - \xi_{i}| \cdot ||| \sum_{j} \psi_{j}(x) \varphi_{j} |||$$

$$\leq 2\varepsilon ||| x |||.$$
 (by (1.3))

4. Unbounded operators

Let \mathfrak{M} , φ_n and ψ_n be as before. Let T be a closed linear operator in \mathfrak{M} for which the φ_n are eigenvectors with the eigenvalues λ_n ; let $|\lambda_n| \to \infty$. As be-

fore we can define $E(\tau)$ and show that it is a uniformly bounded resolution of the identity. Since \mathfrak{N} is not necessarily invariant under T we define a new operator S in \mathfrak{N} by

$$D(S) = \{x : x \in D(T) \cap \Re \text{ and } Tx \in \Re\}$$
$$Sx = Tx \text{ for } x \text{ in } D(S).$$

Since T is closed in \mathfrak{M} , S is closed in \mathfrak{N} . If λ is not equal to some λ_i , then $(S - \lambda I)^{-1}$ is closed. If x is a finite linear combination of the φ_i , i.e., $x = \sum_{i=1}^{n} \psi_i(x)\varphi_i$, then

$$(S - \lambda I)^{-1} x = \sum_{i=1}^{n} (\lambda_i - \lambda)^{-1} \psi_i(x) \varphi_i$$

and $|||(S - \lambda I)^{-1}x||| \le 2 \sup |(\lambda_i - \lambda)^{-1}| \cdot |||x|||$. Since $(S - \lambda I)^{-1}$ is closed, bounded and defined on a dense subset of $\mathfrak R$ it is bounded on $\mathfrak R$ to $\mathfrak R$. By §3, $(S - \lambda I)^{-1}$ is a scalar type spectral operator. Thus we can regard S as a spectral operator. (For the definition of [4], $(S - \lambda I)^{-1}$ must be compact, which is true since, by (3.6), $(S - \lambda I)^{-1}$ can be approximated by finite-dimensional operators.)

5. Spaces of lacunary series

Fix a sequence $n_1 < n_2 < \cdots$ of positive integers such that $n_{r+1}/n_r > Q > 1$ for some Q. Consider the subspace \mathfrak{C} of L^p consisting of functions of the form

$$\sum_{1}^{\infty} (a_r \cos n_r x + b_r \sin n_r x).$$

From [5, Theorem V.8.20] it follows that the L^r norm on \mathfrak{E} is equivalent to the L^2 norm (for r > 1). Since the Fourier series is unconditionally convergent in L^2 , it is unconditionally convergent in \mathfrak{E} . Thus any operator in L^r having the functions $\cos n_r x$ and $\sin n_r x$ as eigenfunctions will be a spectral operator in \mathfrak{E} .

References

- M. M. Day, Normed linear spaces, Ergebnisse der Mathematik, Neue folge, Heft 21, Berlin, 1958.
- 2. N. Dunford, Spectral operators. Pacific J. Math., vol. 4 (1954), pp. 321-354.
- 3. ——, A survey of the theory of spectral operators, Bull. Amer. Math. Soc., vol. 64 (1958), pp. 217-274.
- J. T. Schwartz, Perturbations of spectral operators, and applications: I. Bounded perturbations. Pacific J. Math., vol. 4 (1954), pp. 415-458.
- 5. A. ZYGMUND, Trigonometrical series, 2nd edition, volume II, Cambridge, 1959.

University of Cape Town Cape Town, South Africa