ON CHARACTERISTIC VECTOR FIELDS!

BY
W. AMBROSE

Introduction

In an attempt to formulate geometrically, and to generalize, the notion of
convexity introduced by Hormander in [V, Chapt. VIII] for a partial differ-
ential operator we have found it necessary to consider the characteristic vector
field of a first order partial differential equation in a more general context than
usual. This paper is devoted to this formulation of characteristic vector
fields.

The classical notion of a characteristic vector field can be formulated in the
following way. Consider a (p + 1)-dimensional C* real manifold M and the
bundle G,(M ) of p-planes over M, i.e. G,(M ) consists of all (m, P) where m is
any point of M and P is any p-dimensional subspace of the tangent space to
M at m. One makes G,(M) into a C* manifold, and a bundle over M, in a
natural way. There are certain natural 1-forms on G,(M) that we call lift-
forms and any two of these differ only by a factor which is a C* function. If
F is a real-valued C” function defined on an open subset U of G,(M ) and if we
choose any one of these lift-forms, A, then there is a natural way to associate
with F a unique C* vector field V, defined on U, which is called the character-
istic vector field of F, relative to N. If a different N were used then a different
vector field would be obtained but it would only differ by a factor which is a
C” function. Using V one can solve easily the non-characteristic Cauchy
problem for the partial differential equation defined by ¥, and it is for this
purpose that this ¥ was introduced.

This is one way of phrasing the classical reduction of such a partial differ-
ential equation to an ordinary differential equation. Hormander, in [V], has
also used this V for expressing a convexity condition, altho he has not described
V in these terms. The aim of this paper is to express and understand V in a
sufficiently general context to give a geometric interpretation to Hormander’s
convexity condition. We shall not discuss convexity in this paper, however.

We now explain briefly the more general context in which we shall con-
sider this V. Consider a d-dimensional manifold M, where d > p + 1 and the
bundle G,(M) of p-planes over M. So G,(M) now contains, in some sense,
“many more’’ p-planes than in the previous case where d = p + 1. Let F be
a C” real-valued function defined on an open subset U of G,(M). There is no
notion of characteristic vector field in this case. But if one considersa 1 : 1
non-singular map ¢ of R*™ — M it induces, in an obvious way (via its differ-
ential) a map ¢’ of G,(R*"") — G,(M). Theimage of G,(R*"") will be a sub-
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manifold of G,(M) which we may consider as a “copy” of Go(R*"') and F,
considered only on this copy, will have a characteristic vector field on the copy.
One can say this a little more carefully by considering F o ¢, then its charac-
teristic vector field W, then define V = ¢4 W (the choice of lift form must also
enter when we come to a precise description of this). For every such ¢ we
obtain (using the same F') such a V and, if two different ¢ agree on a neighbor-
hood of a point of R?*" then the corresponding V’s will agree on a neighborhood.
So the question arises: What infinitesimal data about ¢ at a point are needed
to determine ¥V? Then one wishes to express V in terms of the relevant in-
finitesimal data without reference to any such ¢. The relevant infinitesimal
data to determine V (still using a fixed F, and depending on certain consider-
ation of lift forms) is an integrable point of Gpa(Gp(M)), i.e. for each in-
tegrable point (m, P, Q) € Gp11(Gp(M)) we obtain a V(m, P, Q) in the tangent
space to G,(M) at (m, P), this V depending on the given F. So the object of
this paper is first to give the needed information about integrable points of
Gpi1(Go(M)), and their relation to lift forms, and then to prove the existence
of this V, depending on a given F defined on a subset of G,(M ), which maps
the manifold of these integrable points into the tangent bundle to G(M).
We mention that by using the bundle of lines over G,(M) instead of the
tangent, bundle we could state a theorem in which lift forms would not need
to be mentioned, but that is an obvious consequence of our theorem.

1. Integrable points of G(G,(M)), if ¢ > p

In this section we discuss, and prove equivalent, several notions of integra-
bility for elements of G,(G,(M)). In all this M will be a fixed manifold of
dimension d and p, ¢ will be integers with 0 < p < ¢ < d. The case where
p = ¢ has been discussed in [I] and we make use of facts proved there, includ-
ing, in particular, the lift forms discussed there.

DeriNiTION. An (m, P, Q) e Cy( Go(M)) is tniegrable iff w4 @ has dimension
g and @ contains a p-plane Qo such that (m, P, @) is an integrable element of
G,(Gp(M)), in the sense of [I]. We denote the set of integrable elements of
G (G (M)) by I,,(M). (This = is the projection map of G,(M) — M.)

In [I] we denoted the integrable elements of G,(GH(M)) by IGH(M)
but here we shall write I, ,(M). We recall from [I] that one definition of an
integrable element (m, P, Q) of Gp(Gp(M)) was the following: s« Qo has
dimension p and all C* lift forms N and their d\ vanish on @,. We shall charac-
terize, in Lemma 1.1 below, the integrable elements of G(GH(M)) in terms
of lift forms but for this we need a definition. Consider any (m, P, @) €
G (G,(M)). We define

L(Q) = [N Q : N is a lift form at (m, P)]

i.e. L(Q) consists of all restrictions of all lift forms to Q. We recall from [JI]
that a lift form \ at (m, P) is a linear function on the tangent space to G(M )
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at (m, P) with the property that N(t) = 0 if 7xt e P. So L(Q) is the set of
all restrictions of such \ to @ (it would be more explicit to write L(m, P, @)).

Lemma 1.1.  Let (m, P, Q) € G(Gx(M)). Then (m, P, Q) is integrable iff all
the following three conditions hold:
(i) w« Q has dimension q,
(ii) dim L(Q) = g — p,
(i) % « s any C” Uift form and s, t are any tangent vectors to G,(M) at
(m, P) then N(s) = N(t) = 0 for all\ e L(Q) implies da(s,t) = 0.

Proof. First suppose (m, P, @) is integrable. Then (i) holds by definition.
Let @ be an integrable p-dimensional subspace of Q. Because gach \ e L(Q)
vanishes on @, each such \ gives rise to a unique linear function on @/, , thus
giving us an isomorphism A of L(Q) into the dual space of @/Q, . We now show

(a) if t' eQ/Qo, with ¢ 5~ 0, then there exists a N in AL(Q) such that
N(') # 0.

This clearly implies AL(Q) is the dual space to @/Qo , so AL(Q) has dimen-
sion ¢ — p, and because A is an isomorphism this will imply that L(Q) has
dimension ¢ — p, proving (ii). To prove (a) it is sufficient to prove

(a’) ifteQ,teQo, then there exists a N e L(Q) such that N(¢) = 0.

If te @, t¢Qo, then, because 7« has dimension ¢, 7+ is an isomorphism on
Q,sowxt ¢ P. Because the set of lift forms at (m, P) is the annihilator of 7P
this shows some lift form does not annihilate ¢, proving (a). Hence (ii) is
proved. We have incidentally proved that

(b) Qo= [teQ|N¢) = O for all N e L(Q)].

Because of (b) and the characterization of integrable elements of
Go(Gp(M)) by lift forms (see [I]) we have (iii).

Now suppose (i), (ii), (iii) hold. So = @ has dimension g. Define
Qoby (b). Because dim @ = gand dim L(Q) = q — p we see that dim Qo = p.
Because all lift forms at (m, P) vanish on @, by definition, and because we
are agsuming (iii) we see, by the characterization of integrable elements in
terms of lift forms, that (m, P, Qo) is integrable.

In [I] the term ‘“‘integrable” was used for those elements of G,(G,(M))
that were capable of being “second order tangent” to a p-dimensional sub-
manifold of M. We shall show below that the elements of I,,(}M) are the
elements of G,(Gp(M)) that are capable of being “second order tangent”
but in a more complicated sense. This requires some coordinate calculations
whose purpose is the following. If ¢ is a non-singular C* map of a manifold L
into a manifold M then ¢ induces, thru its differential ¢« , a map ¢’ of
Go(L) — Gp(M). The object of this calculation is: given the Jacobian of ¢
relative to given coordinate systems of L and M, to find the Jacobian of ¢’
relative to the associated coordinate systems of G,(L) and G,(M).
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Let L and M be manifolds of dimensions ¢ and d, and ¢ a non-singular
1 : 1 map of a neighborhood of [ ¢ L into a neighborhood of m e M. Let {v.}
be a coordinate system of L at [ and {as} a coordinate system of M at m.
We further assume that the domain of ¢ is the domain of the {v,} and that
¢ maps this domain inside the domain of the {z;}. Let J be the Jacobian of
¢ relative to these coordinate systems, i.e.

J = (Jw), Jra= 0(x0°¢)/0%

(1<a<e¢1<b<d). Sotheds, arefunctions whose domain is the domain
of . Because ¢ is assumed C* and non-singular its differential, ¢« , induces a
map, that we denote by ¢’, of 7 (domain of ¢) into G,(M ), where =, here
and throughout this paper, denotes the projection of a Grassmann bundle onto
onto its base manifold. That is, ¢’ is defined by

¢'(l, P) = (¢l, ¢« P).

Let I be any subset of {1, ---, ¢} with p elements and K any subset of
{1, --- , d} with p elements. The {v,} and I give rise to a coordinate system
{w, , wi} of Gp(L) whose domain we denote by Q; ; and the {xs} and K give
rise to a coordinate system {ys , yi} of G,(M) whose domain we denote by
Qx . These were defined in [II] and for the case where I = K = {1, -+, p}
were defined in [I] (the definition for general I, K being only trivially different).
Herel < a<ctel,rel’,;1 <b<d,jeK,seK (I°being the complement
of [in {1, - -+ , ¢} and K° being the complement of K in {1, --- , d}). Then ¢’
has a Jacobian J' relative to these associated coordinate systems and we wish
to calculate J'. J' = (Jg,) will be a matrix of functions with 8 running thru
the set

{1, -+, dbul(s,g) 1jekK, s e K’]

and « running thru the set
{1, .-, cdul(r,?) :2el,7el.

These functions are defined by

&
Bl
|

= d(Ypo ¢')/0w,
oy = (Yo ¢')/owy
Joiya = 9(yio ') /dw,

Ty = 8(yi o ¢') /0w .

So we first need formulas for the y, o ¢’ and y’ o ¢’. These have been der-
ived in Section 1 of [II] and are not difficult to obtain so we assume them
here. (To relate this discussion to that in [II] one takes our ¢4 to be the
T of [II] and our J, for the #, of [II].) To express the desired formulas we
introduce the following auxiliary functions, A, By, Cji.
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Asi = Jsi°7|' + Zr (Jsro"r)wf'
(1.2) Bj¢= in°7l'+ Z" (JjTOW)wi
D iBuiCiy = 8

where tel, rel’,jed, ke K, se K°. One has (e.g. see formulas (1.4) and
(1.5) of [I1I])

(1.3) Q:n (¢)7(Qx) = (I, P) e Gp(L): B is defined and C exists].
Then the desired formulas are

(1.4) Yoo d = XTpopom, Yiod = D i AwuCy

Hence

’ !
Jvo = Joaom,  Joe =0

8As, aC;
(15) J(sy)a = Z Cw"'ZAn"“‘]'

aCy;
dw:

94,
I e istriy = Zk: 6w"k Crvi + ; A

where k ¢ I. 'We use the trivial formula for the derivative of the inverse of a
matrix of functions, which says that if BC = [ then ¢! = —CB'C (primes
denoting differentiation). Using it the above gives

Asi B n
(15) JGaira = Z‘Lw Cij = 2 AuCa 00 93k ® Cy

ikn

where 7¢I, ke K, neI. Similarly we can rewrite the last formula in (1.5);
from the definition of the 4,; and B;; we have

A /0w = (Japom)oni,  0Bjp/ow: = (Jjom) bni.
Together these give
(1.57) st,j),(r,i) = (Jarom)Csi — D kn An Coi(Jir o 7)Ci5

where againk e K,n ¢ I. These give

d
"‘zb:(!]bac’ﬂ')g'&;

* dw,
+ Z (Z aASi Cw Z Asz Czlc 6Bkn Cm)
(1 6) s3] T OW, ik ays
¢;‘ 661 = Z ((']87‘ ° W)Cii - Z Asn an(Jkr ° W)Cij) a—]
wy 8] kn 9 e

i)
k
= szj (J81‘°7r - Zk:ys']kroﬂ')cijé‘?}z

where, as above, 1 < a <¢,1<b<d,tel,nel,rel’,jeK, keK,seK"
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We now use these formulas to show: if N is any lift form of G,(M) and ¢
is as above then ¢'*\ = N o ¢’ is a lift form of G,(L). One could prove this
directly from the definitions but we prefer to prove it by a coordinate calcula-
tion because we wish later to use the coordinate formula that we obtain. So
we now prove the following, in which we continue with the notation used
above: if

= Dyl dy; — dy,
then

(1.7) "N = 20 Ko 25 wi dwi — dw,)
where
Ky =Juwom — 25 (yio¢")(Jpom).
Proof. Using (1.2), (1.4) and (1.5),
"N = 205 (yio¢")e™ dy; — o' dy,
= 20 (25 A0 Cig) 2o Tia dws — 20 ea dwa
= 2 (i A Ciy Jia — Jia) dwa
= D (i A Ci T — Jua) dwn + 200 (i Aui Cig Tip — Jor) dy
= 2% (23 Aui Cis(Ba — 220 (Jiro m)wh) — Jo) dun
+ D2 (XjiAwiCiiTpom) — Jeow) dwy
= > (Aag — Dijr Aei Ciif(Jjpo m)wkt — Jo 0 ) dws
+ > (i A Cii(Jjpom) — Juo ) dw,
= 20 (2 (Jorom)ws — Dsjr Avi Cif(J e 0 m)wy) dun
+ 2 (25 A Ci(Jjrom) — Jurom) du,
= 2 (Jaom — 24 Agi Ci(Tjro ) ( 20 wh dw, — duw,)
and this proves (1.7). We note that using K,. one part of (1.6) becomes

(16") o = T KaCuy

We now describe the notion of “second order tangency” for elements of
G(Go(M)). Let ¢ be a non-singular 1 : 1 C* map of a neighborhood U of
0in R? into M. Then, as above, ¢ gives rise to a map ¢’ of G,(U) — G,
(M), defined by

¢‘,(xy P) = (¢(x)a b P)'

For each ¢t ¢ U we define P,(t), a subset of Rf (R} denotes the tangent space to
R? at t), by

P = sp{ 2 (0, 2 )
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where sp denotes ‘‘the span of” and the u; are the usual coordinate functions
on R%. Then we define
¢: U — Gp(M) 1t — ¢'(¢, P(t))

i.e. if ¢ is the map of U — G,(R") defined by

v = (i Sp{a%l @, o))

§ =90y
Finally we define ¢’ : U — Go(Go(M)) by
¢'(t) = ((8), x RY).

DerintTioN. Let (m, P, Q) € Gy(Go(M)). Then (m, P, Q) is second order
tangent to a g-dimensional submanifold of M iff there exists a non-singular
1:1 C” map ¢ of a neighborhood of 0 in R? into M such that ¢'(0) =
(m, P, Q).

Remark. This notion of second order tangency is relative to ¢ and p < ¢
and is really second order in some directions and first order in others. This
imprecise statement can be made precise in, among other ways, terms of the
coordinate systems introduced below for I,,(M). There is another (and
different) notion of second order tangency in terms of G,(Gy(M)) but we
shall not consider that.

We now wish to do the following things: (1) show that ¢4 at (0, P,(0)) is
determined by ¢« at 0; (2) express integrability in terms of coordinate systems
and use that to show I, (M) is asubmanifold of G(Gp(M)); (3) prove this
kind of second order tangency equivalent to integrability. We now turn to
the first of these.

Let ¢ and ¥ be as above, with ¢ = ¢’ o ¢. Let {wa. , wi} be the coordinate

then

system of G,(R?) associated with the usual coordinate system u;, -+, ¥,
of R?, using theset I = {1, --- ,p} asasubsetof {1, ---,¢};thusl <a <Lyg,
1<¢<p,p+ 17 < g Trivially,
a a
YV oue ~ Gw,

50 to prove ¢x at (0, P,(0)) is determined by @ at 0 it is sufficient to prove
the

# (32 ©,p,000)

determine the
i}
o (32 0,,0).

For this let {xs} be any coordinate system of M at m = ¢(0) such that ¢’(0)
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lies in the domain of the associated coordinate system {ys, yi}. We are now
taking J = {1, --- , p} asasubset of {1, --- ,d},501 <b<d,1<j<p,
p+1<s<d. Using(1.2)and (1.6) and the fact that the wi(0, P,(0)) = 0
we find, at ¢’(0, P,(0)),

= Z J5(0) :99—
b
" 9J s 0 km
(16”) + 2 (252 (0)C; = 2 Ju(0)Cir 5 (0>ij) 3

r 9
¢* 5‘17; (0, Pp(o)) = ; (Jsr(O)Cij - kzn: an(O)anJkr(O)Cij) 5@2

wherenow 1 <a < q,1 b0 d,1 L 0,5,kn, <p,p+1<r<qgp+1<L
s < d. From these it is clear that ¢+(0) is determined by the

o (a—f; (0, 2,(0)).

We shall need below certain coordinate systems for Go( G»(M)) and we now
introduce them. Let {x;} be any coordinate system of M, and let {ys, ¥’}
be the associated coordinate system of Gp(M) (formed using the subset
I=1{1---,p} Of{]-’ <,d})with1 <b<d, 1 <ji<pp+1<s<d
In the rest of this section these indices will always have these ranges. The
{y» , ¥} now generate, by the same process, a coordinate system for Go(Go(M))
whose functions we denote by 2 , 2! , 3% , 2 where 1 < a < ¢, ¢ +1 < t < d;
this notation will also be kept fixed in the rest of this section. These functions
are hence defined by

% =1Yor, z=yion

- ay (m, P) + T #(m, P, Q) - S, (m, P)
1.8 ¢

+Zz$“(m P, Q) (m P)eQ

We shall refer to these {ys , ¥} and {25, 2} , 2% , 22} as the y and z coordinate
systems associated with the 2-coordinate system {zs}.

We now use (1.6) and (1.8) to express ¢4 in terms of these z-coordinates in
the special case where

(A) Taop =u, ifl <a<aq.
Note that (A) implies
Joa = &, at all points in the domain of ¢,if 1 < a,b < g¢.
Let fi = 2,0¢ (¢ + 1 < ¢ < d) and we now express (1.6) in terms of these
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ft. First, using (A), (1.2) gives

Ay = w; fp+1<s<gq
= "+Z,:<au, 1r>fw, ifg+1<s<d,
By = Cij = bij
and (1.4) gives (because of (A))
yiod' = Ay.

So (1.6) becomes

oh = L ;("f‘ow)i

we Ve e 3Y:
. ', ) ,-) 9
(1.6A) +Z<a o +Z<6u,6u,, ™)) 55
s = o+ 2 (o) o
dwi ayr Uy s’

With (1.8) this shows, under assumption (A), that at (m, P, Q) = ¢'(u),
a i)
zt(m7 P, Q) = 5% (u)

(1.9) 2°(m, P,Q) =0 fp+1<s<gq

= O () igt1<s<d
u; Ou, - =

Lemma 1.2,  Let {3} be any coordinate system of M. Let
{an, 2] , 2 , 23}
be associated z-coordinate system of Go(Gp(M)) and let
{ws, i, 0}, wi'}

be the coordinate system of Go(Gp(M)) associated to the {xs}. Let (m, P, Q) €
G(G,(M)) be in the domain of this z-coordinate system and (m, P, Q) €
Go(Gp(M)) be in the domain of this w-coordinate system. Then Qo C Q iff both
the following hold:

(a) wt(m, P, Q) — ﬁt(m, P,Q) = 2_1wi(m, P, Qo)zt(m, P, Q)

(b) wi(m, P, Q) —2'(m, P,Q) = Zzwz(m,P Q0)2'(m, P, Q)
where1 <4, <p,¢+1<t<d,p+1<I<¢gp+1<s<d

Proof. The functions of the w-coordinate system are w,, wi, W, wi
(1<14,7<p,p+ 1< s<d)andare defined (via the y-coordinates of G,(M)
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obtained from the z-coordinates of M) by

— ” T 0 ”
Wa = Yoo T, Wy = Ysom

(m, P) + Z +(m, P, Qo) = (m, P)

+Zw(mPQo) (mP) Qo

where =" is the projection of G,(G(M)) — Go(M).

Consider now any (m, P, @) in the domain of this z-coordinate system and
any (m, P, Q,) (with the same (m, P)) in the domain of this w-coordinate
system. Let fi, -« -, f, be the elements of @ that project to

d d
é'!;l(m;P))7a_yq(m’P)

under the usual projection of the tangent space at (m, P) onto the span of

those (m, P)andlete, --- , e, be the elements of @, that project to

d
(%(m’P)”b?p(m’P)

under the corresponding projection onto these. Clearly @ C @ is equivalent
toe; — fie@, for 1 < 7 < p, so we now consider the meaning, in terms of
our coordinates, of the statement that these e; — f; ¢ Q. The statement that
e; — fi € Q is equivalent to

ei—fi=2.cifs, 1<i<p1<a<yq

for some real numbers ¢;. In terms of coordinates this says, at (m, P, @),

Z (mPQo (mP)+Zw(mPQo) (m,P)
—Z Z(m, P, Q) 5 (mP) Zzi‘(mPQ) (mP)

=;c$<a%(m,P)+‘tL tm, P, Q) o (m, P)
ja D 4
+%;zs (m’I,Q)('Tyz(m’P)

where1 <72,/ <p,1<a<Lq,p+1<s<d,q+1<it<d If1 <a<lyp
there is no 9/9y, on the left side, hence
ci=0 ifl1<4a<p.
If p + 1 < a < ¢ then we have, by equating coefficients,
= wy(m, P, Q) ifl1<i<pp+1<a<yq
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Hence the preceding relation becomes

2 wi(m, P, Qo) . (m P) + Zw ‘(m, P, Qo) ;i (m )
- Z zi(m, P, Q) (m P) — Zz ‘(m, P, Q) (m, P)
Z l(m’ P QO <@—l (ma P) + 2; (m) P Q) (m7 P)

+ Zz’(m P,Q) 5 (m,P))

where1 <4,/ <p,p+1<s<d,g+1<t<d,p+1<L1<q Equating
coefficients now gives (a) and (b). Reversing the argument gives the con-
verse.

As a corollary of this lemma we can give a coordinate characterization of the
integrable elements of Go(G,(M)) (for those elements that lie in the domain
of the coordinate system considered).

CoroLLARY. The integrable elements of Go( Gp(M)) which lie in the domain
of such a z-coordinate system are exactly those which satisfy the following set of
relations:

(a') 2} —F = D21 %

(b) 2 —2l' = Diziel — Duadz)
wherel < 4, j<p,¢+1LZ5tLd,p+1LI<Lgp+1<sZd

Proof. First suppose (m, P, Q) is integrable and lies in the domain of this
coordinate system. Let (m, P, Qo) ¢ I, (M) with @, C @, and let the w-co-
ordinates be as in the lemma. Because 7xQo = P it is clear that (m, P, Q) is
in the domain of this coordinate system. By [I] we know that integrability
of (m, P, @) implies

wi(m, P, Q) = wi(m, P, Q) and wi(m, P, Q) = wi'(m, P, Qo).
By definition we have
wi(m’ Pa QO) = y:(m’ P) = zﬁ(m, P’ Q)

and these, with (a) and (b) of the lemma, give (a’) and (b’) at (m, P, Q).

Now suppose (a’) and (b’) hold at (m, P, Q). Thenny @ hasdimension ¢
because (m, P, @) is in the domain of this coordinate system. We define a
pOint’ (m7 P; QO) EIII,ZI(M) by

wa(m, P, QO) = 2.(m, P, Q),
wi(m, P, Q) = z(m, P, Q),
wij(m: P, QO) = zsj(m: P, Q) + Zl zl(m) P, Q)Zs (m, P, Q)
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By (b') we have wi(m, P, Q) = wi'(m, P, Qo) so, by [I], these define a
unique (m, P, Q) eI, ,(M). By (a’) and (b') it now follows that (a) and
(b) of the lemma hold.

CoROLLARY. [, (M) is a submanifold of Go(Gp(M)).

Proof By (2/) and (b’) we can take the 2, 2}, 2., 2, 25’ with ¢ < j,
and 2!’ for a coordinate system. It is only tedious to show that these over-
lap properly.

TaeoreEM. Let (m, P, Q) e Go(G,(M)). Then (m, P, Q) s integrable iff
it 18 second order tangent to a submanifold of M.

Proof. First suppose (m, P, Q) is second order tangent to a submanifold.
Let ¢ be a non-singular 1 : 1 C* map of a neighborhood of 0 in R* into M
such that ¢'(0) = (m, P, Q). Then 7+« @ = #(0) so 7« @ has dimension g.
Let A be the map of

Rp"'}Rq:(tl’ "'7tp)ﬁ(t1’ "'?tp;O,"';O)

and define ¢ = ¢o A. Clearly ¢« R{ = P and we define Qo by ¢”(0) =
(m, P, Qo), thus (m, P, Q) e I, ,(M). It is trivial that @, C @, hence
(m, P, Q) is integrable.

Now suppose (m, P, ) is integrable. Choose any coordinate system
{xp} of M at m such that all 2,(m) = 0 and

P = Sp{g% (m),“',a%u (m)}
(1) d d
T,Q = Sp{é;l (m),-- ';5&: (m)}

We again let our indices have the ranges 1 < 7, < p,p + 1 < s < d,

g+1<t<d,1<a<q1<b<d Wenow consider the associated y and
z coordinate systems. By (1) we have

2i(m, P, Q) = yi(m,P) =0 for all s, 7,
2i%(m, P, Q) =0 for all ¢, 7.

Because (m, P, Q) is integrable this, with (a’) and (b’) of the first corollary
above, gives

(3) zt(m: P, Q) = z:(my P,Q) =0, J(myP Q) = R (m7P Q).

Now let ¢ be any C map of a neighborhood U of 0 in R? into the domain of
the {5} and suppose ¢ so chosen that assumption (A) holds, i.e.

(4) Toop =u, ifl <a<yg,

(2)
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hence the Jacobian (J3,) of ¢ (relative to the usual u, and the ;) satisfies:
Joo =8 if1<a,b<L g
at all points of U. Define f; by
fi=x09 ifqg+ 1Lt d
Because of (1), and the fact that all 2:(m) = 0, we have

&(4'(0)) =0, 2l('(0)) =0
and by (1.9),

£(§(0) = L (o)

(5) 2°(¢'(0)) = 0 fp+1<s<p
8 :
'aujaua(o) fot+l<s<d
Hence if we choose the f; so that
% (o) =0 for all a, ¢
Uy

a2ft __ Jia
m(o) = % (m,P,Q)
we see from (1)-(5) that all coordinates of (m, P, Q) are the same as for
¢'(0), 80 ¢'(0) = (m, P, Q) and the theorem is proved.
We now wish to associate with each (m, P, @) eI, (M) a subspace § of
Gp(M ) m,py in such a way that if ¢ is a non-singular C* 1 : 1 map of a neighbor-
hood of 0 in R? into M with ¢’(0) = (m, P, Q) then

dx(Go(RY) 02,0 = Q.

For this purpose we introduce the following notation: if W is any finite-dimen-
sional linear space over R of dimension ¢ > p then g,(W) is the Grassmann
manifold of all p-dimensional linear subspaces of W. So dim g,(W) is
p(g — p). If Pisa g-dimensional subspace of M, then g,(P) is a submanifold
of Gp(M) and we identify its tangent space at P e g,(P) with a subspace of
Gpo(M)m,py. Now given (m, P, Q) ¢ I, (M) we define ¢, a subspace of
Gp(M) m.p) , DY

(1.10) Q=Q+ go(mx Q).

Lemma 1.3. If ¢ 2s a non-singular 1 : 1 C* map of a neighborhood of 0 in
R%into M and '(0) = (m, P, Q) then

dx(Go(RY) 0,2, = Qs
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Progf. 1t will be sufficient to show that the spaces on the two sides of this
equality have the same dimension and that the left side contains the right.
Clearly the dimension of § is ¢ + p(¢ — p), as is the dimension of
Go(RY) 0., » 50 the dimension of ¢x(Gp(RY)w.r,m) is <g + p(g — ).
Hence if we prove the left side contains the right it will follow that these spaces
have the same dimension and the lemma will be proved. To prove the in-
clusion we prove separately that

(@) ¢§<(Gp(Rq)<o,Pp(0>)) 2Q
(B)  ¢x(Go(R)0,p,00) 2 guo(mxQ)p .

Proof of (a). If ¢ is the map of R” — G,(R?) used previously in the
definition of ¢ then

Q = xRY = ¢4 ¥« RY.
Since ¥« R{ is a subspace of Gp(R?),r,w) this proves (a).

Proof of (). We have 74+ Q = 74 xR = 7« o5 ¥x R = ¢4 RS, hence
¢’ carries the fiber of G,(R?) which lies over 0 onto g,(7+« Q). From this
(B) follows.

COROLLARY. If ¢ is a non-singular 1: 1 C* map of L — M, where L and

M are manifolds of dimension >p, then ¢’ is a non-singular map of
Go(L) = Go(M).

Proof. The above formula shows bx preserves the dimension of the tangent
space to Gp(L) at each point.

2. The characteristic vector field theorem
Our object now is to prove the following

TuroreEM. Let M be a manifold of dimension d and p an integer with
0 < p < d. LetUbean open set in do(M) and U = =7 (U) where this =
is the projection of Ipp1o(M) — Gp(M). Let N be @ map which assigns to
each (m, P, Q) € U an element \g of L(Q), with N # 0 for all (m, P, Q) € U,
and such that \ is C* in the sense explained below. Let F be a real-valued C”
function defined on U. Then there exists a unique map V which assigns to each
(m, P, Q) ¢ U a tangent vector in Q, that we denote by V(m, P, Q), such that both

(a) MV)=00nU,

(b) for each (m, P, Q) € U there exists a number G(m, P, Q) such that

do(t, Vm, P, Q) = dF(t) + G(m, P, Q\(t) forall te(

where d\g is explained in the remark below. This V will be C* as a map of U into
the tangent bundle to Go(M) and will have the following property. If ¢ vs any
non-singular 1: 1 map of a neighborhood of 0 in R**" into M such that ¢'(0) =
(m, P, Q) ¢ U and if W is the characteristic vector field of F o ¢’ (in the classical
sense) relative to u = N o ¢’ then ¢x W(0, Po(0)) = V(m, P, Q).
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Remarks. (1) If (m, P, Q) € I,11,,(M) then w4« Q/P is 1-dimensional so
we can choose T(m, P, Q) € @ such that v« T(m, P, Q) ¢ P. Furthermore,
this T(m, P, @) can be chosen locally to depend in a C* fashion on (m, P, Q).
To prove this within the domain of a z-coordinate system obtained as usual
from an z-coordinate system of M we choose

man—Z%mmPQ( wuw+2mmPQ>(mm

+Z@WPQ)(WH>< P)

32/ +1
£, 2,0 L, P+ D P, Q) L (mm)

where, as usual, 1 < 2,7 < p, p —I— 1<s<d,p+ 2<t< d(since now
g = p + 2). This expression shows T'(m, P, Q) ¢ Q. Letting

No= 2iyedyi — dy,
we have

Npra(T(m, P, Q) = Z'y;+l(m, P)2 +1= Zirzi;«l-l(m, P_, Q)2’ +1

2.1
( ) )\t(T(m, P Q)) = zp+l(m> P; Q)

Because the first of these is non-zero we see that 7+ T(m, P, Q) ¢ P. We have
written the second only for later use. We now define the sense in which the
above N\ is C*: for every such C”T, mapping an open set in I, (M) into
Gp(M), (including that T(m, P, Q) ¢ @ — P) the function N(T') is in C”.

(2) We need to explain the d\q used above because Mg fails in two ways to
be a 1-form: it depends on @ and it is only defined for vectors in @. But we
now show that if A1, \; are C* 1-forms of G,(M) such that \; | Q = N2 | Q
then

A\ (@ X @) = dv|(@ X Q).

Proof. Choose ¢ as usual with ¢'(0) = (m, P, Q). Then¢'* d\ = ¢ d\,
on the tangent spaces to G,(R?). Using Lemma 1.3 we have the desired fact.
We then define d\q to be equal to these, but defined only on @ X §. Since the
vectors in (b) lie in @ this explains (b).

(3) Weintroduced, in the previous section, certain functions K, , depend-
ing on two coordinate systems. Because we now have only one value for r,
namely r = p + 1, we shall here denote those functions, obtained from our co-
ordinate system {ys , 2} of Gp(M) and {w, , w1} of Go(R”*") (these being ob-
tained from an z-coordinate system we assume given on M and the usual co-
ordinate system of R?™") by K, ,i.e. K, = K, 1. From the previous section
we have

&N = Ko( D s whin dwi — dwpyr).
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Using that dim L(Q) = 1 and (2.1) we have
(2.2) Ki/Kp = 287/( 200 (2p41)* + 1)
This will be used below.

(4) It follows from (2.2) that u = ¢’ *\ of the theorem will be every-
where 0.

Proof of theorem. Fix any (m, P, Q) ¢ U n (domain of a fixed z-coordinate
system). Choose ¢ a non-singular 1:1 C* map of a neighborhood of 0 in
R”" into M usch that ¢'(0) = (m, P, @), and let 4 = ¢'*\. Let W be the
characteristic vector field of F o ¢’ relative to u and we now define

V(m, P, @) = ¢« W(0, Py(0)).

It is immediate from the properties of a characteristic vector field that
V(m, P, Q) satisfies (a) and (b). We shall now show, by a coordinate cal-
culation, that V(m, P, @) depends only on (m, P, Q). This plusuniqueness of
characteristic vector fields (in the classical sense) will show ¥V is unique and
our coordinate calculation will also show V is C*.

In making the coordinate calculation we first make it using not the charac-
teristic vector field W of F o ¢ relative to u = ¢’*\ but, instead, the character-
istic vector field W, relative to

po = (20 Whra dw; — dwpyr).

Since u = K,y po we shall then have (see [I]) W = Wo/Ky1. By formula
(2.1) of [1],

ZG(FOdJ) ] Za(Focp’) 9

T dwhy dw: T dw:  dwhy

2(( ) W= (o)

From (1.6) and (1.6’) and the definition of the 2 and zi* we have

¢:|=W0= Z K*'Cwa.ﬂ",‘”( +Z—a +Z ]aa .7)
aig’j’ 87 Y
- (s z*"’F % b ) K,

iJ J .
ais) 8’j’ 6

We now break the sum on a into the two parts,a < panda = p 4+ 1, and we
consider these formulas only at ¢'(0, P,(0)), where all the w’,; are 0. So
(1.2) gives, at such a point, A, = Joiom, Bjs = Jji0m, DoiJwi Cij = &; ;also
(1.4) thengivesyio ¢’ = D ;J.: Ci;. Hence the preceeding formula becomes,
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at ¢x(0, P»(0)),
6xWo =2 Ko 3 ( +Z-""+Z )
8’y 6y, t 87 Ys
irt1 9

2( +Z-’2"’ >6

Yt Ik ays
GF a
_ K -p+1 J p+1 - — .
Z zp+1 (6 Yo + ; + g] ays ayz

Because the functions K, occurring here may depend on more than just the
coordinates of (m, P, @) this expression may depend on more than just
(m, P, Q). But this W, was formed using uorather than y. Since y = Ky po
we know from [I] that W = W/K,s0 if W is used instead of W, then all these
coefficients K, are divided by K,.1. We then see from (2.1) that we get co-
efficients that depend only on the (m, P, Q). This proves the theorem. We
note that we could get an explicit coordinate expression for V.
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