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Introduction
In an attempt to formulate geometrically, and to generalize, the notion of

convexity introduced by Hormander in [V, Chapt. VIII] for a partial differ-
ential operator we have found it necessary to consider the characteristic vector
field of a first order partial differential equation in a more general context than
usual. This paper is devoted to this formulation of characteristic vector
fields.
The classical notion of a characteristic vector field can be formulated in the

following way. Consider a (p + 1)-dimensional C real manifold M and the
bundle G,(M) of p-planes over M, i.e. G,(M) consists of all (m, P) where m is
any point of M and P is any p-dimensional subspace of the tangent space to
M at m. One makes G(M) into a C manifold, and a bundle over M, in a
natural way. There are certain natural 1-forms on G,(M) that we call lift-
forms and any two of these differ only by a factor which is a C function. If
F is a real-valued C function defined on an open subset U of G(M) and if we
choose any one of these lift-forms, ), then there is a natural way to associate
with F a unique C vector field V, defined on U, which is called the character-
istic vector field of F, relative to },. If a different ) were used then a different
vector field would be obtained but it would only differ by a factor which is a
C function. Using V one can solve easily the non-characteristic Cauchy
problem for the partial differential equation defined by F, and it is for this
purpose that this V was introduced.

This is one way of phrasing the classical reduction of such a partial differ-
ential equation to an ordinary differential ec]uation, ttormander, in IV], has
also used this V for expressing a convexity condition, altho he has not described
V in these terms. The aim of this paper is to express and understand V in a
sufficiently general context to give a geometric interpretation to Hormander’s
convexity condition. We shall not discuss convexity in this paper, however.
We now explain briefly the more general context in which we shall con-

sider this V. Consider a d-dimensional manifold M, where d > p -t- I and the
bundle G,(M) of p-planes over M. So G(M) now contains, in some sense,
"many more" p-planes than in the previous case where d p 1. Let F be
a C real-valued function defined on an open subset U of G(M). There is no
notion of characteristic vector field in this case. But if one considers a 1 1
non-singular map of R+1 - M it induces, in an obvious way (via its differ-
ential) a map ’ of G(Rp+I) - G(M). The image of G(R+) will be a sub-
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manifold of G(M) which we may consider as a "copy" of G(R+1) and F,
considered only on this copy, will. have a characteristic vector field on the copy.
One can say this a little more carefully by considering F o ’, then its charac-
teristic vector field W, then define V W (the choice of lift form must also
enter when we come to a precise description of this). For every such we
obtain (using the same F) such a V and, if two different agree on a neighbor-
hood of a point ofR+1 then the corresponding V’s will agree on a neighborhood.
So the question arises: What infinitesimal data about at a point are needed
to determine V? Then one wishes to express V in terms of the relevant in-
finitesimal data without reference to any such . The relevant infinitesimal
data to determine V (still using a fixed F, and depending on certain consider-
ation of lift forms) is an integrable point of G+I(G(M)), i.e. for each in-
tegrable point (m, P, Q) e G+I(G(M) we obtain a V(m,P, Q) in the tangent
space to G(M) at (m, P), this V depending on the given .F. So the object of
this paper is first to give the needed information about integrable points of
G+(Gp(M) ), and their relation to lift forms, and then to prove the existence
of this V, depending on a given F defined on a subset of G(M), which maps
the manifold of these integrable points into the tangent bundle to G(M).
We mention that by using the bundle of lines over G(M) instead of the
tangent bundle we could state a theorem in which lift forms would not need
to be mentioned, but that is an obvious consequence of our theorem.

1. Integrable points of G(G,(M)), if q > p

In this section we discuss, and prove equivalent, several notions of integra-
bility for elements of Gq(G(M)). In all this M will be a fixed manifold of
dimension d and p, q will be integers with 0 < p

_
q

_
d. The case where

p q has been discussed in [I] and we make use of facts proved there, includ-
ing, in particular, the lift forms discussed there.

DEFINITION. An (m, P, Q) e G(G(M)) is integrable iff . Q has dimension
q and Q contains a p-plane Q0 such that (m, P, Q0) is an integrable element of
G(G(M) ), in the sense of [I]. We denote the set of integrable elements of
Gq(G (M)) by Iq.p(M). (This is the projection map of G(M) -- M.)

In [I] we denoted the integrable elements of G(G(M)) by IG(M)
but here we shall write I.(M). We recall from [I] that one definition of an
integrable element (m, P, Q0) of G(G(M)) was the following: . Q0 has
dimension p and all C lift forms k and theird vanish on Q0. We shall charac-
terize, in Lemma 1.1 below, the integrable elements of Gq(G(M)) in terms
of lift forms but for this we need a definition. Consider any (m, P, Q) e

Gq(G(M) ). We define

L(Q) [JQ ) is a lift form at (m, P)]

i.e. L(Q) consists of all restrictions of all lift forms to Q. We recall from [I]
that a lift form at (m, P) is a linear function on the tangent space to G(M)
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at (m, P) with the property that k(t) 0 if v. e P. So L(Q) is the set of
all restrictions of such ) to Q (it would be more explicit to write L(m, P, Q) ).

LEMMA 1.1. Let (m, P, Q) Gq(G(M)). Then (m, P, Q) is integrable iff all
the following three conditions hold:

(i) . Q has dimension q,
(ii) dimL(Q) q-p,
(iii) if a is any C lift form and s, are any tangent vectors to G(M) at

(m, P) then )(s) )(t) O for all) L(Q) implies da(s, t) O.

Proof. First suppose (m, P, Q) is integrable. Then (i) holds by definition.
Let Q0 be an integrable p-dimensional subspace of Q. Because each ) e L(Q)
vanishes on Q0 each such ) gives rise to a unique linear function on Q/Qo, thus
giving us an isomorphism A of L(Q) into the dual space of Q/Qo. We now show

(a) if t’ Q/Qo, with t’ O, then there exists a },’ in AL(Q) such that
,’(t’) o.

This clearly implies AL(Q) is the dual space to Q/Qo, so AL(Q) has dimen-
sion q p, and because A is an isomorphism this will imply that L(Q) has
dimension q p, proving (ii). To prove (a) it is sufficient to prove

(a’) if Q, Qo, then there exists a }, e L(Q) such that },(t) 0.

If e Q, Q0, then, because r. has dimension q, ’. is an isomorphism on
Q, so r. e P. Because the set of lift forms at (m, P) is the annihilator of -lp
this shows some lift form does not annihilate t, proving (a). Hence (ii) is
proved. We have incidentally proved that

(b) Qo [teQ IN(t) 0 for all)eL(Q)].

Because of (b) and the characterization of integrable elements of
G(G(M) by lift forms see [I] we have (iii).
Now suppose (i), (ii), (iii) hold. So . Q has dimension q. Define

Q0 by (b). Because dim Q q and dim L(Q) q p we see that dim Q0 p.
Because all lift forms at (m, P) vanish on Q0, by definition, and because we
are assuming (iii) we see, by the characterization of integrable elements in
terms of lift forms, that (m, P, Q0) is integrable.

In [I] the term "integrable" was used for those elements of G(G(M))
that were capable of being "second order tangent" to a p-dimensional sub-
manifold of M. We shall show below that the elements of Iq.v(i) are the
elements of Gq(G(M)) that are capable of being "second order tangent"
but in a more complicated sense. This requires some coordinate calculations
whose purpose is the following. If is a non-singular C map of a manifold L
into a manifold M then induces, thru its differential ., a map r of
G(L) -* G(M). The object of this calculation is: given the Jacobian of
relative to given coordinate systems of L and M, to find the Jacobian of ’relative to the associated coordinate systems of G(L) and G(M).
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Let L nd M be mnifolds of dimensions c nd d, nd non-singular
1 1 mp of neighborhood of L into neighborhood of m e M. Let Ira}
be coordinate system of L t nd {x} coordinate system of M t m.
We further ssume that the domain of is the domain of the {v} nd that
mps this domain inside the domain of the [x}. Let J be the Jacobin of
relative to these coordinate systems, i.e.

J (Jba), Jba O(Xb o )/OXa

1 a c, 1 b d). So the Jba re functions whose domain is the domain
of . Because is assumed C nd non-singular its differential, ., induces
mp, that we denote by ’, of - (domain of ) into G(M), where z, here
nd throughout this pper, denotes the projection of Grssmnn bundle onto
onto its base manifold. That is, ’ is defined by

’(1, P) (l, . P).

Let I be ny subset of {1, ..., c} with p elements nd K ny subset of
1, d} with p elements. The {Va} nd I give rise to coordinate system
{w, w} of G(L) whose domain we denote by Q nd the {x} nd K give
rise to coordinate system {y, y} of G(M) whose domain we denote by
Q. These were defined in [II] nd for the cse where I K 1, p}
were defined in [I] (the definition for general I, K being only trivially different).

K iHerel a c, ieI, reI,1 bd,jeK, se being the complement
of I in 1, c} nd K being the complement of K in 1, d[ ). Then ’hs Jcobin J relative to these ssocited coordinate systems nd we wish
to cIculte J’. J’ (J) will be mtrix of functions with running thru
the set

{1, d} o [(s,j) j eg, s eK]

and a running thru the set

{1, c} o [(r, i) ieI, r eI].

These functions re defined by

Jba O(yb o ’)/OWa

J,, o(y ’)/o

],,, o(y ’)/o

So we first need formulas for the y o ’ nd y o ’. These hve been der-
ived in Section 1 of [II] nd re not difficult to obtain so we ssume them
here. (To relate this discussion to that in [II] one tkes our , to be the
T of [II] and our J for the tba of [II].) To express the desired formulas we
introduce the following uxiliry functions, A, B, C.
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A Jo r + .,,. (J,.o r)w,.

.) B J o + 72 (& o )w
BC

where i e I, r e I, j e J, e K, s e K. One hs (e.g. see formulas (1.4)
(.5) of

(1.3) Q a (’)-(Q) [(/, P) e G(L) B is defined nd C exists].

Then the desired formulas are

(1.4) y o ’ x o o r,

Hence
Jrba J,a o -, .(,.,) 0

j, _, OAi OCi
(1.5) (s.j),a

"
Cj + , A,

OWa

j,(.),(,.) OA OC
k k

where k e I. We use the trivial formula for the derivative of the inverse of a
matrix of functions, which says that if BC I then C -CBC (primes
denoting differentiation). Using it the above gives

OA(1.5’) J(,j>,a C A,C OB C
where i e I, k e K, n e I. Similarly we can rewrite the last formula in (1.5);
from the definition of the A, and B we have

oA./Ow (J. o ), OS/O (J )

Together these give

(1.5") J’(,.,),(,) (J o )C A, C(J o z)C

where again k e K, n e I. These give

o _Z(Jao) 0

(.)

Oyi
g"where, asabove, 1 g a c, 1 N b N d, ieI, neI, reI,jeK, keK, se
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We now use these formulas to show" if k is any lift form of G(M) and
is as above then 4’*k k o 4’ is a lift form of G(L). One could prove this
directly from the definitions but we prefer to prove it by coordinate calcula-
tion because we wish later to use the coordinate formula that we obtain. So
we now prove the following, in which we continue with the notation used
above" if

k _, y dy dy
then

(1.7)

where
K, J, o (y o ’)(J. o v)’.

Proof. Using (1.2), (1.4) and (1.5),

h’*k , y o ’)h’* dy ’* dy,

A, C,) J. dw J: dw

,A., C(B (J )w) J:) dw

k(A. A. C(J )w J. ) dw

and this proves (1.7). We note that using K,, one part of (1.6) becomes

o o

We now describe the notion of "second order tangency" for elements of
Gq(G(M)). Let 4 be a non-singular 1 1 C map of a neighborhood U of
0 in Rq into M. Then, as above, 4 gives rise to a map ’ of G(U) G
(M), defined by

P) (o(z), P).

For each e U we define P(t), subset of R (R denotes the tangent space to
Rq at t), by

0
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where sp denotes "the span of" and the ui are the usual coordinate functions
on Rq. Then we define

U -+ G(M) ’(t, P(t)

i.e. if b is the map of U -+ Gp(Rq) defined by

(t) t, sp (t),...,0u(t)
then

Finally we define 5’ U Gq( G(M) by

5’(t) (5(t), 5,

DEFiNiTiON. Let (m, P, Q) e Gq(G(M)). Then (m, P, Q) is second order
tangent to a q-dimensional submanifold of M iff there exists a non-singular
1 1 C map of a neighborhood of 0 in Rq into M such that 5(0)
(m,P,Q).

Remark. This notion of second order tangency is relative to q and p < q
and is really second order in some directions and first order in others. This
imprecise statement can be made precise in, among other ways, terms of the
coordinate systems introduced below for Iq.(M). There is another (and
different) notion of second order tangency in terms of G(Gq(M)) but we
shall not consider that.
We now wish to do the following things" (1) show that at (0, P(0)) is

determined by . at 0; (2) express integrability in terms of coordinate systems
and use that to show Iq.(M) is a submanifold of Gq(G(M)); (3) prove this
kind of second order gWgency equivalent to integrability. We now turn to
the first of these.

Let and be as above, with 5 ’ o . Let {Wa, W} be the coordinate
system of G(Rq) associated with the usual coordinate system u, ..., uq
of Rq, using the set I 1, p} as a subset of {1, q} thus I a q,
1 ig p,p+ 1 g r g q. Trivially,

0 0

Oa OWa

so to prove at (0, P(0)) is determined by 5. at 0 it is sufficient to prove
the

4; (0, P(O))
determine the

For this let {xbl be any coordinate system of M at m (0) such that r(0)
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lies in the domain of the associated coordinate system {yb, y}. We are now
taking J {1, P/ as a subset of {1, d}, so 1 <_ b _< d, 1 <_ j < p,
p -t- 1 _< s _< d. Using (1.2) and (1.6) and the fact that the w(0, P(0) 0
we find, at ’(0, P(0)),

0 (0, P(0)) Jba(0) 0
Oy,

(1 6’) -t-- Z (O)Ci J,i(O)C,k OJk., ,. - (O)C Oy

0 0

where nowl aq, 1 gbd, 1 i,j,k,n, gp, p+l grq,p
s g d. From these it is clear that (0) is determined by the

We shall need below eergain eoordinage sysgems for ((M) and we now
ingroduee ghem. Leg {} be any eoordinage sysgem of M, and leg {,
be ghe assoeiaged eoordinage sysgem of G(M) (formed using ghe subseg

I= {1,...,p/of{1,...,d})wighl NbNd, 1 NjNp, p+ I
In ghe resg of ghis seegion ghese indices will always have ghese ranges. he,} now generage, by ghe same process, a eoordinage sysgem for G(a(M)
whose funegions we denoge by, ,, , , where I N N , + 1 N
ghis nogagion will also be kepg fixed in ghe resg of ghis seegion. hese funegions

are hence defined by

z. y. o

(n, P)0 (, p) + z,(, P, Q)
(1.8) Oya

0 (m, P) Q+ za(’ P, Q)

a aWe shall refer to these {y, yj and {z z, , z, as the y and z coordinate
systems associated with the x-coordinate system x}.
We now use (1.6) and (1.8) to express in terms of these z-coordinates in

the special case where

(A) xo=u iflgaq.

Note that (A) implies

Ja ta at all points in the domain of,if 1 _< a,b _< q.

Let ft xt o dp (q -t- 1 <_ <_ d) and we now express (1.6) in terms of these
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ft. First, using (A), (1.2) gives

Ai w
Of.o +Ou

B C
and (1.4) gives (because of (A))

So (1.6) becomes

ifp+l

o wr ifq- 1 _< s_< d,

yoO’ Aj.

o r + \OurOua r y
Oy

With (1.8) this shows, under assumption (A), that at (m, P, Q) $’ (u),

Oft (U)zt(m, P, Q)

(1.9) jaz (m,P,Q) 0 ifp - 1 _< s _< q

(u) ifq+l <_s<_d.
Out Ou

LEMMA 1.2. Let xb} be any coordinate system of M. Let

a{z, z, ,
be associated z-coordinate system of Gq(G(M) and let

{wb,w, ,w

be the coordinate system of G,,(G,(M) associated to the {x}. Let (m, P, Q)
Gq(G,(M)) be in the domain of this z-coordinate system and (m, P, Qo)
G,( G,(M) be in the domain of this w-coordinate system. Then Qo c_ Q iff both
the following hold:

(a) - -’ -zt(m, Q)wt(m, P, Qo) P, w(m, P, Qo)(n, P, Q)
(b) w,(m, P, Qo) z,i(m, P, Q) w-(m, P, Qo)z(m, P, Q)

where1 <_ i,j <_ p, q q- 1 <_ <_ d,p-k 1 <_ <_ q, p q- 1 <_ s <_ d.

Proof. The functions of the w-coordinate system are w, w, , w
(1 _< i,j <_ p, p q- 1 <_ s <_ d) and are defined (via the y-coordinates of G(M)
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obtained from the x-coordinates of M) by

Wa Ya 7
tp w y

O (m,P)+ _i 0
Oyi

w(m, P, Qo) - (m, P)

+ w(m, P, Qo) 0
,. - (m, P) e Qo

where " is the projection of Gp(Gp(M)) - G(M).
Consider now any (m, P, Q) in the domain of this z-coordinate system and

any (m, P, Q0) (with the same (m, P)) in the domain of this w-coordinate
system. Let fl, fq be the elements of Q that project to

O (m,P) 0_(m,p)
Oyl Oyq

under the usual projection of the tangent space at (m, P) onto the span of
0

those (m, P) and let e, e be the elements of Q0 that project to

O___ (m, p) 0 (re, P)
Oy Oy,

under the corresponding projection onto these. Clearly Q0 Q is equivalent
to e f e Q, for 1

_
i

_
p, so we now consider the meaning, in terms of

our coordinates, of the statement that these e fi Q. The statement that
e f e Q is equivalent to

e-- f ac?fa, 1 <_ i <_ p, 1 <_ a <_ q

for some real numbers c. In terms of coordinates this says, at (m, P, Q),

_, 0 ’i 0 (re, P)w,(m, P, Qo) (m, P) + w (m, P, Qo)

(m, P, Q) o
z. m P, Q) -0-(m, P) 0

m, P)

P) + (m,P, Q) 0

-t (re’P)

z8 (m, P, Q) ,-
where i _< i,j <_ p, 1 <_ a <_ q,p+ 1 <_ s <_ d,q+ 1 <_ <_ d.
there is no O/Oya on the left side, hence

c 0 if1 _< i,a <_ p.

If p -t- 1 _< a <_ q then we have, by equating coefficients,
-i

Ci Wa(m, P, Qo)

Ifl _a<:p

if1 <_ i<_ p,p + 1 <_ a <_ q.
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Hence the preceding relation becomes

_i 0 0w(m, P, qo) (m, P) - w, (m, P, qo) -o (m, P)

- (m, P, Q) 0 0
zt (m, P) z8 (m, P, Q) (m, P)

-(m, P, Qo) ( o o
w (re, P) - (m,p,Q)(m,P)

o (m, P))-t- z(m, P, Q)

wherel<_i,j_<p,p-l_<s_<d,q+l_<t_<d,p+l_<l_<q. Equating
coefficients now gives (a) and (b). Reversing the argument gives the con-
verse.
As corollary of this lemma we can give a coordinute churacterization of the

integrable elements of Gq(Gp(i)) (for those elements that lie in the domain
of the coordinate system considered).

COROLLARY. The integrable elements of Gq( Gp(M) which lie in the domain
of such a z-coordinate system are exactly those which satisfy the following set of
relations:

-i -l

(b’) z-z’ Ezz’, Ez’z
where l <_ i,j <_ p,q + 1 <_ <_ d,p + 1 <_ <_ q,p + 1 <_ s <_ d.

Proof. First suppose (m, P, Q) is integrable and lies in the domain of this
coordinate system. Let (m, P, Q0) e I.(M) with Q0 c Q, and let the w-co-
ordinates be as in the lemma. Because r.Q0 P it is clear that (m, P, Q0) is
in the domain of this coordinate system. By [I] we know that integrability
of (m, P, Q0) implies

w,(m, P, Qo) w,(m, P, Qo) and w,(m, P, Qo) w, (m, P, Qo).

By definition we have

ws(m, P, Qo) y(m, P) z,(m, P, Q)

and these, with (a) and (b) of the lemma, give (a’) and (b’) at (m, P, Q).
Now suppose (a’) and (b’) hold at (m, P, Q). Then r. Q has dimension q

because (m, P, Q) is in the domain of this coordinate system. We define a
point (m, P, Qo) I.(M) by

wa(m, P, Qo) Za(m, P, Q),

w(m, P, Oo) z(m, P, Q),

w(m, P, Qo) z(m, P, Q) - z(m, P, Q)z*(m, P, Q).
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jiBy (b’) we have wJ(m, P, Qo) w8 (m, P, Qo) so, by [I], these define a
unique (m, P, Q) e I.(M). By (a’) and (b’) it now follows that (a) and
(b) of the lemma hold.

COROLLARY. Iq.(M) is a submanifold of Gq(G,(M) ).
-iProof. By (a’) and (b’) we can take the zb, z, zt, zt, z8 with i

_
j,

and z for a coordinate system. It is only tedious to show that these over-
lap properly.

THEOREM. Let m, P, Q) e G(G(M ). Then m, P, Q) is integrable iff
it is second order tangent to a submanifold of M.

Proof. First suppose (m, P, Q) is second order tangent to a submanifold.
Let be a non-singular 1 1 C map of a neighborhood of 0 in Rq into M
such that 5’(0) (m, P, Q). Then . Q .(0) so . Q has dimension q.
Let A be the map of

RR" (t, ...,t)-- (t, ...,t,O, ...,0)

nd define $ OoA. Clearly .R’ P and we define Q0by $’(0)
(m, P, Q0), thus (m, P, Qo)eI.(M). It is trivial that Q0 Q, hence
(m, P, Q) is integrable.
Now suppose (m, P, Q) is integrble. Choose ny coordinate system

xbl of M t m such that all x(m) 0 nd

{0 (m) 0 (m)}P sp "’
(1)

-.Q sp
o (m), ’Ox

We again let our indices have the ranges 1

_
i, j

_
p, p + 1 <: s

_
d,

q - 1

_ _
d, 1

_
a

_
q, 1

_
b

_
d. We now consider the associated y and

z coordinate systems. By (1) we have

z(m, P, Q) y(m, P) 0 for all s, j,
(2)

z (m, P, Q) 0 for all t, j.

Because (m, P, Q) is integrable this, with (a’) and (b’) of the first corollary
above, gives

-i ji(3) zt(m, P, Q) zt(m, P, Q) O, zJ(m, P, Q) z, (m, P, Q).

Now let be any C map of a neighborhood U of 0 in Rq into the domain of
the {x} and suppose so chosen that assumption (A) holds, i.e.

(4) Xa Ua if 1

__
a

_
q,
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hence the Jacobian (J) of (relative to the usual u and the x) satisfies"

J= if1_< a,b_< q

at all points of U. Define f by

f= xo if q+ 1_< t_< d.

Because of (1), and the fact that all x(m) O, we have

o, o
and by (1.9),

of, (o)

(5) o

Ou Ou

Hence if we choose the f, so that

Of, (0) 0

ifp+ l <_s <_p

(0) ifq+l <_.s<_d

for all a,

zt (m, P, Q)
uj OUa

we see from (1)-(5) that all coordinates of (m, P, Q) are the same as for
’(0), so ’(0) (m, P, Q) and the theorem is proved.
We now wish to associate with each (m, P, Q) e I,(M) a subspace ( of

G(M),p) ia such a way that if is a non-singular C 1 1 map of a neighbor-
hood of 0 in R into M with ’(0) (m, P, Q) then

h’. G(Rq) (o..(o)

For this purpose we introduce the following notation" if W is any finite-dimen-
sional linear space over R of dimension q > p then g(W) is the Grassmann
manifold of all p-dimensional linear subspaces of W. So dim g,(W) is
p(q p). If P is a q-dimensional subspace ofM then g(P) is a submanifold
of G,(M) and we identify its tangent space at P e g(P) with a subspace of
G(M) (,e) Now given (m, P, Q) e I,(M) we define (, a subspace of
G(M) (,e), by

(1.10) ) Q + g(r. Q).

LEMMA 1.3. If is a non-singular 1 1 C map of a neighborhood of 0 in
Rq into M and 6’(0) (m, P, Q) then
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Proof. It will be sufficient to show that the spaces on the two sides of this
equality have the same dimension and that the left side contains the right.
Clearly the dimension of is q q- p(q p), as is the dimension of
G(Rq)(o.e(o)), so the dimension of (G(Rq)(0,e(0)) is _q - p(q p).
Hence if we prove the left side contains the right it will follow that these spaces
have the same dimension and the lemma will be proved. To prove the in-
clusion we prove separately that

(a) dpt, Gp(Rq) (0,(0))) __. Q
() ’,(G(Rq)(o,e(o))) g(r, Q)e

Proof of (a). If k is the map of R --> G(Rq) used previously in the
definition of 5 then

Q 5, R ,R.
Since b, Rg is a subspace of G(Rq)(o.e(o)) this proves

Proof of (). We have r, Q r, 5, R r, , Rg , R, hence

’ carries the fiber of G(Rq) which lies over 0 onto g(r, Q). From this
() follows.

COROLLARY. If is a non-singular 1 1 C map of L -- M, where L and
M are manifolds of dimension >_p, then ’ is a non-singular map of
G(L -- G(M).

Proof. The above formula shows preserves the dimension of the tangent
space to G(L) at each point.

2. The characteristic vector field theorem

Our object now is to prove the following

THEOREM. Let M be a manifold of dimension d and p an integer with
0 < p < d. Let UbeanopensetinJ(M) and r-l(u) where this
is the projection of I+I,(M) ----> G(M). Let ) be a map which assigns to
each (m, P, Q) ] an element ) of L(Q), with N 0 for all (m, P, Q)
and such that is C in the sense explained below. Let F be a real-valued C
function defined on U. Then there exists a unique map V which assigns to each
m, P, Q) U a tangent vector in , that we denote by V(m, P, Q ), such that both
(a) X(V) 0 on U,
(b) for each (m, P, Q) U there exists a number G(m, P, Q) such that

do(t, V(m,P, Q) dE(t) + G(m,P, Q))(t) forall

where d) is explained in the remark below. This V will be C as a map of U’- into
the tangent bundle to G(M) and will have the following property. If is any
non-singular 1 1 map of a neighborhood of 0 in R+1 into M such that 5’(0)
m, P, Q) (,-r and if W is the characteristic vector field of F o ’ (in the classical

sense) relative to t ) ’ then , W(O, P,(O) V(m, P, Q).
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Remarks. (1) If (m, P, Q) . I,+:.(M) then r. Q/P is 1-dimensional so
we cn choose T(m, P, Q) Q such that . T(m, P, Q) .P. Furthermore,

Cthis T(m, P, Q) can be chosen locally to depend in a fashion on (m, P, Q)
To prove this within the domain of z-coordinate system obtained as usual
from an x-coordinate system of M we choose

O p, Q)T(m, P, Q) _, (re, P, Q) -z,+l (m, P) -t z (m, P)i(m

+ z(m, P, Q) (m, P) (m, P)

0 (m, P) + ,,+1,, 0, m, P, Q) (m, P)+ z+l(m, P, Q) - 8 Oy

where, as usual, 1 _< i,j _< p,p-t- 1 _< s_< d,p-t- 2_< t_< d(sincenow
q p + 2). This expression shows T(m, P, Q) e Q. Letting

)8 -’i y dy dy
we have

)+.( T(m, P, q)) y,+.(m, P) -+- 1 .z,+.(m, P, Q)"-t- 1
(2.1)

Z
p+lXt( T(m, P, q) (m, P, Q)

Because the first of these is non-zero we see that . T(m, P, Q) P. We have
written the second only for later use. We now define the sense in which the
above ) is C" for every such CT, mapping an open set in I+.(M) into
G(M), (including that T(m, P, Q) e Q P) the function)(T) is in C.

(2) We need to explain the dhe used above because N fails in two ways to
be a 1-form" it depends on Q and it is only defined for vectors ia Q. But we

Cnow show that if ), h. are 1-forms of G(M) such that
then

Proof. Choose as usual with 5’(0) (m, P, Q). Then ’*on the tangent spaces to G,(Rq). Using Lemma 1.3 we have the desired fact.
We then definea to be equal to these, but defined only on ) ). Since the
vectors in (b) lie in this explains (b).

(3) We introduced, in the previous section, certain functions K,r, depend-
ing on two coordinate systems. Because we now have only one value for r,
namely r p - 1, we shall here denote those functions, obtained from our co-
ordinate system {y, YI of G,(M) and {Wa, W+I} Of G(R+I) (these being ob-
tained from an x-coordinate system we assume given on M nd the usual co-
ordinate system of R+1) by K, i.e. K K.+. From the previous section
we have

4)’*), K,( ’ w,+ dw dw,+).
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Using that dim L(Q) 1 and (2.1) we have

(2.2) gt/g+l Z+I/(Zi (Z:p+l)2 + 1)
This will be used below.

(4) It follows from (2.2) that ’* of the theorem will be every-
where 0.

Proof of theorem. Fix any (m, P, Q) e U n (domain of a fixed z-coordinate
system). Choose a non-singular 1:1 C map of a neighborhood of 0 in
R+’ into M usch that ’(0) (m, P, Q), and let ’*. Let W be the
characteristic vector field of F ’ relative to and we now define

V(m, P, Q) W(0, P(0)).

It is immediate from the properties of a characteristic vector field that
V(m, P, Q) satisfies (a) and (b). We shall now show, by a coordinate cal-
culation, that V(m, P, Q) depends only on (m, P, Q). This plus uniqueness of
characteristic vector fields (in the classical sense) will show V is unique and
our coordinate calculation will also show V is C.

In making the coordinate calculation we first make it using not the charac-
teristic vector field W of F o ’ relative to u ’* but, instead, the character-
istic vector field W0 relative to

o w+ dw dw).

Since K+ 0 we shall then have (see [I]) W Wo/K,. By formula
(2.1) of [I],

From (1.6) and (1.6’) and the definition of the ? and z we have

, Wo gs, cid,
OF 0 0 ja 0

We now break the sum on a into the two parts, a p and a p W 1, and we
consider these formulas only at ’(0, P(0)), where all the w+ are 0. So
(1.2) gives, at such a point, A, J, , B J o r, JC ;also
(1.4) then gives y V’ J, C. Hence the preceeding formula becomes,
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(0, P(O) ),

Oy

+ K, z+ + + +

E. , + + " /
z,+, K, + + z, ayj

Because the functions K, occurring here my depend on more than just the
coordinates of (m, P, Q) this expression my depend on more thn just
(m, P, Q). But this W0ws formed using 0 rather thn . Since K.+ 0
we know from [I] that W Wo/K+ so if W is used instead of W0 then ll these
coefficients K, re divided by K+. We then see from (2.1) that we get co-
efficien that depend only on the (m, P, Q). This proves the theorem. We
note that we could get n explicit coordinate expression for V.
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