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A CONSTRUCTION OF QUOTIENT A∞-CATEGORIES

VOLODYMYR LYUBASHENKO and SERGIY OVSIENKO

(communicated by Jim Stasheff)

Abstract
We construct an A∞-category D(C|B) from a given A∞-cat-

egory C and its full subcategory B. The construction is similar
to a particular case of Drinfeld’s construction of the quotient
of differential graded categories. We use D(C|B) to construct
an A∞-functor of K-injective resolutions of a complex, when
the ground ring is a field. The conventional derived category
is obtained as the 0-th cohomology of the quotient of the dif-
ferential graded category of complexes over acyclic complexes.
This result follows also from Drinfeld’s theory of quotients of
differential graded categories.

Introduction

In [Dri04] Drinfeld reviews and develops Keller’s construction of the quotient of
differential graded categories [Kel99] and gives a new construction of the quotient.
This construction consists of two parts. The first part replaces the given pair B ⊂ C

of a differential graded category C and its full subcategory B with another such
pair B̃ ⊂ C̃, where C̃ is homotopically flat over the ground ring k (K-flat) [Dri04,
Section 3.3], and there is a quasi-equivalence C̃→ C [Dri04, Section 2.3]. The first
step is not needed, when C is already homotopically flat, for instance, when k is a
field. In the second part, a new differential graded category C/B is produced from
a given pair B ⊂ C, by adding to C new morphisms εU : U → U of degree −1 for
every object U of B, such that d(εU ) = idU .

In the present article we study an A∞-analogue of the second part of Drinfeld’s
construction. Namely, to a given pair B ⊂ C of an A∞-category C and its full sub-
category B, we associate another A∞-category D(C|B) via a construction related
to the bar resolution of C. The A∞-category D(C|B) plays the role of the quotient
of C over B in some cases, for instance, when k is a field. When C is a differen-
tial graded category, D(C|B) is precisely the category C/B constructed by Drinfeld
[Dri04, Section 3.1].
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There exists another construction of quotient A∞-category q(C|B), see [LM04].
It enjoys some universal property, and is significantly bigger in size than D(C|B).
However, when C is unital, the two quotient constructions turn out to be A∞-equiv-
alent. When C is strictly unital, so is D(C|B), while q(C|B) is unital, but not strictly
unital.

We apply our construction to the case of practical interest: C = C(A) is the dif-
ferential graded category of complexes in an Abelian category A, and B = A(A)
is the full subcategory of acyclic complexes. When the full subcategory I ⊂ C of
K-injective complexes is big enough (every complex has a right K-injective resolu-
tion) and k is a field, we obtain an A∞-functor i : C→ I, which assigns a K-injective
resolution to a complex. Using it we get a new proof of the already known result:
H0

(
D(C(A)|A(A))

)
is equivalent to the derived category D(A) of A.

Outline of the article with comments
In the first section, we describe conventions and notations used in the article. In

particular, we recall some conventions and useful formulas from [Lyu03].
In the second section, we describe a construction of the quotient A∞-category

D(C|B), departing from an A∞-category B fully embedded into an A∞-category
C. The underlying quiver of D(C|B) is described in Definition 2.1. Its particu-
lar case D(C|C) is s−1T+sC = ⊕n>0s

−1TnsC, where sC = C[1] stands for the sus-
pended quiver C. We introduce two A∞-category structures for s−1T+sC. The first,
C = (s−1T+sC, b) uses the differential b, whose components all vanish except b1 =
b : T+sC→ T+sC, which is the A∞-structure of C. The second, C = (s−1T+sC, b)
is isomorphic to the first via a coalgebra automorphism µ : T (T+sC)→ T (T+sC),
whose components are multiplications in the tensor algebra T+sC. The resulting dif-
ferential b̄ = µbµ−1 : T (T+sC)→ T (T+sC) is described componentwise in Proposi-
tion 2.2. The subquiver D(C|B) ⊂ C turns out to be an A∞-subcategory (Proposi-
tion 2.2). C and C are, in a sense, trivial (they are contractible if C is unital), but
D(C|B), in general, is not trivial. If C is strictly unital, then so are C and D(C|B) and
their units are identified (Section 2.1). Notice that C is never strictly unital except
when C = 0. Nevertheless, C can be unital. When B, C are differential graded cate-
gories, we show in Section 2.2, that D(C|B) coincides with the category C/B defined
by Drinfeld [Dri04, Section 3.1].

In the third section, we construct functors between the obtained A∞-categories.
When B ⊂ C, J ⊂ I are full A∞-subcategories, and i : C→ I is an A∞-functor which
maps objects of B into objects of J, we construct a strict A∞-functor i : C→ I,
whose first component i1 = i : T+sC→ T+sI is given by i itself. The components
of the conjugate A∞-functor ı̄ = µiµ−1 : C→ I are described in Proposition 3.1.
It turns out that ı̄ restricts to an A∞-functor D(i) = ı̄ : D(C|B)→ D(I|J) (Propo-
sition 3.1). If C is strictly unital, then C is unital (and contractible) and its unit
transformation is computed in Section 3.1.

In the fourth section, we constructA∞-transformations between functors obtained
in the third section. When B ↪→ C and J ↪→ I are full A∞-subcategories, f, g : C→ I

are A∞-functors, which map objects of B into objects of J, and r : f → g : C→ I

is an A∞-transformation, we construct an A∞-transformation r : f → g : C→ I,
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whose only non-trivial components are r0 = r0 and r1 = r
∣∣
T+sC

. The components
of the conjugate A∞-transformation r = µrµ−1 : f → g : C→ I are computed in
Proposition 4.1. It turns out that r restricts to an A∞-transformation D(r) : D(f)→
D(g) : D(C|B)→ D(I|J) (Proposition 4.1). Thus, - and - are defined as maps on
objects, 1-morphisms and 2-morphisms of the 2-category A∞ of A∞-categories.
Actually, they are strict 2-functors A∞ → A∞ (Corollaries 4.4 and 4.6). We prove
more: they are strict K-2-functors KA∞ → KA∞, where the 2-category KA∞ is
enriched in K — the category of differential graded k-modules, whose morphisms
are chain maps modulo homotopy (Proposition 4.3, Corollary 4.5). Compatibility
of - with the composition of 2-morphisms is expressed via explicit homotopy (23).
Components of this homotopy are found in Proposition 4.7. It turns out that this
homotopy restricts to subcategories D(-|-) (Proposition 4.7). Therefore, D is a K-
2-functor from the non-2-unital K-2-category of pairs (A∞-category, full A∞-sub-
category) to KA∞ (Corollary 4.8). It can be viewed also as a 2-functor D from
the non-2-unital 2-category of pairs (A∞-category, full A∞-subcategory) to A∞
(Corollary 4.9).

In the fifth section, we consider unital A∞-categories and prove that some of our
A∞-categories are contractible. If B is a full subcategory of a unital A∞-category
C, then D(C|B) is unital as well, and D(iC) is its unit transformation (Proposi-
tion 5.1). In particular, for a unital A∞-category C, both C and C are unital with
the unit transformation iC (resp. iC) (Corollaries 5.2 and 5.3). If i : C→ I is a uni-
tal A∞-functor, then ı̄ : C→ I, i : C→ I and (whenever defined) D(i) : D(C|B)→
D(I|J) are unital as well (Corollaries 5.5 and 5.6). When we restrict - , - or D to
unital A∞-categories (and unital A∞-functors), we get strict 2-functors of (usual
1-2-unital) (K-)2-categories.

In the sixth section, we consider contractible A∞-categories and A∞-functors.
A unital A∞-functor f : A→ B is called contractible if many equivalent condi-
tions hold, including contractibility of complexes (sB(Xf, Y ), b1), (sB(Y,Xf), b1)
for all X ∈ ObA, Y ∈ ObB (Propositions 6.1 and 6.3, Definition 6.4). A unital
A∞-category A is called contractible if several equivalent conditions hold, includ-
ing contractibility of complexes (sA(X,Y ), b1) for all objects X, Y of A (Defini-
tion 6.4, Proposition 6.7). If C is a unital A∞-category, then C, C are contractible
(Example 6.5). Nevertheless, in general, the subcategories D(C|B) ⊂ C are not con-
tractible. Contractible A∞-categories B may be considered as trivial, because in this
case any natural A∞-transformation r : f → g : A→ B is equivalent to 0 (Corol-
lary 6.8). Moreover, non-empty contractible categories are equivalent to the 1-
object-1-morphism A∞-category 1, such that Ob1 = {∗} and 1(∗, ∗) = 0 (Proposi-
tion 6.7, Remark 6.9).

In the seventh section, we consider the case of a contractible full subcategory F

of a unital A∞-category E. In this case the canonical strict embedding E→ D(E|F)
is an equivalence (Proposition 7.4).

In the eighth section, we prepare to construct the K-injective resolution A∞-func-
tor. This concrete construction is deferred until the next section. In the eighth
section we consider an abstract version of it. Given an A∞-functor f : B→ C, a map
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g : Ob B→ ObC and cycles rX ∈ C0(Xf,Xg), X ∈ ObB, producing certain quasi-
isomorphisms, we make g into an A∞-functor g : B→ C and rX into 0-th component
Xr0s

−1 of a natural A∞-transformation r : f → g : B→ C (Proposition 8.1). Next
we prove the uniqueness of so constructed g and r. Assuming that the initial data
(g : Ob B→ ObC, (rX)x∈Ob B) give rise to two A∞-functors g, g′ : B→ C and two
natural A∞-transformations r : f → g : B→ C, r′ : f → g′ : B→ C, we construct
another natural A∞-transformation p : g → g′ : B→ C, such that r′ is the compo-
sition (f

r→ g
p→ g′) in the 2-category A∞ (Proposition 8.2). Moreover, such

p is unique up to an equivalence (Proposition 8.3). If, in addition, C is unital, then
the constructed p is invertible (Corollary 8.4). If f is unital, then the constructed
A∞-functor g is unital as well (Proposition 8.5).

In the ninth section, we consider categories of complexes. Let k be a field, let A

be an Abelian k-linear category, and let C = C(A) be the differential graded cate-
gory of complexes in A. Let B = A(A) be its full subcategory of acyclic complexes,
I = I(A) denotes K-injective complexes, J = AI(A) denotes acyclic K-injective com-
plexes. We assume that each complex X ∈ ObC has a right K-injective resolution
rX : X → Xi (a quasi-isomorphism with K-injective Xi ∈ Ob I). We notice that
quasi-isomorphisms from C become “invertible modulo boundary” in the differential
graded category D(C|B) (Section 9.1). From the identity functor f = idC : C→ C, a
map g : Ob C→ ObC,X 7→ Xi and quasi-isomorphisms rX we produce an A∞-func-
tor g : C→ C, which factors as g =

(
C

i→ I ⊂ e→ C
)
, into “K-injective resolution”

unital A∞-functor i and the full embedding e (Section 9.2). The unital A∞-functor
ı̄ : D(C|B)→ D(I|J) and the faithful differential graded functor e : D(I|J)→ D(C|B)
are A∞-equivalences quasi-inverse to each other. Due to contractibility of J the nat-
ural embedding I→ D(I|J) is an equivalence. Since D(C|B) and I are A∞-equivalent,
their 0-th cohomology categories are equivalent as usual k-linear categories. That is,
H0(D(C|B)) = H0

(
D(C(A)|A(A))

)
is equivalent to H0(I) = H0(I(A)) — homotopy

category of K-injective complexes, which is equivalent to the derived category D(A)
of A. This result (Section 9.2) motivated our studies. It follows also from Drin-
feld’s theory of quotients of differential graded categories [Dri04]. This agrees with
Bondal and Kapranov’s proposal to produce triangulated categories as homotopy
categories of some differential graded categories [BK90].

1. Conventions

We keep the notations and conventions of [Lyu03], sometimes without explicitly
mentioning them. Some of the conventions are recalled here.

We assume as in [Lyu03] that quivers, A∞-categories, etc. are small with respect
to some universe U .

The ground ring k ∈ U is a unital associative commutative ring.
We use the right operators: the composition of two maps (or morphisms) f :

X → Y and g : Y → Z is denoted fg : X → Z; a map is written on elements as
f : x 7→ xf = (x)f . However, these conventions are not used systematically, and
f(x) might be used instead.

If C is a Z-graded k-module, then sC = C[1] denotes the same k-module with
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the grading (sC)d = Cd+1, the suspension of C. The shift “identity” map C → sC
of degree −1 is also denoted s. Getzler and Jones demonstrated in [GJ90] that the
suspension s and the shift map s are useful in the theory of A∞-algebras. We follow
the Koszul sign convention:

(x⊗ y)(f ⊗ g) = (−)yfxf ⊗ yg = (−1)deg y·deg fxf ⊗ yg.

A chain complex is called contractible if its identity endomorphism is homotopic
to zero.

The category Q/S of U -small graded k-linear quivers with fixed set of objects
S admits a monoidal structure with the tensor product A×B 7→ A⊗B, (A⊗
B)(X,Y ) = ⊕Z∈SA(X,Z)⊗k B(Z, Y ). Thus, we have tensor powers TnA = A⊗n

of a given graded k-quiver A, such that ObTnA = Ob A. Explicitly,

TnA(X,Y ) =
⊕

X1,...,Xn−1∈Ob A

A(X0, X1)⊗k A(X1, X2)⊗k · · · ⊗k A(Xn−1, Xn),

where X0 = X and Xn = Y . In particular, T 0A denotes the unit object kS, where
kS(X,Y ) = k if X = Y and vanishes otherwise.

As in any monoidal category, there is a notion of coassociative coalgebras (B,∆ :
B→ B⊗B) in Q/S (in general, without counit). For A∞-category theory, we
need only coalgebras (B,∆) in Q/S that satisfy an additional requirement: for
all X,Y ∈ S

B(X,Y ) = ∪∞k=2 Ker
(
∆

(k)
: B(X,Y )→ B⊗k(X,Y )

)
,

where ∆
(2)

= ∆, ∆
(3)

= ∆(1⊗∆) = ∆(∆⊗ 1) : B→ B⊗3, etc. Such coalgebras are
named cocomplete cocategories by Keller [Kel05]. A counital coassociative coalge-
bra (A = T 0B⊕B,∆ : A→ A⊗A, ε : A→ T 0A) in Q/S is associated with (B,∆),
namely:

∆
∣∣
T 0B

=
(
T 0B

∼→ T 0B⊗ T 0B ⊂in0 ⊗ in0→ A⊗A
)
,

∆
∣∣
B

=
(
B

∼→ B⊗ T 0B ⊂in1 ⊗ in0→ A⊗A
)

+
(
B

∆→ B⊗B ⊂in1 ⊗ in1→ A⊗A
)

+
(
B

∼→ T 0B⊗B ⊂in0 ⊗ in1→ A⊗A
)
,

or simply f∆ = f ⊗ 1 + f∆ + 1⊗ f for f ∈ B(X,Y ), and ε = pr0 : A→ T 0B =
T 0A. The triple (A,∆, ε) is a cocategory in the sense of [Lyu03]. In the present
article, we shall use only one kind of cocategory associated with quivers C, namely,
the cocomplete cocategory B = T+C = ⊕∞n=1T

nC, equipped with the comultiplica-
tion ∆ : B→ B⊗B, (h1 ⊗ h2 ⊗ · · · ⊗ hn)∆ =

∑n−1
k=1 h1 ⊗ · · · ⊗ hk

⊗
hk+1 ⊗ · · · ⊗

hn, gives rise to the cocategory A = TC = ⊕∞n=0T
nC, equipped with the cut comul-

tiplication ∆ : A→ A⊗A, (h1 ⊗ h2 ⊗ · · · ⊗ hn)∆ =
∑n

k=0 h1 ⊗ · · · ⊗ hk

⊗
hk+1 ⊗

· · · ⊗ hn, and with the counit ε = pr0 : A→ T 0C = T 0A.
By definition, cocategory homomorphisms (in particular, A∞-functors) respect

the cut comultiplication ∆, and A∞-transformations are coderivations with respect
to ∆ (see e.g. [Lyu03]).



Homology, Homotopy and Applications, vol. 8(2), 2006 162

We use the following standard equations for a differential b in an A∞-category∑
r+n+t=k

(1⊗r ⊗ bn ⊗ 1⊗t)br+1+t = 0 : T ksA→ sA. (1)

Since b is a differential and a coderivation, it may be called a codifferential. Com-
mutation relation fb = bf for an A∞-functor f : A→ B expands to the following∑

l>0;i1+···+il=k

(fi1 ⊗ fi2 ⊗ · · · ⊗ fil
)bl =

∑
r+n+t=k

(1⊗r ⊗ bn ⊗ 1⊗t)fr+1+t :

T ksA→ sB. (2)

Given A∞-functors f, g, h : B→ C and coderivations f
r→ g

p→ h : B→ C

of arbitrary degree we construct a map θ : TsB→ TsC as in Section 3 of [Lyu03].
We view θ as a bilinear function (r ⊗ p)θ of r, p. Its components θkl = θ

∣∣
T ksB

prl :
T ksB→ T lsC are given by Formula (3.0.1) of [Lyu03]

θkl =
∑

fa1 ⊗ · · · ⊗ faα ⊗ rj ⊗ gc1 ⊗ · · · ⊗ gcβ
⊗ pt ⊗ he1 ⊗ · · · ⊗ heγ , (3)

where the summation is taken over all terms with

α+ β + γ + 2 = l, a1 + · · ·+ aα + j + c1 + · · ·+ cβ + t+ e1 + · · ·+ eγ = k.

The same formula can be presented as

θkl =
∑

α+β+γ+2=l
a+j+c+t+e=k

faα ⊗ rj ⊗ gcβ ⊗ pt ⊗ heγ , (4)

where faα : T aA→ TαB are matrix elements of f and similarly for g, h. By Propo-
sition 3.1 of [Lyu03] the map θ satisfies the equation

θ∆ = ∆(f ⊗ θ + r ⊗ p+ θ ⊗ h).

Given A∞-categories A and B, one constructs an A∞-category A∞(A,B) of
A∞-functors A→ B, equipped with a differential B [Fuk02, Kel05, KS06, KS,
LH03], [Lyu03, Section 5].

The category of graded k-linear quivers admits a symmetric monoidal struc-
ture with the tensor product A×B 7→ A � B, where ObA � B = Ob A×ObB

and (A � B)
(
(X,U), (Y, V )

)
= A(X,Y )⊗k B(U, V ). The same tensor product was

denoted ⊗ in [Lyu03]. Given A∞-categories A, B, C, there is a graded cocategory
morphism of degree 0

M : TsA∞(A,B) � TsA∞(B,C)→ TsA∞(A,C),

which satisfies equation (1 �B +B � 1)M = MB [Lyu03, Section 6].

2. An A∞-category

Let B ↪→ C be a full A∞-subcategory. It means that ObB ⊂ ObC, B(X,Y ) =
C(X,Y ) for all X,Y ∈ ObB, and the operations for B coincide with those for C. Let
us define another A∞-category D(C|B). If B, C are differential graded categories,
then D(C|B) is differential graded as well, and it coincides with the category C/B
defined by Drinfeld in [Dri04, Section 3.1].
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Definition 2.1. Let T+sC = ⊕n>0T
nsC and E = D(C|B) be the following graded

k-quivers: the class of objects is ObT+sC = Ob E = Ob C, the modules of morphisms
for X,Y ∈ ObE are

T+sC(X,Y )
= ⊕C1,...,Cn−1∈Ob CsC(X,C1)⊗ sC(C1, C2)⊗ · · · ⊗ sC(Cn−2, Cn−1)⊗ sC(Cn−1, Y ),
sE(X,Y )
= ⊕C1,...,Cn−1∈Ob BsC(X,C1)⊗ sC(C1, C2)⊗ · · · ⊗ sC(Cn−2, Cn−1)⊗ sC(Cn−1, Y ),

where in the second case summation extends over all sequences of objects (C1, . . . ,
Cn−1) of B. To the empty sequence (n = 1) corresponds the summand sC(X,Y ).

Let us endow s−1T+sC with a structure of A∞-category, given by b : T (T+sC)→
T (T+sC), with the components b0 = 0, b1 = b : T+sC→ T+sC, bk = 0 for k > 1.
This A∞-category is denoted C = (s−1T+sC, b). There is an A∞-functor j : C→
(s−1T+sC, b), specified by its components j

k
: T ksC→ T+sC, k > 1, where j

k
is

the canonical embedding of the direct summand. The property bj = jb, or∑
r+k+t=n

(1⊗r ⊗ bk ⊗ 1⊗t)j
r+1+t

= j
n
b : TnsC→ T+sC,

is clear — this is just the expression of b in terms of its components.
There is a coalgebra automorphism µ : TT+sC→ TT+sC, specified by its compo-

nents µk = µ(k) : T kT+sC→ T+sC, k > 1, where µ : T+sC⊗ T+sC→ T+sC is the
multiplication in the tensor algebra, µ(k) = 0 for k 6 0, µ(1) = 1 : T+sC→ T+sC,
µ(2) = µ, µ(3) = (µ⊗ 1)µ : (T+sC)⊗3 → T+sC and so on. Its inverse is the coal-
gebra automorphism µ−1 = µ− : TT+sC→ TT+sC, specified by its components
µ−k = (−)k−1µ(k) : T kT+sC→ T+sC. The fact that µ and µ− are inverse to each
other is proven as follows:

(µµ−)n =
∑

l1+···+lk=n

(µl1 ⊗ · · · ⊗ µlk
)µ−k =

∑
l1+···+lk=n

(−)k−1µ(n)

= µ(n)
n∑

k=1

(−1)k−1

(
n− 1
k − 1

)
= µ(n)(1− 1)n−1,

which equals id for n = 1 and vanishes for n > 1. Similarly, µ−µ = id.

Proposition 2.2. The conjugate codifferential b̄ = µbµ−1 : T (T+sC)→ T (T+sC)
has the following components: b0 = 0, b1 = b and for n > 2

b̄n = µ(n)
∑

m;q<k;t<l

1⊗q ⊗ bm ⊗ 1⊗t : T ksC⊗ (T+sC)⊗n−2 ⊗ T lsC→ T+sC, (5)

b̄n = µ(n)b− (1⊗ µ(n−1)b)µ− (µ(n−1)b⊗ 1)µ+ (1⊗ µ(n−2)b⊗ 1)µ(3) :

(T+sC)⊗n → T+sC, (6)

for all n > 0. The operations b̄n restrict to maps sE⊗n → sE via the natural embed-
ding sE ⊂ T+sC of graded k-quivers. Hence, b̄ turns E and C

def
= (s−1T+sC, b̄) into

an A∞-category.
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Proof. Let us define a (1, 1)-coderivation b̄ of degree 1 by its components (6). Sub-
stituting the definition of b via its components, we get formula (5). Clearly, µbµ−1

is also a (1, 1)-coderivation of degree 1. Let us show that it coincides with b̄, that
is, b̄µ = µb. This equation expands to∑

r+k+t=n

(1⊗r ⊗ b̄k ⊗ 1⊗t)µ(r+1+t) = µ(n)b = µ(n)b1,

which follows immediately from (5) and from the standard expression of b via its
components.

Clearly, b̄2 = µb2µ−1 = 0, hence, C = (s−1T+sC, b̄) is an A∞-category. Map (5)
is a sum of maps of the form

1⊗q ⊗ bm ⊗ 1⊗t : sC(X,C1)⊗ · · · ⊗ sC(Cq−1, Cq)⊗ sC(Cq, Cq+1)⊗ · · ·
⊗(T+sC)⊗n−2 ⊗ · · · ⊗ sC(Dl−t−1, Dl−t)⊗ sC(Dl−t, Dl−t+1)⊗ · · ·⊗
sC(Dl−1, Y )→ sC(X,C1)⊗ · · · ⊗ sC(Cq−1, Cq)⊗ sC(Cq, Dl−t)⊗
sC(Dl−t, Dl−t+1)⊗ · · · ⊗ sC(Dl−1, Y ),

where C0 = X for q = 0 and Dl = Y for t = 0. If the source is contained in
(sE)⊗n(X,Y ), then Ci, Dj are in ObB for all 0 < i < k, 0 < j < l. Therefore,
the target is a direct summand of sE(X,Y ). Thus the maps b̄n restrict to maps
b̄n : (sE)⊗n(X,Y )→ sE(X,Y ). The obtained (1,1)-coderivation b̄ : TsE→ TsE also
satisfies b̄2 = 0. Thus it makes E into an A∞-category.

In particular, (6) gives

b̄2 = µb− (1⊗ b+ b⊗ 1)µ,

b̄3 = µ(3)b− (1⊗ µb)µ− (µb⊗ 1)µ+ (1⊗ b⊗ 1)µ(3),

b̄4 = µ(4)b− (1⊗ µ(3)b)µ− (µ(3)b⊗ 1)µ+ (1⊗ µb⊗ 1)µ(3).

Remark 2.3. Let A be an A∞-category, defined by a codifferential b : TsA→ TsA,
let B be a graded k-quiver and let f : TsA→ TsB (resp. g : TsB→ TsA) be an iso-
morphism of graded cocategories. Then the codifferential f−1bf (resp. gbg−1) is the
unique codifferential on TsB, which turns f (resp. g) into an invertible A∞-functor
between A and B.

Corollary 2.4. The coalgebra isomorphism µ−1 : C = (s−1T+sC, b)→ C =
(s−1T+sC, b̄) is an A∞-functor. Its composition with j is a strict A∞-functor
 = jµ−1 : C→ D(C|B), X 7→ X, whose components are the direct summand embed-
ding 1 : sC(X,Y ) = T 1sC(X,Y ) ↪→ sE(X,Y ) and n = 0 for n > 1.

Indeed,

n =
∑

l1+···+lk=n

(j
l1
⊗ · · · ⊗ j

lk
)(−1)k−1µ(k) =

n∑
k=1

(−1)k−1

(
n− 1
k − 1

)
j

n
= (1− 1)n−1j

n
,

which equals j
1

for n = 1, and vanishes for n > 1.
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2.1. Strict unitality.
Assume that A∞-category C is strictly unital. It means that for each object X

of C there is an element 1X ∈ C0(X,X), such that the map iC0 : k→ (sC)−1(X,X),
1 7→ 1Xs of degree −1 satisfies equations (1⊗ iC0 )b2 = 1 : sC(Y,X)→ sC(Y,X) and
(iC0 ⊗ 1)b2 = −1 : sC(X,Z)→ sC(X,Z) for all Y, Z ∈ ObC, and (· · · ⊗ 1Xs⊗ . . . )bn
= 0 if n 6= 2. Since C is strictly unital, its full A∞-subcategory B is strictly unital
as well.

Let us show that in these assumptions E = D(C|B) is also strictly unital. We
take the same elements 1X ∈ C0(X,X) ⊂ E0(X,X) as strict units of E. We have
1Xsb̄1 = 1Xsb = 1Xsb1 = 0. Explicit formulas give (· · · ⊗ 1Xs⊗ . . . )b̄n = 0 for n >
2. The map b̄2 : T ksC(Y,X)⊗ sC(X,X)→ T+sC(Y,X) is the sum of maps

1⊗k−t ⊗ bt+1 : sC(Y,C1)⊗ · · · ⊗ sC(Ck−t,Ck−t+1)⊗ · · · ⊗ sC(Ck−1, X)⊗ sC(X,X)
→ sC(Y,C1)⊗ · · · ⊗ sC(Ck−t, X)

over t > 0. Therefore, the map iE0 : k→ (sE)−1(X,X), 1 7→ 1Xs satisfies equations
(1⊗ iE0 )b̄2 = (1⊗k ⊗ iC0 )(1⊗k−1 ⊗ b2) = 1⊗k−1 ⊗ 1 = 1. Similarly, for b̄2 : sC(X,X)⊗
T ksC(X,Z)→ T+sC(X,Z) we have (iE0 ⊗ 1)b̄2 = (iC0 ⊗ 1⊗k)(b2 ⊗ 1⊗k−1) =
−1⊗ 1⊗k−1 = −1. Therefore, E and C are strictly unital with the unit iE.

2.2. Differential graded categories.
If bk = 0 for k > 2, then explicit formulae in the case of E show that we also have

b̄k = 0 for k > 2. Combining this fact with the above unitality considerations, we see
that if C is a differential graded category, then so is D(C|B). The differential graded
category E = D(C|B) = C/B was constructed by Drinfeld [Dri04, Section 3.1]. This
construction was a starting point of the present article. Let us describe it in detail.

Write down elements of E(X,Y ) as sequences f1εC1f2 . . . εCn−1fn, where fi ∈
C(Ci−1, Ci), C0 = X, Cn = Y , and Ci ∈ ObB for 0 < i < n. The symbol εC for
C ∈ ObB is assigned degree −1. Its differential is set equal to εCd = 1C . The graded
Leibniz rule gives

(f1εC1f2 . . . εCn−1fn)d

=
∑

q+1+t=n

(−)fn−t+1+···+fn−tf1εC1f2 . . . εCq (fq+1m1)εCq+1fq+2 . . . εCn−1fn

+
∑

q+2+t=n

(−)fn−t+···+fn−tf1εC1f2 . . . εCq (fq+1 · fq+2)εCq+2fq+3 . . . εCn−1fn,

where fq+1 · fq+2 = (fq+1 ⊗ fq+2)m2 is the composition. Introduce a degree −1 map

s : E→ sE ⊂ T+sC, f1εC1f2 . . . εCn−1fn 7→ f1s⊗ f2s⊗ · · · ⊗ fns.

One can check that ds = sb̄1, where, naturally, b̄1 = b =
∑

q+1+t=n 1⊗q ⊗ b1 ⊗ 1⊗t +∑
q+2+t=n 1⊗q ⊗ b2 ⊗ 1⊗t.
The composition m̄2 in E consists of the concatenation and the composition m2

in C:
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(f1εC1 . . . fn−1εCn−1fn ⊗ g1εD1g2 . . . εDm−1gm)m̄2

= f1εC1 . . . fn−1εCn−1(fn · g1)εD1g2 . . . εDm−1gm.

One can check that m̄2s = (s⊗ s)b̄2; here b̄2 = 1⊗n−1 ⊗ b2 ⊗ 1⊗m−1.
Specifically, this construction applies to the case of the differential graded cate-

gory C = C(A) of complexes of objects of an Abelian category A. One may take for
B the subcategory of acyclic complexes B = A(A).

3. An A∞-functor

Let B ↪→ C, J ↪→ I be full A∞-subcategories. Let i : C→ I be an A∞-functor, such
that Xi ∈ Ob J for X ∈ ObB. Then it restricts to an A∞-functor B→ J, denoted
by i′. We are going to construct an extension of this functor to the A∞-categories
E = D(C|B) and F = D(I|J).

Let us begin with a strict A∞-functor i : C→ I, given by its components i1 =
i : T+sC→ T+sI and ik = 0 for k > 1. The equation i b = b i reduces to familiar
ib = bi. Therefore, ı̄ def= µiµ−1 : C→ I is an A∞-functor as well.

The following diagram of A∞-functors commutes

B ⊂ → C
jC

→ C
µ−1

→ C

J

i′

↓
⊂ → I

i
↓

jI

→ I

i
↓

µ−1

→ I

ı̄↓

Indeed, jCi = ijJ expands to

jC
n
i =

∑
l1+···+lk=n

(il1 ⊗ · · · ⊗ ilk)jJ
k

: TnsC→ T+sI,

which expresses i in terms of its components.

Proposition 3.1. The A∞-functor ı̄ has the following components:

ı̄n =
∑

l1+···+lk=n

(−)k−1
(
µ(l1) ⊗ · · · ⊗ µ(lk)

)
i⊗kµ(k) : (T+sC)⊗n → T+sI. (7)

The restriction of this map to T k1sC⊗ · · · ⊗ T knsC is

ı̄n = µ(n)
∑

(l1,...,lt)∈L(k1,...,kn)

(il1 ⊗ · · · ⊗ ilt) : T k1sC⊗ · · · ⊗ T knsC→ T+sI, (8)

L(k1, . . . , kn) = ∪t>0

{
(l1, . . . , lt) ∈ Zt

>0 | ∀q, s ∈ Z>0, q 6 t, s 6 n

l1 + · · ·+ lq = k1 + · · ·+ ks ⇐⇒ q = t, s = n
}
.

These maps restrict to maps ı̄n : TnsD(C|B)→ sD(I|J), which are components
of an A∞-functor D(i) = ı̄ : D(C|B)→ D(I|J). The restriction of ı̄n to

TnsC ⊂
⊗n
1→ TnsD(C|B) equals TnsC

in→ sI ⊂ 1→ sD(I|J).
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Proof. Let us prove (8). Let ı̄ denote the cocategory homomorphism ı̄ : C→ I,
defined by its components (8). We are going to prove that it satisfies ı̄µ = µi.
Indeed, this equation expands to the following∑

n1+···+na=p

(̄ın1 ⊗ · · · ⊗ ı̄na)µ(a) = µ(p)i : T c1sC⊗ · · · ⊗ T cpsC→ T+sI, (9)

which has to be proven for all p > 1. The right-hand side is the sum of terms
im1 ⊗ · · · ⊗ imt such that m1 + · · ·+mt = c1 + · · ·+ cp. Consider a set of positive
integers

N = {m1,m1 +m2, . . . ,m1 + · · ·+mt} ∩ {c1, c1 + c2, . . . , c1 + · · ·+ cp}.

It contains c1 + · · ·+ cp. Clearly, im1 ⊗ · · · ⊗ imt
will appear in the term ı̄n1 ⊗ · · · ⊗

ı̄na if and only if N = {n1, n1 + n2, . . . , n1 + · · ·+ na}. Since any finite subset N ⊂
Z>0 has a unique presentation of this form via n1, . . . , na, Equation (9) holds.

Let X, Zj , Y be objects of C and let Ci
j be objects of B. When ı̄n is applied to

the k-module

sC(X,C1
1 )⊗ · · · ⊗ sC(C1

k1−1, Z1)
⊗

sC(Z1, C
2
1 )⊗ · · · ⊗ sC(C2

k2−1, Z2)
⊗

. . .⊗
sC(Zn−2, C

n−1
1 )⊗ · · · ⊗ sC(Cn−1

kn−1−1, Zn−1)⊗
sC(Zn−1, C

n
1 )⊗ · · · ⊗ sC(Cn

kn−1, Y ), (10)

the target space for the term im1 ⊗ · · · ⊗ imt
has the form

sI(Xi,C•
• i)⊗ · · · ⊗ sI(C•

• i, C
•
• i)⊗ · · · ⊗ sI(C•

• i, Y i),

where C•
• are objects of B (no Zj will appear!). Since Xi, Y i ∈ Ob I and C•

• i ∈ Ob J,
the above space is a direct summand of sD(I|J)(Xi, Y i). Therefore, the required map
ı̄n : TnsD(C|B)→ sD(I|J) is constructed.

The last statement is a particular case of (8). Indeed, if k1 = · · · = kn = 1, then
L(1, . . . , 1) consists of only one sequence (n) of the length t = 1.

Since i is strict and i1 = i, Equation (7) is the expansion of the definition ı̄ =
µiµ−1.

For example,

ı̄1 = i,

ı̄2 = µi− (i⊗ i)µ,
ı̄3 = µ(3)i− (i⊗ µi)µ− (µi⊗ i)µ+ (i⊗ i⊗ i)µ(3),

ı̄4 = µ(4)i− (i⊗ µ(3)i)µ− (µi⊗ µi)µ− (µ(3)i⊗ i)µ
+ (i⊗ i⊗ µi)µ(3) + (i⊗ µi⊗ i)µ(3) + (µi⊗ i⊗ i)µ(3) − (i⊗ i⊗ i⊗ i)µ(4).

Corollary 3.2. We have a commutative diagram of A∞-functors

B ⊂ → C
C

→ D(C|B)

J

i
↓

⊂ → I

i
↓

I

→ D(I|J)

ı̄↓
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When A
f→ B

g→ C are A∞-functors, then f g = fg : A→ C. This implies
f g = fg : A→ C. Assume that A′ ↪→ A, B′ ↪→ B, C′ ↪→ C are full A∞-subcategories
such that (ObA′)f ⊂ ObB′, (Ob B′)g ⊂ ObC′. Denote f ′ = f

∣∣
A′ , g′ = g

∣∣
B′ . Since

D(f) and D(g) are just the restrictions of f and g, we conclude that

D(f)D(g) = D(fg) : D(A|A′)→ D(C|C′). (11)

3.1. Strict unitality.
Assume that the A∞-category C is strictly unital. As we know from Section 2.1,

D(C|B) and C are strictly unital with the unit transformation iC. Since µ−1 : C→ C

is an invertible A∞-functor, C is unital (see [Lyu03, Section 8.12]). Notice that
C is never strictly unital except when C = 0, because b2 = 0. The transformation
iC = µ−1iCµ : idC → idC : C→ C, whose components are

iC0 = iC0 ,

iC1 = (iC0 ⊗ 1 + 1⊗ iC0 )µ,

iC2 = (1⊗ iC0 ⊗ 1)µ(3),

iCk = 0 for k > 2,

is a unit transformation of C. Indeed, let us define iC by the above components and
let us prove that µiC = iCµ. Clearly, (µiC)0 = iC0 = (iCµ)0. For n > 0 we have

(µiC)n = µ(n)iC1 +
∑

k+l=n

(µ(k) ⊗ µ(l))iC2

= (iC0 ⊗ 1⊗n)µ(n+1) + (1⊗n ⊗ iC0 )µ(n+1) +
∑

k,l>0;k+l=n

(1⊗k ⊗ iC0 ⊗ 1⊗l)µ(n+1)

=
∑

k,l>0;k+l=n

(1⊗k ⊗ iC0 ⊗ 1⊗l)µ(n+1) = (iCµ)n.

4. An A∞-transformation

Let B ↪→ C and J ↪→ I be full A∞-subcategories. Let f, g : C→ I be two A∞-func-
tors such that (ObB)f ⊂ Ob J, (Ob B)g ⊂ Ob J, and let r : f → g : C→ I be an
A∞-transformation. Denote by r′ : f ′ → g′ : B→ J the restriction of r to B. We
already have C and C for A∞-categories C, f and f for A∞-functors f . Now let us
proceed with A∞-transformations.

Let us define an A∞-transformation r : f → g : C→ I via its components

r0 = r0j1, r0 =
[
k r0→ (sI)(Xf,Xg) ⊂

j
1→ (sI)(Xf,Xg)

]
;

r1 = r, r1 = r
∣∣
T+sC

: T+sC = sC→ T+sI = sI; (12)

rk = 0 for k > 1.

Let us check that - maps the ω-globular set Aω [Lyu03, Definition 6.4] into itself
(so that sources and targets are preserved). It suffices to notice that the correspon-
dence r 7→ r is additive, and if r = [v, b], then r = [v, b]. Indeed,
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[v, b]0 = v0b1 = v0j1b = v0b1j1 = r0j1 = r0,

[v, b]1 = v1b1 − (−)vb1v1 = vb− (−)vbv = r = r1, (13)
[v, b]k = vkb1 − (−)vbkv1 = 0± 0 = 0 = rk for k > 1.

In particular, a natural A∞-transformation r : f → g : C→ I goes to the natural
A∞-transformation r : f → g : C→ I, and equivalent natural A∞-transformations
r, p go to equivalent r, p.

We claim that

rjI = jCr : fj = j f → gj = j g : C→ I.

Indeed, (rj)0 − (jr)0 = r0j1 − r0 = 0, and for n > 0

(rj)n − (jr)n

=
∑

a1+···+al+k+c1+···+cm=n

(fa1 ⊗ · · · ⊗ fal
⊗ rk ⊗ gc1 ⊗ · · · ⊗ gcm)j

l+1+m
− j

n
r1

= r
∣∣
T nsC

− r
∣∣
T nsC

= 0.

We define also the A∞-transformation conjugate to r

r = µrµ−1 : f = µfµ−1 → g = µgµ−1 : C→ I

(not necessarily natural). Summing up, we have a commutative cylinder

B ⊂ → C
jC

→ C
µ−1

→ C

J

f ′

↓
r′=⇒ g′

↓
⊂ → I

f
↓

r=⇒ g
↓

jI

→ I

f
↓

r
=⇒ g
↓

µ−1

→ I

f ↓
r=⇒ g↓ (14)

The correspondence - also maps the ω-globular set Aω into itself. Indeed, if r =
[v, b], then

r = µrµ−1 = µ[v, b]µ−1 = [µvµ−1,µbµ−1] = [v, b].

Proposition 4.1. The A∞-transformation r has the following components

rn =
06q6t∑

l1+···+lt=n

(−)t(µ(l1)f ⊗ · · · ⊗ µ(lq)f ⊗ r0j1 ⊗ µ
(lq+1)g ⊗ · · · ⊗ µ(lt)g)µ(t+1)

+
16q6t∑

l1+···+lt=n

(−)t−1(µ(l1)f ⊗ · · · ⊗ µ(lq−1)f ⊗ µ(lq)r ⊗ µ(lq+1)g ⊗ · · · ⊗ µ(lt)g)µ(t).

(15)
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Explicitly, r0 = r0 = r0j1 and for n > 0 the restriction of rn to T k1sC⊗ · · · ⊗ T knsC
is

rn = µ(n)
∑

(a1,...,aα;k;c1,...,cβ)∈P (k1,...,kn)

(fa1 ⊗ · · · ⊗ faα ⊗ rk ⊗ gc1 ⊗ . . .

⊗ gcβ
)j

α+1+β
: T k1sC⊗ · · · ⊗ T knsC→ T+sI, (16)

P (k1, . . . , kn) = tα,β>0

{
(l1, . . . , lα; lα+1; lα+2, . . . , lα+1+β) ∈ Zα

>0 × Z>0 × Zβ
>0 |

∀q ∈ Z>0, q 6 α+ 1 + β ∀s ∈ Z>0, s 6 n

l1 + · · ·+ lq = k1 + · · ·+ ks ⇔ q = α+ 1 + β, s = n
}
.

These maps restrict to maps rn : TnsD(C|B)→ sD(I|J), which are components of
an A∞-transformation D(r) = r : f → g : D(C|B)→ D(I|J). The restriction of rn

to TnsC ⊂
⊗n
1→ TnsD(C|B) equals TnsC

rn→ sI ⊂ 1→ sD(I|J).

Proof. Similarly to the case of A∞-functors, discussed in Proposition 3.1, let us
define an A∞-transformation r : f → g : C→ I by its components (16) and prove
that the equation rµ = µr holds. Clearly, (rµ)0 = r0 = r0 = (µr)0. We have to
prove that for n > 0∑

i1+···+it=n

(f i1 ⊗ · · · ⊗ f iq−1
⊗ riq ⊗ giq+1

⊗ · · · ⊗ git
)µ(t) = µ(n)r :

T k1sC⊗ · · · ⊗ T knsC→ T+sI. (17)

The right-hand side is the sum of terms fa1 ⊗ · · · ⊗ faα ⊗ rk ⊗ gc1 ⊗ · · · ⊗ gcβ
, such

that a1 + · · ·+ aα + k + c1 + · · ·+ cβ = k1 + · · ·+ kn. Denote by (l1, . . . , lα+1+β)
the sequence (a1, . . . , aα, k, c1, . . . , cβ). Consider the subsequence N of the sequence
L = (0, l1, l1 + l2, . . . , l1 + · · ·+ lα+1+β) consisting of all elements which belong to
the set {0, k1, k1 + k2, . . . , k1 + · · ·+ kn}. The term fa1 ⊗ · · · ⊗ faα ⊗ rk ⊗ gc1 ⊗
· · · ⊗ gcβ

will appear as a summand of the term f i1 ⊗ · · · ⊗ f iq−1
⊗ riq

⊗ giq+1
⊗

· · · ⊗ git
if and only if

N = (0, i1, i1 + i2, . . . , i1 + · · ·+ it), (18)
i1 + · · ·+ iq−1 6 a1 + · · ·+ aα, a1 + · · ·+ aα + k 6 i1 + · · ·+ iq, (19)

∀1 6 y 6 t iy = 0 =⇒ y = q. (20)

Let us prove that for a given sequence (a1, . . . , aα; k; c1, . . . , cβ) ∈ Zα
>0 × Z>0 ×

Zβ
>0 there exists exactly one sequence (i1, . . . , it; q) ∈ Zt

>0 × Z>0 such that condi-
tions (18)–(20) are satisfied. Indeed, the sequence N determines uniquely a sequence
(i1, . . . , it) of non-negative integers such that (18) holds. If k > 0 or a1 + · · ·+
aα does not belong to N , then all iy are positive. This implies that the inter-
val [a1 + · · ·+ aα, a1 + · · ·+ aα + k] is contained in a unique interval of the form
[i1 + · · ·+ iq−1, i1 + · · ·+ iq].

If k = 0 and a1 + · · ·+ aα belongs toN , then a1 + · · ·+ aα = a1 + · · ·+ aα + k is
repeated in N . Hence, there exists q > 0 such that a1 + · · ·+ aα = i1 + · · ·+ iq−1,
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iq = 0. Since M and N may contain no more than one repeated element, iy is
positive for y 6= q. Therefore, conditions (18)–(20) are satisfied.

We conclude that (17) holds. Formula (15) is the expansion of the proven property
r = µrµ−1.

The target space for map (16) applied to k-module (10) has the form

sI(Xf,C•
•f)⊗ · · · ⊗ sI(C•

•f, C
•
•g)⊗ · · · ⊗ sI(C•

•g, Y g),

where C•
• are objects of B (and no Zj will appear). Since objects C•

•f and C•
•g

belong to J, the above space is a direct summand of sD(I|J)(Xf, Y g). Therefore,
the required map rn : TnsD(C|B)→ sD(I|J) is constructed.

The last statement is a particular case of (16). Indeed, if k1 = · · · = kn = 1, then
P (1, . . . , 1) consists of only one element (;n; ), that is, α = β = 0, i1 = n ∈ Z>0.

In particular, the correspondence r 7→ D(r) = r maps natural A∞-transforma-
tions to natural ones, and equivalent r, p : f → g : B→ C are mapped to equivalent

D(r),D(p) : f → g : D(C|B)→ D(I|J).

For example,

r1 = r − (f ⊗ r0 + r0 ⊗ g)µ,
r2 = µr − (f ⊗ r + r ⊗ g)µ− µ(f ⊗ r0 + r0 ⊗ g)µ

+ (f ⊗ f ⊗ r0 + f ⊗ r0 ⊗ g + r0 ⊗ g ⊗ g)µ(3).

Corollary 4.2. We have a commutative cylinder

B ⊂ → C
C

→ D(C|B)

J

f ′

↓
r′=⇒ g′

↓
⊂ → I

f
↓

r=⇒ g
↓

I

→ D(I|J)

f ↓
r=⇒ g↓

4.1. K-2-categories and K-2-functors.
Let K denote the category K(k -mod) = H0(C(k -mod)) of differential graded

complexes of k-modules, whose morphisms are chain maps modulo homotopy. A
1-unital, non-2-unital K-2-category KA∞ of A∞-categories is described in [Lyu03,
Proposition 7.1]. Instead of the complex of 2-morphisms (A∞(A,B)(f, g),m1),m1 =
sB1s

−1, we work with the shifted complex (sA∞(A,B)(f, g), B1). There is an obvi-
ous notion of a strict K-2-functor between such K-2-categories — a map of objects,
maps of 1-morphisms and chain maps of 2-morphisms, which preserve all opera-
tions. The operations involving 2-morphisms are subject to equations in K, which
mean equations between chain maps up to homotopy.

We have applied the “underline” construction - to three kinds of arguments
- : A∞-categories, A∞-functors and A∞-transformations. Let us summarize the
properties of this construction.

Proposition 4.3. The following assignment defines a strict K-2-functor - : KA∞
→ KA∞ : an A∞-category A is mapped to A, an A∞-functor f : A→ B is mapped
to f : A→ B, and the chain map of complexes of 2-morphisms is
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- : (sA∞(A,B)(f, g), B1)→ (sA∞(A,B)(f, g), B1), r 7→ r,

where B denotes the codifferential in TsA∞(A,B), in particular, vB1 = [v, b].

Proof. We have seen in (13) that rB1 = [r, b] = [r, b] = r B1, thus, r 7→ r is a chain
map. The composition of A∞-functors is preserved, fg = f g. The right action of
a 1-morphism h on a 2-morphism r is preserved, since rh = (r0h1j1, rh, 0, 0, . . . ) =
r h. The left action of a 1-morphism e on a 2-morphism r is preserved, since er =
( er0j1, er, 0, 0, . . . ) = e r. The identity A∞-functor idA is mapped to the identity
A∞-functor idA = idA.

It remains to prove that the vertical composition of 2-morphisms

m2 = (s⊗ s)B2s
−1 : A∞(A,B)(f, g)⊗A∞(A,B)(g, h)→ A∞(A,B)(f, h)

is preserved, that is, the diagram

A∞(A,B)(f, g)⊗A∞(A,B)(g, h)
s - s−1⊗s - s−1

→ A∞(A,B)(f, g)⊗A∞(A,B)(g, h)

A∞(A,B)(f, h)

m2↓
s - s−1

→ A∞(A,B)(f, h)

m2↓

is commutative in K. Here s - s−1 denotes the composition

A∞(A,B)(f, h)
s→ sA∞(A,B)(f, h)

-→ sA∞(A,B)(f, h)
s−1

→ A∞(A,B)(f, h).

Since bk = 0 for k > 2, we have B2 = 0 due to [Lyu03, Equation (5.1.3)], hence,
m2 = 0. Let us prove that m2(s - s−1) ∼ 0. The homotopy is sought in the form
(s⊗ s)Hs−1, where

H : sA∞(A,B)(f, g)⊗ sA∞(A,B)(g, h)→ sA∞(A,B)(f, h)

is a k-linear map of degree 0. It has to satisfy the equation

B2 - = HB1 − (1⊗B1 +B1 ⊗ 1)H,

that is, for each r ∈ sA∞(A,B)(f, g), p ∈ sA∞(A,B)(g, h)

(r ⊗ p)B2 = [(r ⊗ p)H, b]− [(r ⊗ p)(1⊗B1 +B1 ⊗ 1)]H. (21)

A candidate for H is chosen similarly to Equation (12). We choose the components
of the (f, h)-coderivation (r ⊗ p)H as follows:

[(r ⊗ p)H]0 = (r0 ⊗ p0)j2,

[(r ⊗ p)H]1 = (r ⊗ p)θ : sA(X,Y )→ sB(Xf, Y h),
[(r ⊗ p)H]k = 0 for k > 1.
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Let us verify Equation (21) for this H. Both sides of (21) are (f, h)-coderivations.
It suffices to check that all their components coincide. The 0-th component of the
right-hand side of (21) is

[(r ⊗ p)H]0b1 − [(r ⊗ [p, b] + (−)p[r, b]⊗ p)H]0
= (r0 ⊗ p0)j2b− (r0 ⊗ p0b1 + (−)pr0b1 ⊗ p0)j2
= (r0 ⊗ p0)(b− 1⊗ b1 − b1 ⊗ 1) = (r0 ⊗ p0)b2j2,

which equals [(r ⊗ p)B2]0. Due to [Lyu03, Equation (5.1.2)] the first component of
the right-hand side of (21) equals

[(r ⊗ p)H]1b1 − (−)r+pb1[(r ⊗ p)H]1 − [(r ⊗ p)(1⊗B1 +B1 ⊗ 1)H]1
= (r ⊗ p)θb− (−)r+pb(r ⊗ p)θ − [(r ⊗ p)(1⊗B1 +B1 ⊗ 1)]θ
= (r ⊗ p)B2,

which is [(r ⊗ p)B2]1. The k-th component of the right-hand side of (21) vanishes
for k > 1, and so does [(r ⊗ p)B2]k = 0. Therefore, (21) and the proposition are
proven.

Corollary 4.4. The same assignment A 7→ A, f 7→ f , r 7→ r as in Proposition 4.3
gives a strict 2-functor - : A∞ → A∞ of non-2-unital 2-categories.

This is obtained by taking the 0-th cohomology of KA∞ in Proposition 4.3.
Similarly, the “overline” construction - , applied to three kinds of arguments,

A∞-categories, A∞-functors and A∞-transformations, gives a strict K-2-functor.

Corollary 4.5. The following assignment defines a strict K-2-functor - : KA∞ →
KA∞: an A∞-category A is mapped to A, an A∞-functor f : A→ B is mapped to
f : A→ B, and the chain map of complexes of 2-morphisms is

- : (sA∞(A,B)(f, g), B1)→ (sA∞(A,B)(f, g), B1), r 7→ r,

where B denotes the codifferential in TsA∞(A,B), in particular, vB1 = [v, b]. There
is an invertible strict K-2-transformation µ : - → - , µA : A→ A.

Proof. Starting with a K-2-functor - , a mapping ObKA∞ → ObKA∞, A 7→ A,
and a family of invertible A∞-functors µA : A→ A, one may construct another
K-2-functor - , which maps an A∞-category A to A, so that µ is a strict K-2-
transformation. Since µ is strict and invertible, the values of f and r are fixed by
the requirements fµ = µf , rµ = µr for each A∞-functor f and A∞-transforma-
tion r.

The detailed definition of strict K-2-transformations is left to the interested
reader.

Corollary 4.6. The same assignment A 7→ A, f 7→ f , r 7→ r as in Corollary 4.5
gives a strict 2-functor - : A∞ → A∞ of non-2-unital categories.

This is obtained by taking the 0-th cohomology of KA∞ in Corollary 4.5.



Homology, Homotopy and Applications, vol. 8(2), 2006 174

It is instructive to find the homotopy which forces - to preserve the vertical com-
position of 2-morphisms. Denote adµ the maps sA∞(A,B)(f, g)→sA∞(A,B)(f, g),
v 7→ µvµ−1. The following diagram commutes modulo homotopy:

sA∞(A,B)(f, g)⊗
⊗sA∞(A,B)(g, h)

- ⊗ - → sA∞(A,B)(f, g)⊗
⊗sA∞(A,B)(g, h)

=
sA∞(A,B)(f, g)⊗
⊗sA∞(A,B)(g, h)

ad µ⊗ad µ

→
- ⊗ -

→

∼ ∼

sA∞(A,B)(f, h)

0= B2↓

=

sA∞(A,B)(f, h)

B2

↓

-
→

- →

sA∞(A,B)(f, h)

B2

↓
ad µ

→

(22)

The right homotopy commutative square is obtained from [Lyu03, Equation (7.1.2)]:

(ρ⊗ π)B2µ
−1 − (ρµ−1 ⊗ πµ−1)B2

= (ρ⊗ π | µ−1)M20B1 − [(ρ⊗ π)(1⊗B1 +B1 ⊗ 1)|µ−1]M20

for all ρ ∈ sA∞(A,B)(f, g), π ∈ sA∞(A,B)(g, h). Recall that B2 = 0 and compose
with µ to get

− (µρµ−1 ⊗ µπµ−1)B2

= [µ(ρ⊗ π | µ−1)M20]B1 − µ[(ρ⊗ π)(1⊗B1 +B1 ⊗ 1)|µ−1]M20.

In particular, for ρ = r, π = p we have

− (r ⊗ p)B2

= [µ(r ⊗ p | µ−1)M20]B1 − µ{[(r ⊗ p)(1⊗B1 +B1 ⊗ 1)]( - ⊗ - )|µ−1}M20.

The left homotopy commutative square, that is, (21) composed with ad µ gives

(r ⊗ p)B2 = [µ(r ⊗ p)Hµ−1]B1 − µ[(r ⊗ p)(1⊗B1 +B1 ⊗ 1)]Hµ−1.

We conclude that the exterior of diagram (22) is commutative modulo homotopy

R : sA∞(A,B)(f, g)⊗ sA∞(A,B)(g, h)→ sA∞(A,B)(f, h),

(r ⊗ p)R = µ(r ⊗ p)Hµ−1 + µ(r ⊗ p | µ−1)M20,

that is,

(r ⊗ p)B2 − (r ⊗ p)B2 = (r ⊗ p)RB1 − [(r ⊗ p)(1⊗B1 +B1 ⊗ 1)]R. (23)

Proposition 4.7. The (f, h)-transformation (r⊗p)R has the following components:
[(r ⊗ p)R]0 = 0, and for n > 0 the restriction of [(r ⊗ p)R]n to T k1sA⊗ · · · ⊗ T knsA
is
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[(r ⊗ p)R]n

= µ(n)
∑

(ā;k;c̄;t;ē)∈Q(k1,...,kn)

(fa1 ⊗ · · · ⊗ faα ⊗ rk ⊗ gc1 ⊗ · · · ⊗ gcβ
⊗ pt ⊗ he1 ⊗ . . .

⊗ heγ
)j

α+β+γ+2
: T k1sA⊗ · · · ⊗ T knsA→ T+sB, (24)

where (ā; k; c̄; t; ē) = (a1, . . . , aα; k; c1, . . . , cβ ; t; e1, . . . , eγ) and

Q(k1, . . . , kn)

= tα,β,γ>0

{
(l1, . . . , lα; lα+1; lα+2, . . . , lα+β+1; lα+β+2; lα+β+3, . . . , lα+β+γ+2)

∈ Zα
>0 × Z>0 × Zβ

>0 × Z>0 × Zγ
>0 | ∀q ∈ Z>0, q 6 α+ β + γ + 2 ∀s ∈ Z>0, s 6 n

l1 + · · ·+ lq = k1 + · · ·+ ks ⇔ q = α+ β + γ + 2, s = n
}
.

If A′ ⊂ A, B′ ⊂ B are full A∞-subcategories and (ObA′)f ⊂ ObB′, (ObA′)g ⊂
ObB′, (ObA′)h ⊂ ObB′, then [(r ⊗ p)R]n restrict to maps

[(r ⊗ p)R]n : TnsD(A|A′)(X,Y )→ sD(B|B′)(Xf, Y h),

which are components of an A∞-transformation

(r ⊗ p)R ∈ sA∞
(
D(A|A′),D(B|B′)

)
(f, h).

Proof. Denote by R′ an (f, h)-coderivation, whose components are R′0 = 0 and R′n
is given by the right-hand side of (24). We want to prove that (r ⊗ p)R = R′. This
is equivalent to the equation

R′µ = µ(r ⊗ p)H + µ(r ⊗ p | µ−1)M20µ. (25)

Let us transform the last term. Applying the identity (1 �M)M pr1 =(M�1)M pr1
[Lyu03, Proposition 4.1] to an element

1⊗r ⊗ p⊗ 1∈T 0sA∞(A,A)(µ,µ)⊗ T 2sA∞(A,B)(f, h)⊗T 0sA∞(B,B)(µ−1,µ−1)

we find from

(1⊗ r ⊗ p⊗ 1)(1⊗M)M pr1
= [1⊗ (r ⊗ p | µ−1)M20 + 1⊗ rµ−1 ⊗ pµ−1]M pr1 = µ(r ⊗ p | µ−1)M20,

(1⊗ r ⊗ p⊗ 1)(M ⊗ 1)M pr1 = (µr ⊗ µp⊗ 1)M pr1 = (µr ⊗ µp | µ−1)M20,

that µ(r ⊗ p | µ−1)M20 = (µr ⊗ µp | µ−1)M20. Applying the same identity to an
element

ρ⊗ π ⊗ 1⊗ 1 ∈ T 2sA∞(A,B)(µf,µh)⊗ T 0sA∞(B,B)(λ, λ)⊗T 0sA∞(B,B)(µ,µ)

we find from

(ρ⊗ π ⊗ 1⊗ 1)(1⊗M)M pr1 = (ρ⊗ π ⊗ 1)M pr1 = (ρ⊗ π | λµ)M20,

(ρ⊗ π ⊗ 1⊗ 1)(M ⊗ 1)M pr1 = [(ρ⊗ π | λ)M20 ⊗ 1 + ρλ⊗ πλ⊗ 1]M pr1
= (ρ⊗ π | λ)M20µ + (ρλ⊗ πλ | µ)M20,
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that
(ρ⊗ π | λµ)M20 = (ρ⊗ π | λ)M20µ + (ρλ⊗ πλ | µ)M20.

When λ = µ−1, the left-hand side vanishes. Indeed, for each k > 0

[(ρ⊗ π | idB)M20]k =
∑
l>2

(ρ⊗ π)θkl idl = 0.

Hence,
(ρ⊗ π | µ−1)M20µ = −(ρµ−1 ⊗ πµ−1 | µ)M20.

In particular, for ρ = µr, π = µp we have

(µr ⊗ µp | µ−1)M20µ = −(r ⊗ p | µ)M20.

Therefore, Equation (25) can be rewritten as follows:

µ(r ⊗ p)H = R′µ + (r ⊗ p | µ)M20. (26)

Both sides are (µf,µh)-coderivations, or (fµ, hµ)-coderivations, which is the same
thing. Let us prove that all their components coincide.

The 0-th components coincide, since

[(r ⊗ p)H]0 = (r0 ⊗ p0)j2 = (r ⊗ p)θ02µ2 = [(r ⊗ p | µ)M20]0.

For n > 0 we have to verify the following equation for n-th components

µ(n)(r ⊗ p)θ =
∑

i1+···+ix=n

(
f i1 ⊗ · · · ⊗ f iq−1

⊗R′iq
⊗ hiq+1 ⊗ · · · ⊗ hix

)
µ(x)

+
∑

x

(r ⊗ p)θnxµ
(x) : T k1sA⊗ · · · ⊗ T knsA→ T+sB.

The left-hand side is∑
a1+···+aα+k+c1+···+cβ+t+e1+···+eγ=n

fa1 ⊗ · · · ⊗ faα
⊗ rk ⊗ gc1 ⊗ . . .

⊗ gcβ
⊗ pt ⊗ he1 ⊗ · · · ⊗ heγ

. (27)

Both sums in the right-hand side consist of some of the above summands. Let
us verify that each summand of (27) will occur exactly once either in

∑
(f i1 ⊗

· · · ⊗ f iq−1
⊗R′iq

⊗ hiq+1 ⊗ · · · ⊗ hix)µ(x), or in
∑

x(r ⊗ p)θnxµ
(x). Let us rewrite

the sequence (a1, . . . , aα; k; c1, . . . , cβ ; t; e1, . . . , eγ) as

(l1, . . . , lα; lα+1; lα+2, . . . , lα+β+1; lα+β+2; lα+β+3, . . . , lα+β+γ+2).

Consider the subsequence N of the sequence L = (0, l1, l1 + l2, . . . , l1 + · · ·+
lα+β+γ+2) consisting of all elements which belong to the set {0, k1, k1 + k2, . . . , k1 +
· · ·+ kn}. The term

fl1 ⊗ · · · ⊗ flα ⊗ rlα+1 ⊗ glα+2 ⊗ · · · ⊗ glα+β+1 ⊗ plα+β+2 ⊗ hlα+β+3 ⊗ · · · ⊗ hlα+β+γ+2

(28)
will appear as a summand of

(f i1 ⊗ · · · ⊗ f iq−1
⊗R′iq

⊗ hiq+1 ⊗ · · · ⊗ hix)µ(x), (29)
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if and only if

N = (0, i1, i1 + i2, . . . , i1 + · · ·+ ix), (30)
i1 + · · ·+ iq−1 6 l1 + · · ·+ lα, l1 + · · ·+ lα+β+2 6 i1 + · · ·+ iq, (31)

∀1 6 γ 6 x iγ = 0 =⇒ γ = q. (32)

The term (28) will appear as a summand of

(f i1 ⊗ · · · ⊗ f iy−1
⊗ riy ⊗ giy+1

⊗ · · · ⊗ giz−1
⊗ piz

⊗ hiz+1 ⊗ · · · ⊗ hix)µ(x) (33)

(which is a term of (r ⊗ p)θnxµ
(x)) if and only if (30) holds and

i1 + · · ·+ iy−1 6 l1 + · · ·+ lα, l1 + · · ·+ lα+1 6 i1 + · · ·+ iy, (34)
i1 + · · ·+ iz−1 6 l1 + · · ·+ lα+β+1, l1 + · · ·+ lα+β+2 6 i1 + · · ·+ iz, (35)

y < z and ∀ 1 6 γ 6 x iγ = 0 =⇒ γ ∈ {y, z}. (36)

A given non-decreasing sequence N determines uniquely a sequence (i1, . . . , ix) of
non-negative integers such that (30) holds.

If lα+1 > 0 or l1 + · · ·+ lα does not belong to N , then there exists exactly one
element y = y′ such that (34) holds. If lα+1 = 0 and l1 + · · ·+ lα belongs to N ,
then there are at least 2 such elements. Denote by y′ > 0 the least of them. Then
l1 + · · ·+ lα = i1 + · · ·+ iy′−1 and iy′ = 0. If y satisfies both (34) and (36), then
y 6 y′, hence, y = y′ is the only solution.

If lα+β+2 > 0 or l1 + · · ·+ lα+β+1 does not belong to N , then there exists exactly
one element z = z′ such that (35) holds. If lα+β+2 = 0 and l1 + · · ·+ lα+β+1 belongs
to N , then there are at least 2 such elements. Denote by z′ the biggest of them.
Then l1 + · · ·+ lα+β+1 = i1 + · · ·+ iz′−1 and iz′ = 0. If z satisfies both (35) and
(36), then z′ 6 z, hence, z = z′ is the only solution.

Since [i1 + · · ·+ iy′−1, i1 + · · ·+ iy′ ] is the leftmost interval with ends in N con-
taining [l1 + · · ·+ lα, l1 + · · ·+ lα+1], and the latter lies to the left of [l1 + · · ·+
lα+β+1, l1 + · · ·+ lα+β+2], contained in the rightmost interval [i1 + · · ·+ iz′−1, i1 +
· · ·+ iz′ ], we deduce that y′ 6 z′.

If y′ = z′, then y′ 6 y < z 6 z′ cannot be satisfied, hence, (34)–(36) has no solu-
tions (y, z). On the other hand, for q = y′ = z′ the interval [l1 + · · ·+ lα, l1 + · · ·+
lα+β+2] is contained in [i1 + · · ·+ iq−1, i1 + · · ·+ iq], that is, (31) holds. Only lα+1

and lα+β+2 might vanish, both are contained in [l1 + · · ·+ lα, l1 + · · ·+ lα+β+2],
hence, iγ might vanish only for γ = q, that is, (32) holds. Therefore, q = y′ satisfies
conditions (31)–(32). This solution is unique, since if (31) is satisfied for q = q′,
then (34) holds for y = q′.

If y′ < z′, then y = y′, z = z′ is the only solution of system of conditions (34)–
(36). This is proved by examining the four cases which arise from the alternatives
in the two paragraphs that follow (36). Let us prove that there are no solutions
q of the system of conditions (31)–(32). Suppose q satisfies these conditions, then
y = q satisfies (34) and z = q satisfies (36). Therefore, y′ 6 q 6 z′, i1 + · · ·+ iy′−1 =
i1 + · · ·+ iq−1 and i1 + · · ·+ iq = i1 + · · ·+ iz′ . Due to (32) there exists no more
than one γ such that iγ = 0. Thus, two possibilities exist: either y′ = q < q + 1 = z′,
or y′ = q − 1 < q = z′. In the first case, (35) and (31) imply
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i1 + · · ·+ iq 6 l1 + · · ·+ lα+β+1 6 l1 + · · ·+ lα+β+2 6 i1 + · · ·+ iq,

hence, i1 + · · ·+ iq = l1 + · · ·+ lα+β+1 and lα+β+2 = 0. It follows that iq+1 = 0,
which contradicts (32). In the second case, (31) and (34) imply

i1 + · · ·+ iq−1 6 l1 + · · ·+ lα 6 l1 + · · ·+ lα+1 6 i1 + · · ·+ iq−1,

hence, i1 + · · ·+ iq−1 = l1 + · · ·+ lα and lα+1 = 0. It follows that iq = 0. From (31)
we deduce that lα+2 + · · ·+ lα+β+2 = 0, which implies iq+1 = 0 and this contradicts
(32). We conclude that each term (28) either occurs in a unique term (29) or in a
unique term (33). Therefore, (26) is proven.

Since (24) is proven, it implies the statement for the transformation (r ⊗ p)R.

Denote by KA′∞ the non-2-unital K-2-category, whose objects are pairs (A,A′),
consisting of an A∞-category A and a full A∞-subcategory A′ ⊂ A; 1-morphisms
(A,A′)→ (B,B′) are A∞-functors f : A→ B such that (ObA′)f ⊂ ObB′;

KA′∞
(
(A,A′), (B,B′)

)
(f, g) =

(
A∞(A,B)(f, g),m1

)
,

and the operations are induced by those of KA∞.

Corollary 4.8. The following assignment defines a strict K-2-functor

D : KA′∞ −→ KA∞,

(A,A′) 7−→ D(A|A′),

f : (A,A′)→ (B,B′) 7−→ f : D(A|A′)→ D(B|B′),(
sA∞((A,A′), (B,B′))(f, g), B1

)
−→

(
sA∞(D(A|A′),D(B|B′))(f, g), B1

)
, r 7→ r.

Proof. Since the coderivation (r ⊗ p)R : TsA→ TsB restricts to a coderivation
(r ⊗ p)R : TsD(A|A′)→ TsD(B|B′) by Proposition 4.7, D preserves the vertical
composition of 2-morphisms modulo homotopy by (23).

Corollary 4.9. Let A′∞ be a non-2-unital 2-category, whose objects and 1-mor-
phisms are the same as for KA′∞, and 2-morphisms are equivalence classes of nat-
ural A∞-transformations:

A′∞
(
(A,A′), (B,B′)

)
(f, g) = H0

(
A∞(A,B)(f, g),m1

)
,

and the operations are induced by those of A∞. Then the following assignment
defines a strict 2-functor

D : A′∞ −→ A∞,

(A,A′) 7−→ D(A|A′),

f : (A,A′)→ (B,B′) 7−→ f : D(A|A′)→ D(B|B′),

r : f → g : (A,A′)→ (B,B′) 7−→ r : f → g : D(A|A′)→ D(B|B′).

The corollary follows from Corollary 4.8 by taking the 0-th cohomology.
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5. Unitality

Proposition 5.1. Let B be a full subcategory of a unital A∞-category C. Then the
A∞-category D(C|B) is also unital. If iC is a unit transformation of C, then D(iC)
is a unit transformation of D(C|B).

Proof. The idempotent property (iC ⊗ iC)B2 ≡ iC implies by Corollary 4.8 that

(D(iC)⊗ D(iC))B2 ≡ D((iC ⊗ iC)B2) ≡ D(iC),

so D(iC) is an idempotent as well. Consider its 0-th component

XD(iC)0 =
[
k X iC0→ sC(X,X) ⊂ → sD(C|B)(X,X)

]
.

We have to prove that

(XD(iC)0 ⊗ 1)b2, (1⊗ Y D(iC)0)b2 : sD(C|B)(X,Y )→ sD(C|B)(X,Y )

are homotopy invertible.

Consider the following Z>0-grading of the A∞-category D(C|B)

Gk = T ksC ∩ sD(C|B), k > 1,

Gk(X,Y ) = ⊕C1,...,Ck−1∈Ob BsC(X,C1)⊗ sC(C1, C2)⊗ · · · ⊗ sC(Ck−1, Y ).

Denote also C0 = X, Ck = Y . The corresponding increasing filtration

0 = Φ0 ⊂ Φ1 ⊂ · · · ⊂ Φn ⊂ Φn+1 ⊂ · · · ⊂ sD(C|B)

is made of Φn = ⊕n
k=1G

k. The k-linear maps

b1 = b, (X iC0 ⊗ 1)b2, (1⊗ Y iC0 )b2 : sD(C|B)(X,Y )→ sD(C|B)(X,Y )

preserve the filtration. Consider the Z>0 × Z-graded quiver, associated with this
filtration. The above maps induce on graded components Gk the following maps:

dk =
∑

α+1+β=k

1⊗α ⊗ b1 ⊗ 1⊗β : Gk(X,Y )→ Gk(X,Y ), (37)

(X iC0 ⊗ 1)b2 ⊗ 1⊗k−1 : Gk(X,Y )→ Gk(X,Y ), (38)

1⊗k−1 ⊗ (1⊗ Y iC0 )b2 : Gk(X,Y )→ Gk(X,Y ). (39)

Let h, h′ be homotopies as in

(1⊗ Y iC0 )b2 = 1 + hCk−1,Y b1 + b1hCk−1,Y : sC(Ck−1, Y )→ sC(Ck−1, Y ),

(X iC0 ⊗ 1)b2 = −1 + h′X,C1
b1 + b1h

′
X,C1

: sC(X,C1)→ sC(X,C1).

Using them we will present map (39) restricted to sC(X,C1)⊗ · · · ⊗ sC(Ck−2, Ck−1)
⊗ sC(Ck−1, Y ) as follows:
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1⊗k−1 ⊗ (1⊗ Y iC0 )b2 = 1⊗k−1 ⊗ (1 + hb1 + b1h)

= 1 + (1⊗k−1 ⊗ h)
∑

α+1+β=k

1⊗α ⊗ b1 ⊗ 1⊗β

+
( ∑

α+1+β=k

1⊗α ⊗ b1 ⊗ 1⊗β
)
(1⊗k−1 ⊗ h)

= 1 + (1⊗k−1 ⊗ h)dk + dk(1⊗k−1 ⊗ h).

Let us define a k-linear map H : sD(C|B)(X,Y )→ sD(C|B)(X,Y ) of degree −1 as
a direct sum of maps

1⊗k−1 ⊗ hCk−1,Y : sC(X,C1)⊗ · · · ⊗ sC(Ck−2, Ck−1)⊗ sC(Ck−1, Y )
→ sC(X,C1)⊗ · · · ⊗ sC(Ck−2, Ck−1)⊗ sC(Ck−1, Y ).

Since H preserves the subquivers Gk, it preserves also the filtration Φn. Therefore,
the chain (with respect to b1) map

1 +N
def= (1⊗ Y iC0 )b2 −Hb1 − b1H : sD(C|B)(X,Y )→ sD(C|B)(X,Y )

preserves the filtration and the associated map of graded complexes is the identity.
Hence, N has a strictly lower triangular matrix with respect to the decomposi-
tion sD(C|B) = ⊕k>1G

k. Therefore, the map 1 +N is invertible with an inverse∑∞
i=0(−N)i. Hence, (1⊗ Y iC0 )b2 is homotopy invertible.
Similarly,

(X iC0 ⊗ 1)b2 ⊗ 1⊗k−1 = (−1 + h′b1 + b1h
′)⊗ 1⊗k−1

= −1 + (h′ ⊗ 1⊗k−1)
∑

α+1+β=k

1⊗α ⊗ b1 ⊗ 1⊗β

+
( ∑

α+1+β=k

1⊗α ⊗ b1 ⊗ 1⊗β
)
(h′ ⊗ 1⊗k−1)

= −1 + (h′ ⊗ 1⊗k−1)dk + dk(h′ ⊗ 1⊗k−1).

Define a map H ′ as a direct sum of maps

h′X,C1
⊗ 1⊗k−1 : sC(X,C1)⊗ sC(C1, C2)⊗ · · · ⊗ sC(Ck−1, Y )

→ sC(X,C1)⊗ sC(C1, C2)⊗ · · · ⊗ sC(Ck−1, Y ).

Then the chain map

−1 +N ′ def= (X iC0 ⊗ 1)b2 −H ′b1 − b1H ′ : sD(C|B)(X,Y )→ sD(C|B)(X,Y )

preserves the filtration and gives −1 on the diagonal. Hence, N ′ is strictly lower tri-
angular, and −1 +N ′ is invertible with an inverse −

∑∞
i=0(N

′)i. Therefore, (X iC0 ⊗
1)b2 is homotopy invertible.

Corollary 5.2. If an A∞-category C is unital, then C is unital with a unit trans-
formation iC.

Indeed, C = D(C|C).
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Corollary 5.3. If an A∞-category C is unital, then C is unital with a unit trans-
formation iC.

Proof. The A∞-functor µ−1 : C→ C is invertible and C is unital. Hence, by [Lyu03,
Section 8.12] C is unital and µ−1iCµ = µ−1iCµ = iC is its unit transformation.

Remark 5.4. Functors C : C→ D(C|B), C : C→ C, jC : C→ C are unital. This fol-
lows from Corollary 4.2 for r = iC and from commutative diagram (14).

Corollary 5.5. Let i : C→ I be a unital A∞-functor. Then the A∞-functors ı̄ : C→
I and i : C→ I are unital as well.

Proof. Since iiI ≡ iCi, we have ı̄iI ≡ iC ı̄ by Corollary 4.6. Therefore, ı̄ is unital
by Corollary 5.2. We have also i iI ≡ iC i by Corollary 4.4. Hence, i is unital by
Corollary 5.3.

Corollary 5.6. Let i : C→ I be a unital A∞-functor, which maps objects of a full
A∞-subcategory B ⊂ C to objects of a full A∞-subcategory J ⊂ I. Then the A∞-func-
tor D(i) : D(C|B)→ D(I|J) is unital as well.

Proof. Since iiI ≡ iCi, we have D(i)D(iI) ≡ D(iC)D(i) by Corollary 4.9. Therefore,
D(i) is unital by Proposition 5.1.

Summing up, when we restrict - , - or D to unital A∞-categories, we get strict
2-functors of (ordinary 1-2-unital) (K-)2-categories. When we restrict - , - or D
further to unital A∞-categories and unital A∞-functors, we also get strict 2-functors
of (K-)2-categories.

6. Contractibility

A chain complex C is contractible if idC is null-homotopic. We say that an
A∞-category is contractible if all its complexes of morphisms are contractible.
Such A∞-categories behave like categories with zero morphisms only, although con-
tractibility might not be obvious. An example of this kind is provided by C and C,
when C is unital. In this section, we also collect various notions of contractibility
for A∞-functors. For unital A∞-functors, all these definitions become equivalent.

Proposition 6.1. Let B be a unital A∞-category. Let f : A→ B be an A∞-functor.
Then the following conditions are equivalent:

(C1) For any X ∈ ObA and any V ∈ ObB the complex (sB(Xf, V ), b1) is con-
tractible;

(C2) For any U ∈ ObB and any Y ∈ A the complex (sB(U, Y f), b1) is contractible;

(C3) For any object X of A the complex (sB(Xf,Xf), b1) is acyclic;

(C4) For any object X of A there is an element Xv ∈ (sB)−2(Xf,Xf) such that
Xf iB0 = Xvb1;

(C5) f iB ≡ 0 : f → f : A→ B.
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Proof. Clearly, (C1) =⇒ (C3) =⇒ (C4), (C2) =⇒ (C3) and (C5) =⇒ (C4).
(C4) =⇒ (C1): Consider a k-linear map (Xv ⊗ 1)b2 : sB(Xf, V )→ sB(Xf, V ) of

degree −1. Its commutator with b1 is

(Xv ⊗ 1)b2b1 + b1(Xv ⊗ 1)b2 = −(Xvb1 ⊗ 1)b2 = −(Xf iB0 ⊗ 1)b2 ∼ 1 :
sB(Xf, V )→ sB(Xf, V )

by [Lyu03, Lemma 7.4]. Therefore, sB(Xf, V ) is contractible.
(C4) =⇒ (C2): Consider a k-linear map (1⊗ Xv)b2 : sB(U,Xf)→ sB(U,Xf) of

degree −1. Its commutator with b1 is

(1⊗ Xv)b2b1 + b1(1⊗ Xv)b2 = −(1⊗ Xvb1)b2 = −(1⊗ Xf iB0 )b2 ∼ −1 :
sB(U,Xf)→ sB(U,Xf)

by [Lyu03, Lemma 7.4]. Therefore, sB(U,Xf) is contractible.
(C1) =⇒ (C5): We look for an (f, f)-coderivation v of degree −2 such that vb−

bv = f iC. We choose its 0-th component as Xv0 : k→ (sB)−2(Xf,Xf), 1 7→ Xv,
where Xv satisfies condition (C4).

Let n be a positive integer. Assume that (v0, v1, . . . , vn−1) are already found
such that an (f, f)-coderivation ṽ = (v0, v1, . . . , vn−1, 0, 0, . . . ) of degree −2 satisfies
equations λm = 0 for m < n, where the (f, f)-coderivation λ of degree −1 is λ =
f iC − ṽb+ bṽ. To make the induction step, we look for a map

vn : sA(X0, X1)⊗ · · · ⊗ sA(Xn−1, Xn)→ sB(X0f,Xnf),

such that
vnb1 −

∑
q+t=n

(1⊗q ⊗ b1 ⊗ 1⊗t)vn = λn. (40)

The identity λb+ bλ = 0 implies

λnd = λnb1 +
∑

q+t=n

(1⊗q ⊗ b1 ⊗ 1⊗t)λn = 0,

where d is the differential in the complex

Hom
(
sA(X0, X1)⊗ · · · ⊗ sA(Xn−1, Xn), sB(X0f,Xnf)

)
(41)

(all complexes are equipped with the differential b1). Since sB(X0f,Xnf) is con-
tractible, so is complex (41). As it is acyclic, there exists vn such that vnd = λn,
that is, (40) holds. Induction finishes the construction of v.

Proposition 6.2. Let A be a unital A∞-category. Let f : A→ B be an A∞-functor.
Then the following conditions are equivalent:
(C6) For all objects X, Y of A the chain map f1 : (sA(X,Y ), b1)→(sB(Xf, Y f), b1)

is homotopic to 0;
(C7) For any object X of A the chain map f1 : (sA(X,X), b1)→ (sB(Xf,Xf), b1)

is homotopic to 0;
(C8) For any object X of A we have

H•(f1) = 0 : H•(sA(X,X), b1)→ H•(sB(Xf,Xf), b1);
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(C9) For any object X of A there is an element Xw ∈ (sB)−2(Xf,Xf) such that
X iA0 f1 = Xwb1.

Proof. Clearly, (C6) =⇒ (C7) =⇒ (C8) =⇒ (C9).
(C9) =⇒ (C6): Since f and b commute, we have

(1⊗ iA0 )f2b1 + (1⊗ iA0 )(f1 ⊗ f1)b2 = (1⊗ iA0 )b2f1 + (1⊗ iA0 )(1⊗ b1 + b1 ⊗ 1)f2,

b1(1⊗ iA0 )f2 + (1⊗ iA0 )f2b1 − (f1 ⊗ Y w)b2b1 − b1(f1 ⊗ Y w)b2 = (1⊗ iA0 )b2f1 ∼ f1

by [Lyu03, Lemma 7.4]. Therefore, f1 is homotopic to 0.

Proposition 6.3. Let A, B be unital A∞-categories. Let f : A→ B be a unital
A∞-functor. Then conditions (C1)–(C9) are equivalent to the following conditions:

(C10) There is an isomorphism of A∞-functors f ' Of : A→B, where Of is defined
as follows: XOf = Xf , O

f
k = 0 for all k > 1;

(C11) iAf ≡ 0 : f → f : A→ B.

Proof. Unitality implies that (C5) and (C11) are equivalent, and that (C4) and
(C9) are equivalent.

(C5) =⇒ (C10): Consider zero natural A∞-transformations 0 : f → Of : A→ B

and 0 : Of → f : A→ B. Their composition in one order 0 · 0 = 0 : f → f : A→ B

is equivalent to f iB = f1s by (C5). Their composition in the other order 0 · 0 = 0 :
Of → Of : A→ B is equivalent to Of iB. Indeed, there exists an (f, f)-coderivation
w of degree −2 such that f iB = wb− bw. In particular, X(f iB)0 = Xf iB0 = Xw0b1.
Consider the (Of ,Of )-coderivation v of degree −2, given by its components v0 = w0

and vk = 0 for k > 0. Then X(Of iB)0 = Xf iB0 = Xv0b1 and

(Of iB)n = 0 = vnb1 −
∑

q+k+t=n

(1⊗q ⊗ bk ⊗ 1⊗t)vq+1+t = (vb− bv)n

for n > 0. Therefore, Of iB = vb− bv.
(C10) =⇒ (C4): Since f is unital, isomorphic to it A∞-functor Of is unital. Thus,

Of iB ≡ iAOf = 0 : Of → Of : A→ B.

Therefore, there exists an (Of ,Of )-coderivation v of degree −2 such that Of iB =
vb− bv. In particular, Xf iB0 = X(Of iB)0 = Xv0b1, hence, (C4) holds.

Definition 6.4. Let A be a unital A∞-category. An A∞-functor f : A→ B is con-
tractible if it satisfies equivalent conditions (C6)–(C9) of Proposition 6.2. An A∞-
category A is contractible if complexes (sA(X,Y ), b1) are contractible for all objects
X, Y of A.

A contractible A∞-category A is unital. Indeed, X iA0 = 0 are unit elements of A.
The identity A∞-functor id : A→ A is contractible if and only if A is contractible. A
unital A∞-functor f is contractible if and only if equivalent conditions (C1)–(C11)
hold.
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Example 6.5. If C is a unital A∞-category, then C, C are contractible. Indeed, by
Corollaries 5.2 and 5.3 these categories are unital. In particular, for all objects X,
Y of C the chain map

0 = (1⊗ Y iC0 )b2 : sC(X,Y )→ sC(X,Y )

is homotopy invertible. Hence, (sC(X,Y ), b1) = (sC(X,Y ), b1) is contractible. By
Proposition 6.1 (C2) A∞-categories C and C are contractible.

Example 6.6. Let B be a full subcategory of a unital A∞-category C. Then the
A∞-functor ′ =

(
B ⊂ → C

→ D(C|B)
)

is contractible according to criterion
(C4): for any object X of B

(X iC0 ⊗ X iC0 )b1 = (X iC0 ⊗ X iC0 )b2 = X iC0 + Xv0b1 = X iD(C|B)
0 + Xv0b1.

Proposition 6.7. A unital A∞-category A is contractible if and only if the follow-
ing equivalent conditions hold:

(C0) A is equivalent in Au
∞ to an A∞-category O, such that O(U, V ) = 0 for all

objects U , V of O;
(C1′) For all objects X, Y of A the complex (sA(X,Y ), b1) is contractible;
(C2′) For any object X of A the complex (sA(X,X), b1) is contractible;
(C3′) For any object X of A the complex (sA(X,X), b1) is acyclic;
(C4′) For any object X of A there is an element Xv ∈ (sA)−2(X,X) such that

X iA0 = Xvb1;
(C5′) iA ≡ 0 : idA → idA : A→ A;

(C10′) There is an isomorphism of A∞-functors idA ' Oid : A→ A, where XOid =
X, Oid

k = 0 for all k > 1.

Proof. Conditions (C1′)–(C5′), (C10′) are just conditions (C1)–(C10) for f = idA,
hence, they are equivalent to contractibility of A. Notice that any O as in (C0) is
strictly unital.

(C10′) =⇒ (C0): Denote by OA the A∞-category, whose class of objects is ObA,
and OA(X,Y ) = 0 for all objects X,Y ∈ ObA = Ob OA. Let φ : OA → A, ψ : A→
OA be the unique A∞-functors such that Xφ = X, Xψ = X for all X ∈ ObA. Then
φψ = idA and ψφ = OidA ' idA by (C10′).

(C0) =⇒ (C3′): There is a 2-functorH• : Au
∞ → Cat such that ObH•(A) = ObA,

H•(A)(X,Y ) = H•(A(X,Y ), b1). If A is equivalent to O in Au
∞, then H•(A) is

equivalent to H•(O) in Cat. Clearly, H•(O)(U, V ) = 0 for all objects U , V of O.
Hence, H•(A)(X,Y ) = 0 for all objects X, Y of A.

Corollary 6.8. If the A∞-category B is contractible, then for any A∞-category A,
any natural A∞-transformation r : f → g : A→ B is equivalent to 0.

Remark 6.9. Any A∞-category O, such that O(U, V ) = 0 for all objects U , V
of O with non-empty Ob O is equivalent to 1-object-1-morphism A∞-category 1,
such that Ob1 = {∗} and 1(∗, ∗) = 0. Indeed, choose an object Z ∈ ObO. Consider
A∞-functors φ : O→ 1, U 7→ ∗ and ψ : 1→ O, ∗ 7→ Z. We have ψφ = id1 and φψ
is isomorphic to idO via inverse 2-morphisms 0 : φψ → idO : O→ O and 0 : idO →
φψ : O→ O.
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Remark 6.10. Let C be strictly unital. Then D(C|B) has a strict unit iD(C|B)

described in Section 2.1. On the other hand, D(iC) is a unit of D(C|B) as well.
Hence, iD(C|B) ≡ D(iC) by [Lyu03, Corollary 7.10].

7. The case of a contractible subcategory

Taking the quotient D(E|F) can be interpreted as contracting the full A∞-sub-
category F ⊂ E. If F were already contractible, one would expect that no further
contracting is required. And, in fact, if E is unital, we shall prove below that D(E|F)
is equivalent to E. In the proof we shall construct inductively a new A∞-structure
on E. So first of all, we consider direct limits of A∞-structures on a given graded
k-linear quiver.

Lemma 7.1. Let B be a graded k-quiver. Let Ak, k > 1, be a sequence of A∞-cate-

gories, whose underlying graded k-quiver is B. Let A1
f1

−−→ A2
f2

−−→ · · · be a sequence
of A∞-functors, such that fk

1 = idAk
for all k, and let Ni, i > 2 be an increasing

sequence of positive integers, such that fk
i = 0 for k > Ni. Then there exists a direct

(2-)limit A = lim
−→fi

Ai of this diagram, and the structure A∞-functors pk : Ak → A

are invertible.

Proof. If g : D→ C is an A∞-functor, such that g1 = idD and gi = 0 for i = 2, . . . , k,
then for any such i there exists a commutative diagram

sD⊗i idsD⊗i→ sC⊗i

sD

bi↓
idsD → sC

bi↓

which allows us to identify the A∞-operations bi, i = 1, . . . , k on D and C.
Due to this remark, we take B as the underlying k-quiver of A, we set b1 : sA→

sA to be b1 : sA1 → sA1 and we set bi : sA⊗i → sA equal bi : sA⊗i
Ni
→ sANi . This

equips A with an A∞-structure. We define pk setting its i-th component equal to
pk

i = (fkfk+1 . . . f l)i for l = max(k,Ni).
Given an A∞-category C and A∞-functors πk : Ak → C, k = 1, . . . , such that

πk = fkπk+1, then there exists the unique A∞-functor π : A→ C, such that πk =
pkπ, defined by πi = π

N(i)
i , i > 1. It shows that the constructed A is a direct limit

of the diagram (Ai, f
i, i > 1).

Lemma 7.2. Let E be an A∞-category and let F be its full A∞-subcategory such that
the complex of k-modules (sE(X,Y ), b1) is contractible provided at least one of X, Y
belongs to ObF. Denote by Dn(E|F), n = 2, 3, . . . the k-submodule in (sE)⊗n, which
is a sum of sE(X0, X1)⊗ sE(X1, X2)⊗ . . .⊗ sE(Xn−2, Xn−1)⊗ sE(Xn−1, Xn), such
that at least for one i = 0, . . . , n object Xi belongs to ObF. Then there exists an
invertible A∞-functor g : E→ EF, such that A∞-category (EF, b

′) coincides with
E as a graded differential (with respect to b1) k-quiver (that is, g1 = idE) and
(Dn(E|F))b′n = 0 for any n > 1.
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Proof. We construct a chain of A∞-isomorphisms f i : Ei → Ei+1, i = 1, . . . , E1 = E

as in Lemma 7.1 and then we set EF = lim
−→fi

Ei and g = p1. For the constructed

Ej and f j , j = 1, . . . the following will hold: 1) bk|Dk(E|F) = 0 holds in Ej for k =
2, . . . , j; 2) f j

i = 0 for i 6= 1, j + 1.

Given an A∞-category Ek and a k-quiver morphism fk = (idE, 0, . . . , 0, fk
k+1,

0, . . . ) : TsEk → sE of degree 0, they define (following Remark 2.3) a unique A∞-cat-
egory structure Ek+1 on the graded k-quiver E such that fk turns into an A∞-func-
tor fk : Ek → Ek+1. Assume f j : Ej → Ej+1, j = 1, . . . , k − 1 are constructed (the
reasoning is valid for k = 1 too).

Let us fix, for any sequence X0, X1, . . . , Xn as in the hypothesis of the lemma,
an index l(X0, . . . , Xn) such that Xl(X0,...,Xn) belongs to Ob F. Any choice of fk

k+1 :
T k+1sEk → sE determines by Remark 2.3 an A∞-category Ek+1 with the operations
bp = b

Ek+1
p . Notice that the conditions bEk+1

2 |D2(E|F) = 0, . . . , bEk+1
k |Dk(E|F) = 0 hold

automatically: in view of fk
1 = idE in Ek and fk

j = 0, 1 < j 6 i 6 k the i-th condition
(2) shows, that b1, . . . , bk in Ek and Ek+1 coincide. The (k + 1)-th condition (1) for
Ek on Dk+1(E|F) turns into

∑
r+1+t=k+1

(1⊗r ⊗ b1 ⊗ 1⊗t)bk+1 + bk+1b1 = 0

(for any other summand in the sum
∑

r+n+t=k+1(1
⊗r ⊗ bn ⊗ 1⊗t)br+1+t, either the

first or the second factor vanishes by induction). On the other hand, by the induction
assumptions, the (k + 1)-th condition (2) turns on Dk+1(E|F) into

(fk
1 )⊗(k+1)bk+1 + fk

k+1b1 =
∑

r+1+t=k+1

(1⊗r ⊗ b1 ⊗ 1⊗t)fk
k+1 + bk+1f

k
1 :

sDk+1(E|F)→ sEk+1. (42)

We consider the condition “bk+1|Dk+1(E|F) = 0 holds in the A∞-category Ek+1”
as an equation with respect to fk

k+1. Denote l = min{l(X0, . . . , Xk+1), k}. Choose
a contracting homotopy, i.e. k-module morphism h : sE(Xl, Xl+1)→ sE(Xl, Xl+1)
of degree −1 such that hb1 + b1h = idsE(Xl,Xl+1). We define fk

k+1 on Dk+1(E|F)
(X0, . . . , Xk+1) as

fk
k+1 = −(1⊗l ⊗ h⊗ 1⊗(k−l))bk+1.

On sE(X0, X1)⊗ · · · ⊗ sE(Xn−1, Xn) such that all Xi /∈ ObF, we set fk
k+1 = 0.

Compare Equation (42) restricted to Dk+1(E|F)(X0, . . . , Xk+1) with the follow-
ing computation
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fk
k+1b1 = −(1⊗l ⊗ h⊗ 1⊗(k−l))bk+1b1

= (1⊗l ⊗ h⊗ 1⊗(k−l))
∑

r+1+t=k+1

(1⊗r ⊗ b1 ⊗ 1⊗t)bk+1

=
∑

r+1+t=k+1

(1⊗r ⊗ b1 ⊗ 1⊗t)(−(1⊗l ⊗ h⊗ 1⊗(k−l)))bk+1

+ (1⊗l ⊗ b1h⊗ 1⊗(k−l))bk+1 + (1⊗l ⊗ hb1 ⊗ 1⊗(k−l))bk+1

=
∑

r+1+t=k+1

(1⊗r ⊗ b1 ⊗ 1⊗t)fk
k+1 + bk+1.

We deduce that in Ek+1 the restriction of bk+1 to Dk+1(E|F) vanishes. Now the
lemma follows from the definition of the limit morphism g : E→ lim

−→fi
Ei.

Lemma 7.3. Let F ⊂ EF be a full A∞-subcategory such that bn
∣∣
Dn(EF|F)

vanishes
for all n > 2. Then the canonical strict embedding  : EF → D(EF|F) admits a split-
ting strict A∞-functor π : D(EF|F)→ EF, that is, π = idEF

. Its first component is
the projection

π1 =
(
sD(EF|F) ↪→ T+sEF

pr1→ sEF

)
.

Proof. Denote A = D(EF|F) ∩ (s−1T>2sEF) = Kerπ1. Then D(EF|F) = EF ⊕A as
a graded k-quiver and sA ⊂ ⊕n>2Dn(E|F). Let us check that π is an A∞-functor,
that is, π⊗k

1 bk = bkπ1 for all k > 1.
Notice that A(X,Y ) = ⊕n>2

X1,...,Xn−1∈Ob FsE(X,X1)⊗ · · · ⊗ sE(Xn−1, Y ), and
each substring of such a tensor product of length k > 2 is inDk(E|F). The restriction
to sE⊗k

F of the equation π⊗k
1 bk = bkπ1 follows from (5) or Corollary 2.4. Both sides,

restricted to sX1 ⊗ · · · ⊗ sXk where Xj is EF or A, vanish if at least one A is present.
Indeed, bk vanishes in that case if k > 1 due to (5). For k = 1, (sA)b1 = (sA)b ⊂ sA
as equation b1

∣∣
A

= b
∣∣
A

=
∑

q+1+t=n 1⊗q ⊗ b1 ⊗ 1⊗t : sA→ sA shows. Other claims
are clear.

Proposition 7.4. Let F be a contractible full subcategory of a unital A∞-category E.
Then there exists a quasi-inverse to the canonical strict embedding E : E→ D(E|F)
unital A∞-functor πE : D(E|F)→ E such that EπE = idE. In particular, D(E|F) is
equivalent to E.

Proof. First of all, we prove the statements for the full embedding F ⊂ EF con-
structed in Lemma 7.2. Since E is unital and g : E→ EF is invertible, the A∞-cat-
egory EF is unital by [Lyu03, Section 8.12]. Let us prove that the A∞-functor
πEF = π : D(EF|F)→ EF from Lemma 7.3 is unital, that is, πiEF ≡ D(iEF)π.

We look for a 3-morphism

v : πiEF → D(iEF)π : π → π : D(EF|F)→ EF.

Since (πiEF)0 = iEF
0 = (D(iEF)π)0, we may take v0 = 0. Let us proceed by induction.

Assume that we have already found components (v0, v1, . . . , vn−1) of v such that vm

vanishes on (sEF)⊗m for all m < n. Define a (π, π)-transformation
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ṽ = (v0, v1, . . . , vn−1, 0, 0, . . . ) by these components. Denote by λ the (π, π)-trans-
formation πiEF − D(iEF)π − ṽb+ bṽ. Our assumption is that λm = 0 for m < n.
Clearly, λb+ bλ = 0. This implies

0 = (λb+ bλ)n = λnb1 +
∑

q+1+t=n

(1⊗q ⊗ b1 ⊗ 1⊗t)λn,

that is, λn ∈ Hom−1
(
(sD(EF|F))⊗n, sEF

)
is a cocycle. We wish to prove that it is

a coboundary of an element vn ∈ Hom−2
(
(sD(EF|F))⊗n, sEF

)
, that is,

λn = vnb1 −
∑

q+1+t=n

(1⊗q ⊗ b1 ⊗ 1⊗t)vn = vnd.

We have (sD(EF|F))⊗n = ⊕Xi∈{EF,A}sX1 ⊗ · · · ⊗ sXn. If at least one A is present
in sX1 ⊗ · · · ⊗ sXn, then this summand is contractible, hence, Hom(sX1 ⊗ · · · ⊗
sXn, sEF) is contractible. Therefore, there are such v′n ∈ Hom−2(sX1 ⊗ · · · ⊗ sXn,
sEF) that v′nd = λn on sX1 ⊗ · · · ⊗ sXn. It remains to look at the case sX1 ⊗ · · · ⊗
sXn = (sEF)⊗n. By restriction to this submodule, we have

(πiEF)n = iEF
n = (D(iEF)π)n : (sEF)⊗n → sEF,

(ṽb− bṽ)n = 0 : (sEF)⊗n → sEF.

Therefore, λn vanishes on (sEF)⊗n, and vn

∣∣
(sEF)⊗n = 0 satisfies the equation and

the induction assumptions.
Define the following natural A∞-transformations

r : id→ π : D(EF|F)→ D(EF|F),
p : π→ id : D(EF|F)→ D(EF|F)

via its components, restricted to sX1 ⊗ · · · ⊗ sXn ⊂ (sD(EF|F))⊗n, namely, rk = iEF

k

and pk = iEF

k if sX1 ⊗ · · · ⊗ sXn = (sEF)⊗n, and rk = 0, pk = 0 otherwise. We have
to check the equation rb+ br = 0. Its restriction to (sEF)⊗n holds because on this
submodule b can be replaced with b and r with i. If {X1, . . . ,Xn} contains A, then
all terms in the following sums vanish on sX1 ⊗ · · · ⊗ sXn, hence,∑

q+k+t=n

(1⊗q ⊗ rk ⊗ (π)⊗t
1 )bq+1+t +

∑
q+k+t=n

(1⊗q ⊗ bk ⊗ 1⊗t)rq+1+t = 0.

In the same way, we prove that pb+ bp = 0. Thus, r and p are, indeed, natural
A∞-transformations.

Let us prove now that r and p are inverse to each other 2-morphisms, that is,

(r ⊗ p)B2 ≡ D(iEF) : id→ id : D(EF|F)→ D(EF|F),

(p⊗ r)B2 ≡ πD(iEF) : π→ π : D(EF|F)→ D(EF|F).

We look for a 3-morphism

v : (r ⊗ p)B2 → D(iEF) : id→ id : D(EF|F)→ D(EF|F).

Let us look at the restriction of the equation

(r ⊗ p)B2 − D(iEF) = vb− bv (43)
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to (sEF)⊗n. First of all, (π)1 = 1 on sEF. Summands bk, contained in B2, are
applied to elements of (sEF)⊗k only. Hence, they can be replaced with bk. Therefore,
B

D(EF|F)
2 is replaced with BEF

2 on (sEF)⊗n. The problem of finding a 3-morphism

w : (iEF ⊗ iEF)B2 → iEF : id→ id : EF → EF

is solvable. We set the restriction of vn to (sEF)⊗n equal vn = wn : (sEF)⊗n → sEF

and it solves (43) on this submodule. The restriction of Equation (43) to sX1 ⊗
· · · ⊗ sXn that contains factor A, can be solved by induction due to contractibility
of sX1 ⊗ · · · ⊗ sXn as above. Thus v is constructed.

Similarly, a 3-morphism

u : (p⊗ r)B2 → πD(iEF) : π→ π : D(EF|F)→ D(EF|F)

is constructed.
The property π = idEF

is proved in Lemma 7.3.
Now we turn to the general case. The invertible A∞-functor g : E→ EF, con-

structed in Lemma 7.2 is the identity on objects. Denoting πEF = π as above,
g′ = g

∣∣
F

: F → F, and πE = gπEFg−1, we get a diagram

F ⊂ → E
E

→←
πE

D(E|F)

F

g′

↓
⊂ → EF

g
↓

EF

→←
πEF

D(EF|F)

g↓

All the required properties of πE follow immediately from those of πEF .

7.1. Reducing a full contractible subcategory to 0.
Let F be a full contractible subcategory of a unitalA∞-category E. Let us consider

another A∞-category E/p F, whose class of objects is ObE. Here /p stands for the
plain quotient. The morphisms are E/p F(X,Y ) = E(X,Y ), if X,Y ∈ ObE−ObF

and E/p F(X,Y ) = 0 otherwise. The component of the differential for E/p F

bn : sE/p F(X0, X1)⊗ · · · ⊗ sE/p F(Xn−1, Xn)→ sE/p F(X0, Xn)

equals bn for E if X0, . . . , Xn /∈ ObF, and vanishes otherwise.
There is a strict embedding e : E/p F → E, which is the identity on objects, e1 =

id : sE/p F(X,Y )→ sE(X,Y ) if X,Y /∈ ObF and vanishes otherwise.The identity
e⊗n
1 bEn = b

E/p F
n e1 is obvious.

If E is strictly unital with the strict unit iE, then E/p F is strictly unital with the
strict unit iE/p F, defined as follows. Its 0-th component is X iE/p F

0 = X iE0 ifX /∈ ObF,
and vanishes otherwise.

Let us consider the general case of a unital E. Each complex (sE(X,Y ), b1)
is contractible if X or Y is an object of F due to Proposition 6.1 (C1), (C2).
Therefore, e1 : sE/p F(X,Y )→ sE(X,Y ) is homotopy invertible for all pairs X, Y
of objects of E. Consider the following data: identity map h = id : ObE→ ObE/p F

and k-linear maps Xr0 = Xp0 = X iE0 : k→ (sE)−1(X,X). Clearly, X iE0 b1 = 0 and
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(X iE0 ⊗ X iE0 )b2 − X iE0 ∈ Im b1. Therefore, the hypotheses of Theorem 8.8 of [Lyu03]
are satisfied. By this theorem we conclude that E/p F is unital and e : E/p F → E is
a unital A∞-equivalence.

8. An A∞-functor related by an A∞-transformation to a given
A∞-functor

Given an A∞-functor f and the 0-th component r0 of a natural A∞-transforma-
tion r : f → g, we construct the A∞-functor g and extend r0 to the whole A∞-trans-
formation r. We do it under additional assumptions on r0 which are satisfied, for
instance, when r0 is invertible. In the next section we apply this construction to the
case of the quasi-isomorphisms r0.

8.1. Assumptions.
Let B, C be A∞-categories, let f : B→ C be an A∞-functor and let g : Ob B→

ObC be a map. Assume that for each object X ∈ ObB, there is an element rX ∈
C0(Xf,Xg) such that rXsb1 = 0. For any object Y ∈ ObB, this element determines
a chain map

(rXs⊗ 1)b2 : sC(Xg, Y g)→ sC(Xf, Y g), p 7→ (−)p(rXs⊗ p)b2.

Finally, we assume that for any chain complex of k-modules of the form N =
sB(X0, X1)⊗k sB(X1, X2)⊗k · · · ⊗k sB(Xn−1, Xn), n > 0, the following chain map

u = Hom(N, (rXs⊗ 1)b2) : Hom•
k(N, sC(Xg, Y g))→ Hom•

k(N, sC(Xf, Y g)) (44)

is a quasi-isomorphism. For n = 0, we have N = k and the 0-th condition means
that (rXs⊗ 1)b2 is a quasi-isomorphism.

Proposition 8.1. Under the above assumptions, the map g : Ob B→ ObC extends
to an A∞-functor g : B→ C. There exists a natural A∞-transformation r : f → g :
B→ C such that its 0-th component is r0 : k→ sC(Xf,Xg), 1 7→ rXs.

All statements in this section (existence of the A∞-functor g and the natural
A∞-transformation r, their uniqueness in a certain sense, unitality of g and invert-
ibility of r) are proved in a similar fashion, using acyclicity of the cone of the
quasi-isomorphism u.

Proof. The components g0 = 0 and r0 are already known. Let us build the remaining
components by induction. Assume that we have already found components gm, rm
of the sought for g, r for m < n, such that the equations

gbpr1 = bg pr1 : sB(X0, X1)⊗k · · · ⊗k sB(Xm−1, Xm)→ sC(X0g,Xmg),
(rb+ br) pr1 = 0 : sB(X0, X1)⊗k · · · ⊗k sB(Xm−1, Xm)→ sC(X0f,Xmg)

are satisfied for all m < n. Under these assumptions, we will find such gn, rn that
the above equations are satisfied for m = n. Let us write down these equations
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explicitly. The terms which contain unknown maps gn, rn are singled out on the
left-hand side. The right-hand side consists of already known terms:

− gnb1 +
∑

q+1+t=n

(1⊗q ⊗ b1 ⊗ 1⊗t)gn =
∑

l>1;i1+···+il=n

(gi1 ⊗ gi2 ⊗ · · · ⊗ gil
)bl

−
∑

k>1;q+k+t=n

(1⊗q ⊗ bk ⊗ 1⊗t)gq+1+t, (45)

rnb1 +
∑

q+1+t=n

(1⊗q ⊗ b1 ⊗ 1⊗t)rn + (r0 ⊗ gn)b2

= −
∑

k<n;(q,k,t) 6=(0,0,1)
i1+···+iq+k+j1+···+jt=n

(fi1 ⊗ · · · ⊗ fiq ⊗ rk ⊗ gj1 ⊗ · · · ⊗ gjt)bq+1+t

−
∑
k>1

q+k+t=n

(1⊗q ⊗ bk ⊗ 1⊗t)rq+1+t. (46)

Let us prove that there exist k-linear maps gn : sB(X0, X1)⊗k · · · ⊗k sB(Xn−1, Xn)
→ sB(X0g,Xng), rn : sB(X0, X1)⊗k · · · ⊗k sB(Xn−1, Xn)→ sB(X0f,Xng) which
solve the above equations.

Since the map u = Hom(N, (rX0s⊗ 1)b2) from (44) is a quasi-isomorphism,
Cone(u) is acyclic. As a differential graded k-module

Cone(u) = Hom•
k(N, sC(X0f,Xng))⊕Hom•

k(N, sC(X0g,Xng))[1],
(v, p)d = (vd+ pu,−pd),

where N = sB(X0, X1)⊗k · · · ⊗k sB(Xn−1, Xn). Denote by λn ∈ Hom1
k(N, sC(X0g,

Xng)) the right-hand side of (45) and by νn ∈ Hom0
k(N, sC(X0f,Xng)) the right-

hand side of (46). Equations (45) and (46) mean that (rn, gn)d=(νn, λn)∈Cone0(u).
Since Cone(u) is acyclic, such a pair(rn, gn)∈Cone−1(u) exists if and only if (νn, λn)
∈ Cone0(u) is a cycle, that is, equations −λnd = 0, νnd+ λnu = 0 are satisfied. Let
us verify them now.

Introduce a cocategory homomorphism g̃ : TsB→ TsC by its components
(g1, . . . , gn−1, 0, 0, . . . ) (these are already known). The map λ = g̃b− bg̃ is a (g̃, g̃)-
coderivation. Its components (g̃b− bg̃)k vanish for 0 6 k 6 n− 1, and

(g̃b− bg̃)n

=
∑

l>1;i1+···+il=n

(gi1⊗ gi2 ⊗ · · · ⊗ gil
)bl −

∑
k>1;q+k+t=n

(1⊗q ⊗ bk ⊗ 1⊗t)gq+1+t = λn

is the right-hand side of (45). This coderivation commutes with b, since (g̃b− bg̃)b+
b(g̃b− bg̃) = 0. Applying this identity to TnsB and composing it with pr1 : TsC→
sC, we get an identity

(g̃b− bg̃)nb1 +
∑

q+1+t=n

(1⊗q ⊗ b1 ⊗ 1⊗t)(g̃b− bg̃)n = 0,

which means precisely that λnd = 0.
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Introduce a (f, g̃)-coderivation r̃ : TsB→ TsC by its components (r0, r1, . . . ,
rn−1, 0, 0, . . . ) (these are already known). The commutator r̃b+ br̃ has the following
property:

(r̃b+ br̃)∆ = ∆
[
f ⊗ (r̃b+ br̃) + (r̃b+ br̃)⊗ g̃ + r̃ ⊗ (g̃b− bg̃)

]
.

Let us construct a map θ = [r̃ ⊗ (g̃b− bg̃)]θ : TsB→ TsC for the data
f

r̃→ g̃
g̃b−bg̃→ g̃ : TsB→ TsC as in Section 3 of [Lyu03] (see also Section 1).

Its components θkl = θ
∣∣
T ksB

prl : T ksB→ T lsC are given by Formula (4)

θkl =
∑

α+β+γ+2=l
a+j+c+t+e=k

faα ⊗ r̃j ⊗ g̃cβ ⊗ (g̃b− bg̃)t ⊗ g̃eγ .

By Proposition 3.1 of [Lyu03] the map θ satisfies the equation

θ∆ = ∆
[
f ⊗ θ + θ ⊗ g̃ + r̃ ⊗ (g̃b− bg̃)

]
.

Therefore, ν = −r̃b− br̃ + [r̃ ⊗ (g̃b− bg̃)]θ : TsB→ TsC is a (f, g̃)-coderivation.
Since θk1 = 0 for all k, the components νk vanish for k < n, and

νn = −
∑

k<n;(q,k,t) 6=(0,0,1)
i1+···+iq+k+j1+···+jt=n

(fi1 ⊗ · · · ⊗ fiq ⊗ rk ⊗ gj1 ⊗ · · · ⊗ gjt)bq+1+t

−
∑

k>1;q+k+t=n

(1⊗q ⊗ bk ⊗ 1⊗t)rq+1+t

which is the right-hand side of (46). We have an obvious identity

νb− bν = (−r̃b− br̃ + θ)b− b(−r̃b− br̃ + θ) = θb− bθ.

Applying this identity to TnsB and composing it with pr1 : TsC→ sC, we get an
identity

νnb1 −
∑

q+1+t=n

(1⊗q ⊗ b1 ⊗ 1⊗t)νn =
[
r0 ⊗ (g̃b− bg̃)n

]
b2,

since [r̃ ⊗ (g̃b− bg̃)]θnl vanishes for l 6= 2, and equals r0 ⊗ (g̃b− bg̃)n for l = 2. The
above equation means precisely that νnd = −λnu. Indeed, (g̃b− bg̃)n(rX0 ⊗ 1) =
−r0 ⊗ (g̃b− bg̃)n. Thus, proposition is proved by induction.

8.2. Transformations between the constructed A∞-functors.
Let B, C be A∞-categories, let f : B→ C be an A∞-functor, let g : Ob B→ ObC

be a map, and assume that for each object X ∈ ObB there is a map r0 : k→
(sC)−1(Xf,Xg) such that r0b1 = 0. Let the assumptions of Section 8.1 hold. Let
g, g′ : B→ C be two A∞-functors, whose underlying map is the given g : Ob B→
ObC. Let r : f → g : B→ C, r′ : f → g′ : B→ C be natural A∞-transformations,
whose 0-th component r0 = r′0 is the given map r0 : k→ (sC)−1(Xf,Xg).

Proposition 8.2. Under the above assumptions, there exists a natural A∞-trans-
formation p : g → g′ : B→ C such that r′ = (f

r→ g
p→ g′) in the 2-cate-

gory A∞.



Homology, Homotopy and Applications, vol. 8(2), 2006 193

Proof. Let us construct a (g, g′)-coderivation p : TsB→ TsC of degree −1 and a
(f, g′)-coderivation v : TsB→ TsC of degree −2 such that

pb+ bp = 0,
(r ⊗ p)B2 − r′ = [v, b],

that is, p : g → g′ : B→ C is a 2-morphism and v : (r ⊗ p)B2 → r′ : f → g′ : B→ C

is a 3-morphism. Let us build the components of p and v by induction. We have
pk = 0 and vk = 0 for k < 0. Given non-negative n, assume that we have already
found components pm, vm of the sought for p, v for m < n, such that equations

(pb+ bp) pr1 = 0 : sB(X0, X1)⊗ · · · ⊗ sB(Xm−1, Xm)→ sC(X0g,Xmg),

{(r ⊗ p)B2 − r′ − [v, b]}pr1 = 0 :
sB(X0, X1)⊗ · · · ⊗ sB(Xm−1, Xm)→ sC(X0f,Xmg)

are satisfied for all m < n. Under these assumptions we will find such pn, vn that
the above equations are satisfied for m = n. Notice that for m = n = 0 the source
complexes reduce to k. Let us write down these equations explicitly. The terms
which contain unknown maps pn, vn are singled out on the left-hand side. The
right-hand side consists of already known terms:

− pnb1 −
∑

q+1+t=n

(1⊗q ⊗ b1 ⊗ 1⊗t)pn =
k>1∑

q+k+t=n

(1⊗q ⊗ bk ⊗ 1⊗t)pq+1+t

+
k<n∑

i1+···+iq+k+j1+···+jt=n

(gi1 ⊗ · · · ⊗ giq
⊗ pk ⊗ g′j1 ⊗ · · · ⊗ g

′
jt

)bq+1+t, (47)

vnb1 −
∑

q+1+t=n

(1⊗q ⊗ b1 ⊗ 1⊗t)vn − (r0 ⊗ pn)b2

=
k<n∑

a1+···+aα+j+c1+···+cβ+k+e1+···+eγ=n

(fa1 ⊗ · · · ⊗ faα
⊗ rj ⊗ gc1 ⊗ . . .

⊗ gcβ
⊗ pk ⊗ g′e1

⊗ · · · ⊗ g′eγ
)bα+β+γ+2

− r′n −
k<n∑

i1+···+iq+k+j1+···+jt=n

(fi1 ⊗ · · · ⊗ fiq
⊗ vk ⊗ g′j1 ⊗ · · · ⊗ g

′
jt

)bq+1+t

+
k>1∑

q+k+t=n

(1⊗q ⊗ bk ⊗ 1⊗t)vq+1+t. (48)

The components of (r ⊗ p)B2 are computed by Formula (5.1.3) of [Lyu03]:

[(r ⊗ p)B2]n =
∑

l

(r ⊗ p)θnlbl.

Denote by λn ∈ Hom0
k(N, sC(X0g,Xng)) the right-hand side of (47) and by νn ∈

Hom−1
k (N, sC(X0f,Xng)) the right-hand side of (48), where N = sB(X0, X1)⊗k
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· · · ⊗k sB(Xn−1, Xn). In particular, N = k for n = 0. Equations (47) and (48) mean
that (vn, pn)d = (νn, λn) ∈ Cone−1(u). Since Cone(u) is acyclic, such a pair (vn, pn)
∈ Cone−2(u) exists if and only if (νn, λn) ∈ Cone−1(u) is a cycle, that is, equations
−λnd = 0, νnd+ λnu = 0 are satisfied. Let us verify them now.

Introduce a (g, g′)-coderivation p̃ : TsB→ TsC of degree −1 by its components
(p0, p1, . . . , pn−1, 0, 0, . . . ). The commutator λ = p̃b+ bp̃ is also a (g, g′)-coderivation
(of degree 0). Its components λm vanish for m < n. The component λn = (p̃b+ bp̃)n

is the right-hand side of (47). Consider the identity

(p̃b+ bp̃)b− b(p̃b+ bp̃) = 0.

Applying this identity to TnsB and composing it with pr1 : TsC→ sC, we get an
identity

λnb1 −
∑

q+1+t=n

(1⊗q ⊗ b1 ⊗ 1⊗t)λn = 0,

that is, λnd = 0.
Introduce a (f, g′)-coderivation ṽ : TsB→ TsC of degree −2 by its components

(v0, v1, . . . , vn−1, 0, 0, . . . ). All summands of the map ν = (r ⊗ p̃)B2 − r′ − [ṽ, b] are
(f, g′)-coderivations of degree −1. Hence, the same holds for ν. The components νm

vanish for m < n. The component νn is the right-hand side of (48). Consider the
commutator

[ν, b] = νB1 = (r ⊗ p̃)B2B1 − r′B1 − ṽB1B1 = −(r ⊗ p̃)(1⊗B1 +B1 ⊗ 1)B2

= −(r ⊗ p̃B1)B2 = −(r ⊗ λ)B2.

Applying this identity to TnsB and composing it with pr1 : TsC→ sC we get an
identity

νnb1 +
∑

q+1+t=n

(1⊗q ⊗ b1 ⊗ 1⊗t)νn = −(r0 ⊗ λn)b2,

that is, νnd = −λnu. Thus, the proposition is proved by induction.

Proposition 8.3 (Uniqueness of the transformations). Let assumptions of Sections
8.1 and 8.2 hold. The natural A∞-transformation p : g → g′ : B→ C, such that r′ =
(f

r→ g
p→ g′) in the 2-category A∞, is unique up to an equivalence.

Proof. Assume that we have two such 2-morphisms p, q : g → g′ : B→ C and two
3-morphisms v : (r ⊗ p)B2 → r′ : f → g′ : B→ C and w : (r ⊗ q)B2 → r′ : f → g′ :
B→ C. We are looking for a 3-morphism x : p→ q : g → g′ : B→ C and the follow-
ing 4-morphism, whose source depends on x. Assuming that p− q = xB1 we deduce
that

−(r ⊗ x)B2B1 = (r ⊗ xB1)B2 = (r ⊗ p)B2 − (r ⊗ q)B2.

Since (r ⊗ q)B2 − r′ = wB1, we find out that (r ⊗ p)B2 − r′ = [w − (r ⊗ x)B2]B1.
Thus, we have two 3-morphisms with the common source and target v, w − (r ⊗
x)B2 : (r ⊗ p)B2 → r′ : f → g′ : B→ C. We are looking for a 4-morphism

z : w − (r ⊗ x)B2 → v : (r ⊗ p)B2 → r′ : f → g′ : B→ C,
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as well as for x. In other terms, we have to find coderivations x of degree −2 and z
of degree −3 such that the following equations hold:

p− q = xb− bx,
w − (r ⊗ x)B2 − v = zb+ bz.

Let us build the components of x and z by induction. We have xk = 0 and zk = 0
for k < 0. Given non-negative n, assume that we have already found components
xm, zm of the sought x, z for m < n, such that equations

(p− q) pr1 = (xb− bx) pr1 : sB(X0, X1)⊗ · · · ⊗ sB(Xm−1, Xm)→ sC(X0g,Xmg),

[w − (r ⊗ x)B2 − v] pr1 = (zb+ bz) pr1 :
sB(X0, X1)⊗ · · · ⊗ sB(Xm−1, Xm)→ sC(X0f,Xmg)

are satisfied for all m < n. Under these assumptions, we will find such xn, zn that
the above equations are satisfied for m = n. Notice that for m = n = 0 the source
complexes reduce to k. Let us write down these equations explicitly. The terms
which contain unknown maps xn, zn are singled out on the left-hand side. The
right-hand side consists of already known terms:

− xnb1 +
∑

α+1+β=n

(1⊗α ⊗ b1 ⊗ 1⊗β)xn = qn − pn

+
k<n∑

i1+···+iα+k+j1+···+jβ=n

(gi1 ⊗ · · · ⊗ giα
⊗ xk ⊗ g′j1 ⊗ · · · ⊗ g

′
jβ

)bα+1+β

−
k>1∑

α+k+β=n

(1⊗α ⊗ bk ⊗ 1⊗β)xα+1+β , (49)

znb1 +
∑

α+1+β=n

(1⊗α ⊗ b1 ⊗ 1⊗β)zn + (r0 ⊗ xn)b2

= −
k<n∑

a1+···+aα+j+c1+···+cβ+k+e1+···+eγ=n

(fa1 ⊗ · · · ⊗ faα
⊗ rj ⊗ gc1 ⊗ . . .

⊗ gcβ
⊗ xk ⊗ g′e1

⊗ · · · ⊗ g′eγ
)bα+β+γ+2

+ wn − vn −
k<n∑

i1+···+iα+k+j1+···+jβ=n

(fi1 ⊗ · · · ⊗ fiα ⊗ zk ⊗ g′j1 ⊗ · · · ⊗ g
′
jβ

)bα+1+β

−
k>1∑

α+k+β=n

(1⊗α ⊗ bk ⊗ 1⊗β)zα+1+β . (50)

Denote by λn ∈ Hom−1
k (N, sC(X0g,Xng)) the right-hand side of (49) and by νn ∈

Hom−2
k (N, sC(X0f,Xng)) the right-hand side of (50), where N = sB(X0, X1)⊗k

· · · ⊗k sB(Xn−1, Xn). In particular, N = k for n = 0. Equations (49) and (50) mean
that (zn, xn)d = (νn, λn) ∈ Cone−2(u). Since Cone(u) is acyclic, such a pair
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(zn, xn) ∈ Cone−3(u) exists if and only if (νn, λn) ∈ Cone−2(u) is a cycle, that is,
equations −λnd = 0, νnd+ λnu = 0 are satisfied. Let us verify them now.

Introduce a (g, g′)-coderivation x̃ : TsB→ TsC of degree −2 by its components
(x0, x1, . . . , xn−1, 0, 0, . . . ). The commutator x̃b− bx̃ is also a (g, g′)-coderivation
(of degree −1). Hence, the map λ = −p+ q + x̃b− bx̃ is also a (g, g′)-coderivation
of degree −1. Its components λm vanish for m < n. The component λn is the
right-hand side of (49). Consider the identity

λB1 = −pB1 + qB1 + x̃B1B1 = 0.

Applying this identity to TnsB and composing it with pr1 : TsC→ sC we get an
identity

λnb1 +
∑

α+1+β=n

(1⊗α ⊗ b1 ⊗ 1⊗β)λn = 0,

that is, λnd = 0.
Introduce a (f, g′)-coderivation z̃ : TsB→ TsC of degree −3 by its components

(z0, z1, . . . , zn−1, 0, 0, . . . ). All summands of the map ν = w − (r ⊗ x̃)B2 − v − [z̃, b]
are (f, g′)-coderivations of degree −2. Hence, the same holds for ν. The components
νm vanish for m < n. The component νn is the right-hand side of (50). Consider
the commutator

[ν, b] = νB1 = wB1 − (r ⊗ x̃)B2B1 − vB1 − z̃B1B1

= (r ⊗ q)B2 − r′ + (r ⊗ x̃B1)B2 − (r ⊗ p)B2 + r′

= [r ⊗ (q − p+ x̃B1)]B2 = (r ⊗ λ)B2.

Applying this identity to TnsB and composing it with pr1 : TsC→ sC we get an
identity

νnb1 −
∑

α+1+β=n

(1⊗α ⊗ b1 ⊗ 1⊗β)νn = (r0 ⊗ λn)b2,

that is, νnd = −λnu. Thus, the proposition is proved by induction.

Corollary 8.4. In the assumptions of Proposition 8.3, let C be unital. Then the
constructed 2-morphism p : g → g′ : B→ C is invertible in A∞.

Proof. Exchanging the pairs (g, r) and (g′, r′), we see that there is a 2-morphism t :

g′ → g : B→ C, such that r = (f
r′→ g′

t→ g). Therefore, r = (f
r→ g

p·t→ g).
Since C is unital, there is a unit 2-endomorphism 1gs = giC : g → g : B→ C. It sat-

isfies the equation r = (f
r→ g

1gs→ g). The uniqueness proved in Proposition 8.3
implies that p · t = 1gs. Similarly, t · p = 1g′s.

Proposition 8.5 (Unitality of A∞-functors). Let the assumptions of Section 8.1
hold. If A∞-categories B, C are unital and A∞-functor f : B→ C is unital, then
the A∞-functor g : B→ C constructed in Proposition 8.1 is unital as well.

Proof. We are given a 2-morphism r : f → g : B→ C and a 3-morphism v : f iC →
iBf : f → f : B→ C. We are looking for a 3-morphism w : giC → iBg : g → g : B→
C and a 4-morphism x, whose target depends on w. Let us describe x now for the
above w.
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We have the following 3-morphisms

(r ⊗ iC)M11 :(f iC ⊗ r)B2 → (r ⊗ giC)B2 : f → g : B→ C,

(v ⊗ r)B2 :(f iC ⊗ r)B2 →(iBf ⊗ r)B2 : f → g : B→ C,

(r ⊗ w)B2 :(r ⊗ iBg)B2 → (r ⊗ giC)B2 : f → g : B→ C,

(iB ⊗ r)M11 :(r ⊗ iBg)B2 →(iBf ⊗ r)B2 : f → g : B→ C.

Indeed, for the cocategory homomorphism M : TsA∞ � TsA∞ → TsA∞ we have
an equation MB = (1 �B +B � 1)M , see Section 6 of [Lyu03]. It implies, in par-
ticular, that

(r ⊗ iC)M11B1 − (f iC ⊗ r)B2 + (r ⊗ giC)B2 = (r ⊗ iC)(1⊗B1 +B1 ⊗ 1)M11 = 0,

(v ⊗ r)B2B1 = (vB1 ⊗ r)B2 = (f iC ⊗ r)B2 − (iBf ⊗ r)B2,

(r ⊗ w)B2B1 = −(r ⊗ wB1)B2 = (r ⊗ iBg)B2 − (r ⊗ giC)B2,

(iB ⊗ r)M11B1 − (r ⊗ iBg)B2 + (iBf ⊗ r)B2 = (iB ⊗ r)(1⊗B1 +B1 ⊗ 1)M11 = 0.

Linear combinations of the above maps form 3-morphisms with the same source
and target

(r ⊗ iC)M11 − (v ⊗ r)B2 : (iBf ⊗ r)B2 → (r ⊗ giC)B2 : f → g : B→ C,

(r ⊗ w)B2 − (iB ⊗ r)M11 : (iBf ⊗ r)B2 → (r ⊗ giC)B2 : f → g : B→ C.

We are looking for a 4-morphism between the above 3-morphisms

x : (r ⊗ iC)M11 − (v ⊗ r)B2 → (r ⊗ w)B2 − (iB ⊗ r)M11

: (iBf ⊗ r)B2 → (r ⊗ giC)B2 : f → g : B→ C,

as well as for w.

In other words, we have to find a (g, g)-coderivation w of degree −2 and an
(f, g)-coderivation x of degree −3 such that the following equations hold:

−wb+ bw = iBg − giC,
xb+ bx = (r ⊗ iC)M11 − (v ⊗ r)B2 − (r ⊗ w)B2 + (iB ⊗ r)M11.

Let us construct the components of w and x by induction. We have wk = 0 and xk =
0 for k < 0. Given non-negative n, assume that we have already found components
wm, xm of the sought for x, z for m < n, such that the above equations restricted
to TmsB are satisfied for all m < n. Under these assumptions, we will find such
wn, xn for m = n. Let us write down these equations explicitly. The terms which
contain unknown maps wn, xn are singled out on the left-hand side. The right-hand
side consists of already known terms:
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− wnb1 +
∑

q+1+t=n

(1⊗q ⊗ b1 ⊗ 1⊗t)wn

=
k<n∑

i1+···+iq+k+j1+···+jt=n

(gi1 ⊗ · · · ⊗ giq
⊗ wk ⊗ gj1 ⊗ · · · ⊗ gjt

)bq+1+t

−
k>1∑

q+k+t=n

(1⊗q ⊗ bk ⊗ 1⊗t)wq+1+t +
∑

q+k+t=n

(1⊗q ⊗ iBk ⊗ 1⊗t)gq+1 − iCn, (51)

xnb1 +
∑

q+1+t=n

(1⊗q ⊗ b1 ⊗ 1⊗t)xn + (r0 ⊗ wn)b2

= −
k<n∑

i1+···+iq+k+j1+···+jt=n

(fi1 ⊗ · · · ⊗ fiq
⊗ xk ⊗ gj1 ⊗ · · · ⊗ gjt

)bq+1+t

−
k>1∑

q+k+t=n

(1⊗q ⊗ bk ⊗ 1⊗t)xq+1+t

−
k<n∑

a1+···+aα+j+c1+···+cβ+k+e1+···+eγ=n

(fa1 ⊗ · · · ⊗ faα
⊗ vj ⊗ fc1 ⊗ . . .

⊗ fcβ
⊗ rk ⊗ ge1 ⊗ · · · ⊗ geγ

)bα+β+γ+2

−
k<n∑

a1+···+aα+j+c1+···+cβ+k+e1+···+eγ=n

(fa1 ⊗ · · · ⊗ faα ⊗ rj ⊗ gc1 ⊗ . . .

⊗ gcβ
⊗ wk ⊗ ge1 ⊗ · · · ⊗ geγ )bα+β+γ+2

+
∑

i1+···+iq+k+j1+···+jt=n

(fi1 ⊗ · · · ⊗ fiq ⊗ rk ⊗ gj1 ⊗ · · · ⊗ gjt)i
C
q+1+t

+
∑

q+k+t=n

(1⊗q ⊗ iBk ⊗ 1⊗t)rq+1+t. (52)

Denote by λn ∈ Hom−1
k (N, sC(X0g,Xng)) the right-hand side of (51) and by νn ∈

Hom−2
k (N, sC(X0f,Xng)) the right-hand side of (52), where N = sB(X0, X1)⊗k

· · · ⊗k sB(Xn−1, Xn). Equations (51) and (52) mean that (xn, wn)d = (νn, λn) ∈
Cone−2(u). Since Cone(u) is acyclic, such a pair (xn, wn) ∈ Cone−3(u) exists if and
only if (νn, λn) ∈ Cone−2(u) is a cycle, that is, equations −λnd = 0, νnd+ λnu = 0
are satisfied. Let us verify them now.

Introduce a (g, g)-coderivation w̃ : TsB→ TsC of degree −2 by its components
(w0, w1, . . . , wn−1, 0, 0, . . . ). Hence, the map λ= w̃b− bw̃ + iBg − giC is also a (g, g)-
coderivation of degree −1. Its components λm vanish for m < n. The component
λn is the right-hand side of (51). Consider the identity

λB1 = w̃B1B1 + (iBg)B1 − (giC)B1 = 0.

Applying this identity to TnsB and composing it with pr1 : TsC→ sC, we get an
identity
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λnb1 +
∑

q+1+t=n

(1⊗q ⊗ b1 ⊗ 1⊗t)λn = 0,

that is, λnd = 0.
Introduce a (f, g)-coderivation x̃ : TsB→ TsC of degree −3 by its components

(x0, x1, . . . , xn−1, 0, 0, . . . ). All summands of the map

ν = −x̃B1 + (r ⊗ iC)M11 − (v ⊗ r)B2 − (r ⊗ w̃)B2 + (iB ⊗ r)M11

are (f, g)-coderivations of degree −2. Hence, the same holds for ν. The components
νm vanish for m < n. The component νn is the right-hand side of (52). Consider its
differential

νB1 = −x̃B1B1 + (r ⊗ iC)M11B1 − (v ⊗ r)B2B1 − (r ⊗ w̃)B2B1 + (iB ⊗ r)M11B1

= (f iC ⊗ r)B2 − (r ⊗ giC)B2 − (vB1 ⊗ r)B2 + (r ⊗ w̃B1)B2 + (r ⊗ iBg)B2

− (iBf ⊗ r)B2

= [r ⊗ (w̃B1 − giC + iBg)]B2 = (r ⊗ λ)B2.

Applying identity νB1 = (r ⊗ λ)B2 to TnsB and composing it with pr1 : TsC→ sC
we get an identity

νnb1 −
∑

q+1+t=n

(1⊗q ⊗ b1 ⊗ 1⊗t)νn = (r0 ⊗ λn)b2,

that is, νnd = −λnu. Thus, the proposition is proved by induction.

8.3. Invertible transformations.
Let B, C be unital A∞-categories, and let f, g : Ob B→ ObC be maps. Assume

that for each object X of B there are k-linear maps

Xr0 : k→ (sC)−1(Xf,Xg), Xp0 : k→ (sC)−1(Xg,Xf),

Xw0 : k→ (sC)−2(Xf,Xf), Xv0 : k→ (sC)−2(Xg,Xg),

such that

Xr0b1 = 0, Xp0b1 = 0,

(Xr0 ⊗ Xp0)b2 − Xf iC0 = Xw0b1, (53)

(Xp0 ⊗ Xr0)b2 − XgiC0 = Xv0b1.

Proposition 8.6. Let the assumptions of Section 8.3 hold and, moreover, let f :
B→ C be a unital A∞-functor. Then the map g extends to a unital A∞-functor
g : B→ C and the given r0, p0 extend to natural A∞-transformations r : f → g :
B→ C, p : g → f : B→ C, inverse to each other.

Proof. Propositions 8.1 and 8.5 imply the existence and unitality of g. Indeed, since
(r0 ⊗ 1)b2 is a homotopy invertible chain map, the map u = Hom(N, (r0 ⊗ 1)b2) is
also homotopy invertible, hence a quasi-isomorphism. Existence of r : f → g : B→
C is shown in Proposition 8.1. Existence of p : g → f : B→ C, inverse to r is proven
in [Lyu03, Proposition 7.15].
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9. Derived categories

Let A be a U -small Abelian k-linear category, and let C = C(A) or C = C+(A)
be the differential graded category of complexes (resp. bounded below complexes)
of objects of A. Denote by B = A(A) its full subcategory of acyclic complexes. Let
D = D(C|B) be the constructed U -small differential graded category. We observe
first that quasi-isomorphisms in C become (homotopy) invertible elements in D.

Assuming that the ground ring k is a field, we turn to the procedure of find-
ing a K-injective resolution (if they exist) into a unital A∞-functor. Under these
assumptions, we also show that D = D(C|B) is A∞-equivalent to I ⊂ C — the full
subcategory of K-injective complexes. Hence, H0(D) is equivalent to the derived
category D(A).

9.1. Invertibility of quasi-isomorphisms.
Assume that X, Y are objects of C and q : X → Y is a quasi-isomorphism. In

particular, q ∈ C0(X,Y ), qm1 = 0. Let us prove that r = qs1 ∈ (sD)−1(X,Y ) is
invertible in the sense of Section 8.3, that is, there are elements p ∈ (sD)−1(Y,X),
w ∈ (sD)−2(X,X), v ∈ (sD)−2(Y, Y ), such that

rb1 = 0, pb1 = 0,

(r ⊗ p)b2 − 1Xs = wb1, (54)

(p⊗ r)b2 − 1Y s = vb1.

Indeed, denote C = Cone(q) = (Y ⊕X[1], dC), where (y, x)dC = (ydY + xq,−xdX)
for y ∈ Y l, x ∈ X l+1. Since q is a quasi-isomorphism, C is acyclic. There is a
standard exact sequence of complexes 0→ Y

n→ C
k→ X[1]→ 0 with the

chain maps n, k, yn = (y, 0), (0, x)k = x. From now on we denote by n, k also
the corresponding elements n ∈ C0(Y,C), k ∈ C1(C,X). Define p as p = ns⊗ ks ∈
(sC)−1(Y,C)⊗ (sC)0(C,X) ⊂ (sD)−1(Y,X). Then

pb1 = pb = (ns⊗ ks)(1⊗ b1 + b1 ⊗ 1 + b2) = −(n⊗ k)m2s = −(nk)s = 0.

Denote by h ∈ C−1(X,C) the following k-linear embedding X → C, X l → Cl−1 =
Y l−1 ⊕X l, x 7→ (0, x). Define w as w = hs⊗ ks ∈ (sC)−2(X,C)⊗ (sC)0(C,X) ⊂
(sD)−2(X,X). Then

wb1 = wb = (hs⊗ ks)(1⊗ b1 + b1 ⊗ 1 + b2) = hm1s⊗ ks− (hk)s
= (qn)s⊗ ks− 1Xs = (qs⊗ ns)b2 ⊗ ks− 1Xs

= [qs
2
⊗ (ns

1
⊗ ks)]b2 − 1Xs = (r ⊗ p)b2 − 1Xs.

Indeed, qn = hm1 = hd+ dh : X → C as explicit computation shows:

xqn = (xq, 0) = (xq,−xdX) + (0, xdX) = (0, x)dC + (0, xd) = x(hd+ dh).

Denote by z ∈ C0(C, Y ) the following k-linear projection z : C → Y , (y, x) 7→ y.
Define v as v = −ns⊗ zs ∈ (sC)−1(Y,C)⊗ (sC)−1(C, Y ) ⊂ (sD)−2(Y, Y ). Then



Homology, Homotopy and Applications, vol. 8(2), 2006 201

vb1 = vb = −(ns⊗ zs)(1⊗ b1 + b1 ⊗ 1 + b2) = −ns⊗ zm1s− (nz)s
= ns⊗ (kq)s− 1Y s = ns⊗ (ks⊗ qs)b2 − 1Y s

= [(ns
1
⊗ ks)

2
⊗ qs]b2 − 1Y s = (p⊗ r)b2 − 1Y s.

Indeed, −kq = zm1 = zd− dz : C → Y as explicit computation shows:

−(y, x)kq = −xq = yd− yd− xq = (y, x)zd− (y, x)dCz = (y, x)(zd− dz).

Thus, Equations (54) hold true.

9.2. K-injective complexes.
A complex A ∈ ObC is K-injective if and only if for every quasi-isomorphism

t : X → Y ∈ C, the chain map C(t, A) : C(Y,A)→ C(X,A) is a quasi-isomorphism
[Spa88, Proposition 1.5]. Assume that each complex X ∈ C has a right K-injec-
tive resolution rX : X → Xi, that is, rX is a quasi-isomorphism and Xi ∈ ObC is
K-injective. Moreover, if X is K-injective, we assume that Xi = X and rX = 1X . By
definition, C(rX , A) : sC(Xi,A)→ sC(X,A), fs 7→ (rXf)s is a quasi-isomorphism.
The assumption is satisfied, when A has enough injectives and C = C+(A), or when
A = R -mod,1 or when O is a sheaf of rings on a topological space, and A is the
category of sheaves of left O-modules, see [Spa88].

Assume now that k is a field. Then for any chain complex of k-modules of the form
N = sC(X0, X1)⊗k sC(X1, X2)⊗k · · · ⊗k sC(Xn−1, Xn), n > 0, Xi ∈ ObC, for any
quasi-isomorphism rX : X → Y and for any K-injective A ∈ C, the following chain
map

u = Hom(N,C(rX , A)) : Hom•
k(N, sC(Y,A))→ Hom•

k(N, sC(X,A)),

is a quasi-isomorphism (any k-module complex is K-projective). Therefore, we may
apply the results of Section 8 to the differential graded category C = C or C+, and its
full subcategories B = A(A) (resp. I = I(A), J = AI(A)) of acyclic (resp. K-injective,
acyclic K-injective) complexes. Denote by e : I ⊂ → C the full embedding. Starting
with the identity functor f = idC, we get the existence of g = ie simultaneously
with the existence of a unital A∞-functor i : C→ I — the “K-injective resolution
functor” — and a natural A∞-transformation r : id→ ie : C→ C (Propositions 8.1
and 8.5). i and r are unique in the sense of Propositions 8.2, 8.3 and Corollary 8.4.
Moreover, while solving Equations (45)–(46) we will choose the solutions

in = gn = idn : sC(X0, X1)⊗k · · · ⊗k sC(Xn−1, Xn)→ sC(X0, Xn),

rn = iCn : sC(X0, X1)⊗k · · · ⊗k sC(Xn−1, Xn)→ sC(X0, Xn),

if X0, . . . , Xn are K-injective (recall that X0i = X0, Xni = Xn).
Extending e, i to A∞-functors between the constructed categories, we get a unital

strict A∞-embedding (actually, a faithful differential graded functor) e : D(I|J)→
D(C|B), which is injective on objects, and a unital A∞-functor ı̄ : D(C|B)→ D(I|J).

1If R ∈ ′U ∈ U , where ′U is a smaller universe, then A = R -mod is a U -small ′U -category.
Is it possible to replace B = A(A) with some ′U -small category B′ ⊂ B to get a ′U -category
D = D(C|B′) A∞-equivalent to U -small D = D(C|B)?
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Let us prove that these A∞-functors are quasi-inverse to each other. First of all,
ei = idI implies e ı̄ = idD(I|J). Secondly, there is a natural A∞-transformation r :
id→ ı̄ e : D(C|B)→ D(C|B). Let us prove that it is invertible.

The 0-th component is

Xr0 =
[
k Xr0→ (sC)−1(X,Xi) ⊂ 1→ (sD(C|B))−1(X,Xi)

]
.

We have proved in Section 9.1 that since rX is a quasi-isomorphism, the above
element is invertible modulo boundary in the sense of Section 8.3: there exist p0,
v0, w0 such that Equations (53) hold. We conclude by Proposition 8.6 that r is
invertible, hence, D(C|B) and D(I|J) are equivalent.

Each acyclic K-injective complex X is contractible. Indeed, K(A)(X,X) ' D(A)
(X,X) = 0 by [Spa88, Proposition 1.5]. Hence, J is a contractible subcategory of
I. Thus,  : I→ D(I|J) is an equivalence. We deduce that D(C|B) and I are equiv-
alent in Au

∞. Taking H0 we get equivalent categories H0(D(C|B)) and H0(I). The
latter is a full subcategory of K(A), whose objects are K-injective complexes. It is
equivalent to the derived category D(A) (e.g. by [KS90, Proposition 1.6.5]). Hence,
H0(D(C|B)) is equivalent to the derived category D(A). This result follows also from
Drinfeld’s theory [Dri04]. It motivated our study of A∞-categories.

Let F : A→ B be an additive k-linear functor between Abelian categories. The
standard recipe [Spa88] of producing its right derived functor can be formulated
in terms of the K-injective resolution A∞-functor i as follows. Apply H0 to the
A∞-functor

D(C(A)|A(A))
ı̄→ D(I(A)|AI(A))

D(F )→ D(C(B)|A(B))

(when F (ObAI(A)) ⊂ ObA(B)). Some work is required to identify the obtained
functor [Lyu03, Section 8.13]

H0(̄ıD(F )) : D(A) ' H0
(
D(C(A)|A(A))

)
→ H0

(
D(C(B)|A(B))

)
' D(B)

with RF ; however, we shall not consider this topic here.
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