Abstract
Let $S$ be a commutative ring with topologically noetherian spectrum, and let $R$ be the absolutely flat approximation of $S$. We prove that subsets of the spectrum of $R$ parametrise the localising subcategories of $\mathsf{D}(R)$. Moreover, we prove the telescope conjecture holds for $\mathsf{D}(R)$. We also consider unbounded derived categories of absolutely flat rings that are not semi-artinian and exhibit a localising subcategory that is not a Bousfield class and a cohomological Bousfield class that is not a Bousfield class.
Citation
Greg Stevenson. "Derived categories of absolutely flat rings." Homology Homotopy Appl. 16 (2) 45 - 64, 2014.
Information