Homology, Homotopy and Applications, vol. 13(2), 2011, pp.249-262

TENSOR PRODUCTS OF HOMOTOPY GERSTENHABER ALGEBRAS

MATTHIAS FRANZ

(communicated by Johannes Huebschmann)

Abstract

On the tensor product of two homotopy Gerstenhaber algebras we construct a Hirsch algebra structure which extends the canonical dg algebra structure. Our result applies more generally to tensor products of "level 3 Hirsch algebras" and also to the Mayer–Vietoris double complex.

1. Introduction

Let R be a commutative unital ring and A an augmented associative differential graded (dg) algebra over R. A *Hirsch algebra* structure on A is a (possibly nonassociative) multiplication in the normalized bar construction $\overline{B}A$ of A which is a morphism of coalgebras and has the counit $\mathbf{1} \in \overline{B}A$ as a unit. It is uniquely determined by its associated twisting cochain

$$E \colon \bar{B}A \otimes \bar{B}A \to A.$$

Because the map $a_1 \otimes b_1 \mapsto E([a_1], [b_1])$ is essentially a \cup_1 product for A (without strict Hirsch formulas), the product of a Hirsch algebra is always commutative up to homotopy in the naive sense.

Let $a = [a_1|\cdots|a_k] \in \overline{B}_k A$ and $b = [b_1|\cdots|b_l] \in \overline{B}_l A$. A Hirsch algebra satisfying E(a, b) = 0 for all k > 1 is called a *level 3 Hirsch algebra* in [6]. It is a homotopy *Gerstenhaber algebra* (or "homotopy G-algebra") if in addition the resulting multiplication is associative. Important examples of homotopy Gerstenhaber algebras are the cochain complex of a simplicial set or topological space [1], the Hochschild cochains of an associative algebra [5], [4, Sec. 5.1], [9] and the cobar construction of a dg bialgebra over \mathbb{Z}_2 [6].

Let A' and A'' be two Hirsch algebras. Then $A' \otimes A''$ is a dg algebra, again commutative up to homotopy in the naive sense. In this paper we address the question of whether such a homotopy is part of a system of higher homotopies. We obtain the following result:

The author was supported by an NSERC Discovery Grant.

Received September 10, 2010, revised August 7, 2011; published on November 29, 2011.

²⁰⁰⁰ Mathematics Subject Classification: 57T30; 16E45, 18D50.

Key words and phrases: homotopy Gerstenhaber algebra, Hirsch algebra, tensor product, Mayer–Vietoris double complex.

Article available at http://intlpress.com/HHA/v13/n2/a15 and doi:10.4310/HHA.2011.v13.n2.a15 Copyright © 2011, Matthias Franz. Permission to copy for private use granted.

MATTHIAS FRANZ

Theorem 1.1. Let A' and A'' be two level 3 Hirsch algebras. Then $A' \otimes A''$ is a Hirsch algebra in a natural way, and the shuffle map $\overline{B}A' \otimes \overline{B}A'' \to \overline{B}(A' \otimes A'')$ is multiplicative.

As shown in Remark 5.4, one cannot generally hope for the tensor product of two level 3 Hirsch algebras to be again of the same type. Whether Hirsch algebras are closed under tensor products remains open, see Question 5.5.

The paper is organized as follows: In Section 2 we introduce the notation needed for the later parts. The Hirsch algebra structure of $A = A' \otimes A''$ is constructed in Section 3. Example 3.1 shows how our twisting cochain $E: \bar{B}A \otimes \bar{B}A \to A$ looks like in small degrees, and Example 3.2 illustrates a general recipe for computing it explicitly. Section 4 contains the proof that E is well-defined and that the shuffle map is multiplicative. We conclude by reformulating our result in an operadic language and applying it to the Mayer–Vietoris double complex in Section 5.

Acknowledgements

The author thanks Tornike Kadeishvili for helpful discussions.

2. Notation

We work in a cohomological setting, so that differentials are of degree +1. We denote the desuspension of a complex C by $s^{-1}C$, and the canonical chain map $s^{-1}C \to C$ of degree 1 by σ . Anticipating the definition of the bar construction, we also write $\sigma^{-1}(c) = [c]$ for $c \in C$. The differential on $s^{-1}C$ is given by d[c] = -[dc].

Let A be an augmented, unital associative dg algebra over R with multiplication map $\mu_A \colon A \otimes A \to A$ and augmentation $\varepsilon_A \colon A \to R$. Denote the augmentation ideal of A by \overline{A} , so that $A = R \oplus \overline{A}$ canonically.

Note that there are canonical isomorphisms of complexes

$$s^{-1}A' \otimes A'' \to s^{-1}(A' \otimes A''), \qquad [a'] \otimes a'' \mapsto [a' \otimes a''],$$

$$A' \otimes s^{-1}A'' \to s^{-1}(A' \otimes A''), \qquad a' \otimes [a''] \mapsto (-1)^{|a'|}[a' \otimes a'']. \qquad (1)$$

Although we are mostly interested in the normalized bar construction $\overline{B}A$ of A, it will be convenient to consider the unnormalized bar construction BA as well. This is the tensor coalgebra of the desuspension of A (instead of \overline{A}),

$$BA = T(s^{-1}A) = \bigoplus_{k \ge 0} (s^{-1}A)^{\otimes k}.$$

We write $B_k A = (s^{-1}A)^{\otimes k}$ and for elements $[a_1|\cdots|a_k] \in B_k A$. The differential on BA is the sum of the tensor product differential d_{\otimes} and the differential

$$\partial = \sum_{i=1}^{k-1} 1^{\otimes i-1} \otimes \tilde{\mu} \otimes 1^{\otimes k-i-1} \colon B_k A \to B_{k-1} A.$$

Here $\tilde{\mu}$ denotes the desuspension of μ ,

$$\tilde{\mu} = \sigma^{-1} \mu(\sigma \otimes \sigma) \colon s^{-1}A \otimes s^{-1}A \to s^{-1}A$$

We write $\mathbf{1} \in B_0 A$ for the counit of BA and α for the canonical twisting cochain

$$\alpha \colon BA \to B_1A = s^{-1}A \stackrel{\sigma}{\longrightarrow} A.$$

Let M be a right dg-A-module and N a left dg-A-module with structure maps $\mu_M \colon M \otimes A \to M$ and $\mu_N \colon A \otimes N \to N$, respectively. The two-sided bar construction of the triple (M, A, N) is

$$B(M,A,N) = M \otimes BA \otimes N$$

with differential $d_{B(M,A,N)} = d_{M \otimes BA \otimes N} + \partial'$, where

$$\partial' = (\mu_M(1 \otimes \alpha) \otimes 1 \otimes 1)(1 \otimes \Delta \otimes 1) - (1 \otimes 1 \otimes \mu_N(\alpha \otimes 1))(1 \otimes \Delta \otimes 1), \quad (2)$$

and with augmentation

$$\varepsilon_{B(M,A,N)} \colon B(M,A,N) \to M \otimes_A N,$$
$$m[a_1|\dots|a_k]n \mapsto \begin{cases} m \otimes n & \text{if } k = 0, \\ 0 & \text{otherwise} \end{cases}$$

We write repeated (co)associative maps in the form

$$\mu^{(k)} \colon A^{\otimes k} \to A,$$

$$\Delta^{(k)} \colon T(s^{-1}A) \to T(s^{-1}A)^{\otimes k},$$

for instance, and we agree that $\mu^{(0)}$ is the unit map $\iota: R \to A$.

We will also need the concatenation operator

$$\nabla \colon BA \otimes BA \to BA, \quad [a_1|\cdots|a_k] \otimes [b_1|\cdots|b_l] \mapsto [a_1|\cdots|a_k|b_1|\cdots|b_l],$$

which satisfies

$$d(\nabla) = \nabla^{(3)} (1 \otimes \tilde{\mu} \otimes 1) (1 \otimes \alpha \otimes \alpha \otimes 1) (\Delta \otimes \Delta)$$
(3)

and

$$(\alpha \otimes 1)\Delta \nabla = (\alpha \otimes \nabla)(\Delta \otimes 1) + \varepsilon_{BA} \otimes (\alpha \otimes 1)\Delta$$

= $(1 \otimes \nabla)((\alpha \otimes 1)\Delta \otimes 1) + \varepsilon_{BA} \otimes (\alpha \otimes 1)\Delta$, (4a)
 $(1 \otimes \alpha)\Delta \nabla = (\nabla \otimes \alpha)(1 \otimes \Delta) + (1 \otimes \alpha)\Delta \otimes \varepsilon_{BA}$
= $(\nabla \otimes 1)(1 \otimes (1 \otimes \alpha)\Delta) + (1 \otimes \alpha)\Delta \otimes \varepsilon_{BA}$. (4b)

On both the unnormalized and the normalized bar construction, we will only consider multiplications which are coalgebra maps and have the counit $\mathbf{1}$ as a (two-sided) unit. We do not require the multiplication to be associative.

Any such multiplication $f: BA \otimes BA \to BA$ is uniquely determined by its twisting cochain $E = \alpha f$, which satisfies

$$d(E) = E \cup E,$$

$$E(\mathbf{1}, -) = E(-, \mathbf{1}) = \alpha.$$

We will only consider twisting cochains E satisfying both conditions.

Any multiplication on the normalized bar construction $\overline{B}A \subset BA$ can be extended to BA in a canonical way: Define $E([1], \mathbf{1}) = E(\mathbf{1}, [1]) = 1$ and, for $a = [a_1|\cdots|a_k]$, $b = [b_1| \cdots |b_l] \in BA$, set E(a, b) = 0 if k + l > 1 and some $a_i = 1$ or some $b_j = 1$. Then $E(a, b) \in \overline{A}$ whenever k + l > 1. We call a twisting cochain having these additional properties *normalized*. Any normalized twisting cochain $E: BA \otimes BA \to A$ comes from a unique multiplication on $\overline{B}A$.

For a map $E: BA \otimes BA \to A$ and $a \in BA$ we define

$$E_a \colon BA \to A, \quad b \mapsto E(a, b).$$

In this notation, the properties of a multiplication on BA become

$$d(E_a) = -E_{da} + \sum_{i=0}^{\kappa} (-1)^{|[a_1|\cdots|a_i]|} \mu \big(E_{[a_1|\cdots|a_i]} \otimes E_{[a_{i+1}|\cdots|a_k]} \big) \Delta, \tag{5a}$$

$$E_1(b) = \alpha(b),\tag{5b}$$

$$E_a(\mathbf{1}) = \alpha(a),\tag{5c}$$

for $a = [a_1 | \cdots | a_k]$ and $b = [b_1 | \cdots | b_l] \in BA$. If E is normalized, then one additionally has

$$E_a(b) = 0$$
 if $k + l > 1$ and some $a_i = 1$ or some $b_j = 1$, (6a)

$$\varepsilon(E_a(b)) = 0 \quad \text{if } k+l > 1. \tag{6b}$$

If E is of level 3, then condition (5a) is equivalent to the two identities

$$d(E_{[a_1]}) = -E_{d[a_1]} + \mu \big(\alpha \otimes E_{[a_1]} + (-1)^{|a_1| - 1} E_{[a_1]} \otimes \alpha \big) \Delta, \tag{7a}$$

$$E_{[a_1a_2]} = (-1)^{|a_1|-1} \mu(E_{[a_1]} \otimes E_{[a_2]}) \Delta.$$
(7b)

3. Construction of the twisting cochain

Let A' and A'' be two level 3 Hirsch algebras with twisting cochains E' and E'', respectively. Set $A = A' \otimes A''$. We are going to inductively define maps $G_a \colon BA \to B(A, A, A)$ of degree |a| + 1 for $a \in BA$ and then set $E_a = \varepsilon_{B(A,A,A)}G_a$. In Section 4 we will show that this defines a twisting cochain $E \colon BA \otimes BA \to A$, hence a multiplication in BA. Moreover, if both E and E'' are normalized, then so is E.

For the construction as well as for the proof, it is convenient to identify B(A, A, A) with $A \otimes BA \otimes A$. This is an isomorphism of graded *R*-modules; the difference between the two differentials is given by (2). We write $a = [a_1|\cdots|a_k] \in BA$ with $a_i = a'_i \otimes a''_i$.

For k = 0 we set $E_1 = \alpha$ as required by (5b). We define for k = 1

$$G_{[a_1]} = \left(\left(E'_{[a'_1]} \otimes \mu_{A''} \right) \otimes 1 \otimes \left(\mu_{A'} \otimes E''_{[a''_1]} \right) \right) \Delta^{(3)}$$

and for k > 1

 $G_a = M(E'_{[a'_1]}, E''_{[a''_1]}, G_{[a_2|\cdots|a_k]}).$

Here we have used the abbreviation

$$M(\tilde{E}', \tilde{E}'', \tilde{G}) = (1 \otimes 1 \otimes \mu_A) \big((\tilde{E}' \otimes \mu_{A''}) \otimes 1 \otimes (\mu_{A'} \otimes \tilde{E}'') \otimes 1 \big) (1 \otimes \Delta \nabla^{(3)} \otimes 1) (1 \otimes 1 \otimes (\sigma^{-1} \otimes 1 \otimes 1) \tilde{G}) \Delta^{(3)}$$
(8)

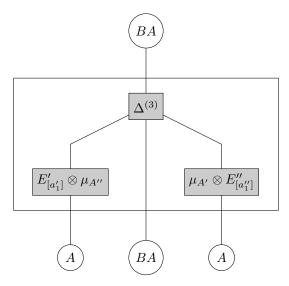


Figure 1: "Electronic diagram" for $G_{[a_1]}$

for maps $\tilde{E}': BA' \to A', \tilde{E}'': BA'' \to A''$ and $\tilde{G}: BA \to A \otimes BA \otimes A$. Moreover, by $\tilde{E}' \otimes \mu_{A''}: BA \to A$ we mean the map

$$[b_1|\cdots|b_k]\mapsto \left(\prod_{i>j}(-1)^{(|b_i'|-1)|b_j''|}\right)\tilde{E}'([b_1'|\cdots|b_k'])\otimes \mu_{A''}(b_1''\otimes\cdots\otimes b_k''),$$

and similarly by $\mu_{A'} \otimes \tilde{E}'' \colon BA \to A$

$$[b_1|\cdots|b_k]\mapsto \left(\prod_{i>j}(-1)^{|b_i'|(|b_j''|-1)}\right)\mu_{A'}(b_1'\otimes\cdots\otimes b_k')\otimes \tilde{E}''([b_1''|\cdots|b_k''])$$

By identities (1), the differentials of these maps are

$$d(\tilde{E}' \otimes \mu_{A''}) = d(\tilde{E}') \otimes \mu_{A''}, \qquad \qquad d(\mu_{A'} \otimes \tilde{E}'') = \mu_{A'} \otimes d(\tilde{E}'').$$

Figures 1 and 2 visualize the definitions of $G_{[a_1]}$ and of $M(\tilde{E}', \tilde{E}'', \tilde{G})$.

Example 3.1. The following list shows E(a, b) for $a \in B_k A$ and $b \in B_l A$ with $k \leq 2$ and $l \leq 2$. We are ignoring signs here.

$$E([a_1], [b_1]) = a'_1 b'_1 \otimes E''([a''_1], [b''_1]) + E'([a'_1], [b'_1]) \otimes b''_1 a''_1,$$
(9)

$$E([a_1], [b_1|b_2]) = a'_1 b'_1 b'_2 \otimes E''([a''_1], [b''_1|b''_2]) + E'([a'_1], [b'_1]) b'_2 \otimes b''_1 E''([a''_1], [b''_2]) + E'([a'_1], [b'_1|b'_2]) \otimes b''_1 b''_2 a''_2,$$
(10)

$$E([a_1|a_2], [b_1]) = a'_1 E'([a'_2], [b'_1]) \otimes E''([a''_1], [b''_1])a''_2,$$
(11)

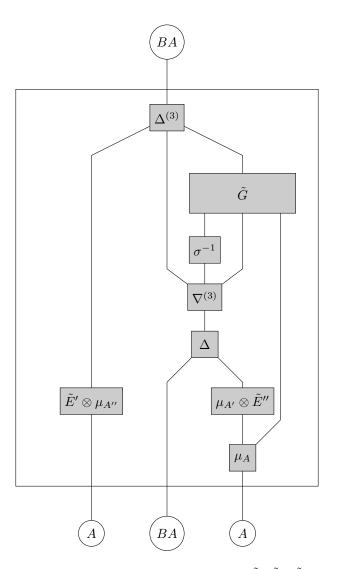


Figure 2: "Electronic diagram" for $M(\tilde{E}',\tilde{E}'',\tilde{G})$

$$E([a_{1}|a_{2}], [b_{1}|b_{2}]) = a'_{1}E'([a'_{2}], [b'_{1}])b'_{2} \otimes E''([a''_{1}], [b''_{1}])E''([a''_{2}], [b''_{2}]) + a'_{1}E'([a'_{2}], [b'_{1}])b'_{2} \otimes E''([a''_{1}], [b''_{1}|b''_{2}])a''_{2} + a'_{1}E'([a'_{2}], [b'_{1}|b'_{2}]) \otimes E''([a''_{1}], [b''_{1}b''_{2}])a''_{2} + a'_{1}b'_{1}E'([a'_{2}], [b'_{2}]) \otimes E''([a''_{1}], [b''_{1}|b''_{2}])a''_{2} + E'([a'_{1}], [b'_{1}])E'([a'_{2}], [b'_{2}]) \otimes b''_{1}E''([a''_{1}], [b''_{2}])a''_{2}.$$
(12)

Example 3.2. We give a general recipe for computing E(a, b) as in Example 3.1. To show all features of the algorithm, we illustrate it with $a = [a'_1 \otimes a''_1 \mid a'_2 \otimes a''_2]$ and $b = [b'_1 \otimes b''_1 \mid \cdots \mid b'_5 \otimes b''_5]$. We are going to explain how to obtain the terms $c' \otimes c'' \in A' \otimes A''$ appearing in E(a, b), again ignoring signs for simplicity.

We start by looking at the component $c' \in A'$. Take $[b'_1| \cdots |b'_l]$ and cut it into 2k pieces such that the pieces at positions 3, 5, ..., 2k - 1 have length at least 1. In our example, one such decomposition is

$$[b_1']\otimes [b_2'|b_3']\otimes [b_4'|b_5']\otimes \mathbf{1}.$$

(The last piece has length 0.) Now apply $E'_{[a'_i]}$ to the (2i-1)-th group and then multiply everything together:

$$E'_{[a'_1]}([b'_1]) \cdot b'_2 b'_3 \cdot E'_{[a'_2]}([b'_4|b'_5]) \cdot 1 = E'([a'_1], [b'_1]) b'_2 b'_3 E'([a'_2], [b'_4|b'_5]) = c'.$$

These are the possible factors $c' \in A'$ of the terms $c' \otimes c''$ appearing in E(a, b).

For each such factor, we now describe which factors $c'' \in A''$ appear: Switch from primed to doubly primed variables and multiply the components within the oddnumbered groups together to obtain

$$[b_1'' \mid b_2'' \mid b_3'' \mid b_4'' b_5''].$$

Take the first factor of the tensor product (in the example, $[b_1'']$) apart. Cut the rest

$$\begin{bmatrix} b_2'' \mid b_3'' \mid b_4'' b_5'' \end{bmatrix}$$

into k pieces. Only cuts satisfying the following condition are allowed: If some b'_j appears as argument to $E'_{[a'_i]}$, then the corresponding element b''_j can only appear in the (i-1)-th piece or earlier. In our example, this forces the second piece to be empty, hence the first piece is everything. Now plug the *i*-th piece into $E''_{[a''_i]}$ and multiply everything together, including the first factor we have put apart earlier:

$$b_1'' \cdot E_{[a_1'']}''([b_2''|b_3''|b_4''b_5'']) \cdot E_{[a_1'']}''(\mathbf{1}) = b_1''E''([a_1''], [b_2''|b_3''|b_4''b_5''])a_1'' = c''.$$

Summing up,

$$E'([a'_1], [b'_1])b'_2b'_3E'([a'_2], [b'_4|b'_5]) \otimes b''_1E''([a''_1], [b''_2|b''_3|b''_4b''_5])a''_1$$

is one term appearing in E(a, b). (There are 70 terms altogether.)

The reason for the length condition imposed in the first step is the following: The recursive definition of G_a together with the assignment $E_a = \varepsilon G_a$ force everything that "runs through" $E'_{[a'_i]} \otimes \mu$, i > 1, to "go through" some $\mu \otimes E''_{[a''_j]}$ with j < i as well. Because $(E'_{[a'_i]} \otimes \mu)(\mathbf{1}) = a'_i \otimes 1$ and $E''_{[a''_j]}(1) = 0$, the length of the argument of $E'_{[a'_i]}$ must therefore be at least 1 if i > 1.

Remark 3.3. The multiplication in $\overline{B}(A' \otimes A'')$ is not associative in general, not even if it is so in $\overline{B}A'$ and $\overline{B}A''$ (which means that A' and A'' are homotopy Gerstenhaber algebras). In the latter case one has

$$([a] \cdot [b]) \cdot [c] + [a] \cdot ([b] \cdot [c]) = d(h)([a], [b], [c])$$

for $a = a' \otimes a''$, $b = b' \otimes b''$, $c = c' \otimes c'' \in A' \otimes A''$ and

$$h([a], [b], [c]) = \left[a'E([b'], [c']) \otimes E([a''], [c''|b''])\right] \\ + \left[E([a'], [b'|c']) \otimes E([b''], [c'']) a''\right]$$

(We are again ignoring signs here.)

Question 3.4. Is $\overline{B}(A' \otimes A'')$ an A_{∞} -algebra if A' and A'' are homotopy Gerstenhaber algebras?

4. Proof of the main result

In Section 3 we constructed a map $G_a: BA \to B(A, A, A)$ for each $a \in BA$. They can be assembled into a map $G: BA \otimes BA \to B(A, A, A)$. We now study its differential.

Denote the left and right action of A on B(A, A, A) by μ_L and μ_R , respectively, and let β be the twisting cochain

$$\beta = \varepsilon_{BA} \otimes \alpha_{BA} \colon BA \otimes BA \to R \otimes A = A.$$

Proposition 4.1. The differential of G is

$$d(G) = \mu_L(\beta \otimes G)\Delta_{BA \otimes BA} + \mu_R(G \otimes (E - \beta))\Delta_{BA \otimes BA}.$$

Proof. We again identify B(A, A, A) with $A \otimes BA \otimes A$. Taking equation (2) into account, we have to show

$$d(G_a) = -G_{da} + (\mu \otimes 1 \otimes 1)(\alpha \otimes G_a)\Delta_{BA} + \sum_{i=1}^k (-1)^{|[a_1|\cdots|a_i]|} (1 \otimes 1 \otimes \mu)(G_{[a_1|\cdots|a_i]} \otimes E_{[a_{i+1}|\cdots|a_k]})\Delta_{BA} - (\mu \otimes 1 \otimes 1)(1 \otimes \alpha \otimes 1 \otimes 1)(1 \otimes \Delta \otimes 1)G_a + (1 \otimes 1 \otimes \mu)(1 \otimes 1 \otimes \alpha \otimes 1)(1 \otimes \Delta \otimes 1)G_a$$
(13)

for all $a = [a_1|\cdots|a_k] \in BA$ We proceed by induction on k. Write $\tilde{E}' = E'_{[a'_1]}$ and $\tilde{E}'' = E''_{[a''_1]}$. Recall that we have

$$|E'_{[a'_1]}| = |a'_1|,$$
 $|E''_{[a''_1]}| = |a''_1|,$ $|G_a| = |a| + 1.$

For $k = 1, i.e., a = [a'_1 \otimes a''_1] \in s^{-1}A$, we have

$$d(G_a) = \left(\left(d(E'_{[a'_1]}) \otimes \mu \right) \otimes 1 \otimes \left(\mu \otimes E''_{[a''_1]} \right) \right) \Delta^{(3)} + \left(-1 \right)^{|a'_1|} \left(\left(E'_{[a'_1]} \otimes \mu \right) \otimes 1 \otimes \left(\mu \otimes d(E''_{[a''_1]}) \right) \right) \Delta^{(3)}$$
(14)

using formula (7a)

$$= -\left(\left(E_{d[a_{1}']}\otimes\mu\right)\otimes1\otimes\left(\mu\otimes E_{[a_{1}']}''\right)\right)\Delta^{(3)} \\ - (-1)^{|a_{1}'|}\left(\left(E_{[a_{1}']}\otimes\mu\right)\otimes1\otimes\left(\mu\otimes E_{d[a_{1}']}''\right)\right)\Delta^{(3)} \\ + (\mu\otimes1\otimes1)\left(\alpha\otimes\left(E_{[a_{1}']}\otimes\mu\right)\otimes1\otimes\left(\mu\otimes E_{[a_{1}']}''\right)\right)\Delta^{(4)} \\ + (-1)^{|a_{1}'|-1}(\mu\otimes1\otimes1)\left(\left(E_{[a_{1}']}'\otimes\mu\right)\otimes\alpha\otimes1\otimes\left(\mu\otimes E_{[a_{1}']}''\right)\right)\Delta^{(4)} \\ + (-1)^{|a_{1}'|+|a_{1}''|-1}(1\otimes1\otimes\mu) \\ \left(\left(E_{[a_{1}']}'\otimes\mu\right)\otimes1\otimes\left(\mu\otimes E_{[a_{1}']}''\right)\otimes\alpha\right)\Delta^{(4)} \\ + (-1)^{|a_{1}'|+|a_{1}''|-1}(1\otimes1\otimes\mu) \\ \left(\left(E_{[a_{1}']}\otimes\mu\right)\otimes1\otimes\left(\mu\otimes E_{[a_{1}']}''\right)\otimes\alpha\right)\Delta^{(4)} \\ = -G_{da} \\ + (\mu\otimes1\otimes1)(\alpha\otimes G_{[a_{1}]})\Delta \\ + (-1)^{|[a_{1}]|}(1\otimes1\otimes\mu)(G_{[a_{1}]}\otimes E_{1})\Delta \\ - (\mu\otimes1\otimes1)(1\otimes\alpha\otimes1\otimes1)(1\otimes\Delta\otimes1)G_{a} \\ + (1\otimes1\otimes\mu)(1\otimes1\otimes\alpha\otimes1)(1\otimes\Delta\otimes1)G_{a}.$$
(16)

For k > 1, we write $\tilde{a} = [a_2|\cdots|a_k]$ and $\tilde{G} = G_{\tilde{a}}$. Then, using definition (8),

$$d(G_{a}) = d\left(M(\tilde{E}', \tilde{E}'', \tilde{G})\right)$$

$$= M(d(\tilde{E}'), \tilde{E}'', \tilde{G}) + (-1)^{|a_{1}'|} M(\tilde{E}', d(\tilde{E}''), \tilde{G})$$

$$+ (-1)^{|a_{1}'| + |a_{1}''|} (1 \otimes 1 \otimes \mu_{A}) \left((\tilde{E}' \otimes \mu_{A''}) \otimes 1 \otimes (\mu_{A'} \otimes \tilde{E}'') \otimes 1\right)$$

$$(1 \otimes \Delta d(\nabla^{(3)}) \otimes 1) (1 \otimes 1 \otimes \sigma^{-1} \otimes 1 \otimes 1) (1 \otimes 1 \otimes \tilde{G}) \Delta^{(3)}$$

$$+ (-1)^{|a_{1}'| + |a_{1}''| - 1} M(\tilde{E}', \tilde{E}'', d(\tilde{G}))$$

$$(18)$$

using (3), $\tilde{\mu}(1 \otimes \sigma^{-1}) = \sigma^{-1}\mu(\sigma \otimes 1)$ and $\tilde{\mu}(\sigma^{-1} \otimes 1) = -\sigma^{-1}\mu(1 \otimes \sigma)$

$$= M(d(\tilde{E}'), \tilde{E}'', \tilde{G}) + (-1)^{|a_1'|} M(\tilde{E}', d(\tilde{E}''), \tilde{G}) + (-1)^{|a_1|} M(\tilde{E}', \tilde{E}'', (\mu \otimes 1 \otimes 1)(\alpha \otimes \tilde{G}) \Delta) + (-1)^{|a_1|-1} M(\tilde{E}', \tilde{E}'', (\mu \otimes 1 \otimes 1)(1 \otimes \alpha \otimes 1 \otimes 1)(1 \otimes \Delta \otimes 1) \tilde{G}) + (-1)^{|a_1|-1} M(\tilde{E}', \tilde{E}'', d(\tilde{G}));$$
(19)

$$G_{d_{\otimes}a} = M(E'_{d[a'_{1}]}, \tilde{E}'', \tilde{G}) + (-1)^{|a'_{1}|} M(\tilde{E}', E''_{d[a''_{1}]}, \tilde{G}) + (-1)^{|a_{1}|-1} M(\tilde{E}', \tilde{E}'', G_{d_{\otimes}\tilde{a}}); \quad (20)$$

$$\sum_{i=2}^{k} M(\tilde{E}', \tilde{E}'', (1 \otimes 1 \otimes \mu)(G_{[a_2|\cdots|a_i]} \otimes E_{[a_{i+1}|\cdots|a_k]})\Delta)$$
$$= \sum_{i=2}^{k} (1 \otimes 1 \otimes \mu)(G_{[a_1|\cdots|a_i]} \otimes E_{[a_i|\cdots|a_k]})\Delta; \quad (21)$$

MATTHIAS FRANZ

$$M(\tilde{E}',\tilde{E}'',G_{\partial\tilde{a}}) = \sum_{i=2}^{k-1} (-1)^{|[a_2|\cdots|a_i]|} G_{[a_1|\cdots|a_ia_{i+1}|\cdots|a_k]};$$
(22)

$$M(\mu(\alpha \otimes \tilde{E}')\Delta, \tilde{E}'', \tilde{G}) = (\mu \otimes 1 \otimes 1)(\alpha \otimes G)\Delta ; \qquad (23)$$

$$M(\tilde{E}',\mu(\alpha\otimes\tilde{E}'')\Delta,\tilde{G}) = (-1)^{|a_1'|}(1\otimes1\otimes\mu)(1\otimes1\otimes\alpha\otimes1)(1\otimes\Delta\otimes1)G; \quad (24)$$

and

$$M(\mu(\tilde{E}' \otimes \alpha)\Delta, \tilde{E}'', \tilde{G})$$

= $(-1)^{|a_1''|}(\mu \otimes 1 \otimes \mu) ((\tilde{E}' \otimes \mu) \otimes 1 \otimes 1 \otimes (\mu \otimes \tilde{E}'') \otimes 1)$
 $(1 \otimes 1 \otimes \Delta \nabla^{(3)} \otimes 1) (1 \otimes (\alpha \otimes 1)\Delta \otimes (\sigma^{-1} \otimes 1 \otimes 1)\tilde{G})\Delta^{(3)}$ (25)

using (4a) and the fact that \tilde{G} maps to $A \otimes BA \otimes A$

$$= (-1)^{|a_1''|} (\mu \otimes 1 \otimes 1) (1 \otimes \alpha \otimes 1 \otimes 1) (1 \otimes \Delta \otimes 1) M(\tilde{E}', \tilde{E}'', \tilde{G}) + (-1)^{|a_1''|} (1 \otimes 1 \otimes \mu) (1 \otimes 1 \otimes (\mu \otimes \tilde{E}'') \otimes 1) (\mu \otimes \Delta \otimes 1) ((\tilde{E}' \otimes \mu) \otimes \tilde{G}) \Delta.$$
(26)

We consider the case k = 2 first.

$$= (-1)^{|a_1''|} (\mu \otimes 1 \otimes 1) (1 \otimes \alpha \otimes 1 \otimes 1) (1 \otimes \Delta \otimes 1) M(\tilde{E}', \tilde{E}'', \tilde{G}) + (-1)^{|a_1''|} (1 \otimes 1 \otimes \mu) (1 \otimes 1 \otimes (\mu \otimes \tilde{E}'') \otimes 1) (\mu \otimes \Delta \otimes 1) ((\tilde{E}' \otimes \mu) \otimes G_{[a_2]}) \Delta$$
(27)

using (7b) in the form $\mu ((E'_{[a'_1]} \otimes \mu) \otimes (E'_{[a'_2]} \otimes \mu)) \Delta = (-1)^{|a'_1| - 1} E'_{[a'_1 a'_2]} \otimes \mu$

$$= (-1)^{|a_1''|} (\mu \otimes 1 \otimes 1) (1 \otimes \alpha \otimes 1 \otimes 1) (1 \otimes \Delta \otimes 1) G$$

+ $(-1)^{|a_1|+|a_1'||a_1''|-1} (1 \otimes 1 \otimes \mu) (1 \otimes 1 \otimes (\mu \otimes E_{[a_1']}'') \otimes 1)$
 $(1 \otimes \Delta \otimes 1) G_{[a_1'a_2' \otimes a_2'']} \Delta$ (28)

using (7b) in the form $\mu((\mu \otimes E''_{[a''_1]}) \otimes (\mu \otimes E''_{[a''_2]}))\Delta = (-1)^{|a''_1|-1}\mu \otimes E''_{[a''_1a''_2]}$

$$= (-1)^{|a_1''|} (\mu \otimes 1 \otimes 1) (1 \otimes \alpha \otimes 1 \otimes 1) (1 \otimes \Delta \otimes 1) G + (-1)^{|a_1'| + |a_1''||a_2'|} G_{[a_1'a_2' \otimes a_1''a_2'']}$$
(29)

using $a_1 a_2 = (-1)^{|a_1''||a_2'|} a_1' a_2' \otimes a_1'' a_2''$

$$= (-1)^{|a_1''|} (\mu \otimes 1 \otimes 1) (1 \otimes \alpha \otimes 1 \otimes 1) (1 \otimes \Delta \otimes 1) G$$

+ $(-1)^{|a_1'|} G_{[a_1 a_2]}.$ (30)

Continuing at (26) for k > 2 and using the same identities as before,

$$= (-1)^{|a_1''|} (\mu \otimes 1 \otimes 1) (1 \otimes \alpha \otimes 1 \otimes 1) (1 \otimes \Delta \otimes 1) G$$

+ $(-1)^{|a_1|+|a_1'||a_1''|-1} (1 \otimes 1 \otimes \mu) (1 \otimes 1 \otimes (\mu \otimes E_{[a_1'']}'') \otimes 1)$
 $(1 \otimes \Delta \otimes 1) M(E_{[a_1'a_2']}', E_{[a_2'']}'', G_{[a_3|\cdots|a_k]})$ (31)

$$= (-1)^{|a_1'|} (\mu \otimes 1 \otimes 1)(1 \otimes \alpha \otimes 1 \otimes 1)(1 \otimes \Delta \otimes 1)G + (-1)^{|a_1'|+|a_1''||a_2'|} M(E'_{[a_1'a_2']}, E''_{[a_1''a_2'']}, G_{[a_3|\cdots|a_k]})$$
(32)
$$= (-1)^{|a_1''|} (\mu \otimes 1 \otimes 1)(1 \otimes \alpha \otimes 1 \otimes 1)(1 \otimes \Delta \otimes 1)G$$

$$+ (-1)^{|a_1'|} G_{[a_1 a_2 | a_3 | \cdots | a_k]}.$$
(33)

So the result is the same for all $k \ge 2$.

$$M(\tilde{E}', \mu(\tilde{E}'' \otimes \alpha)\Delta, \tilde{G})$$

= $(1 \otimes 1 \otimes \mu(\mu \otimes 1))((\tilde{E}' \otimes \mu) \otimes 1 \otimes (\mu \otimes \tilde{E}'') \otimes \alpha \otimes 1)$
 $(1 \otimes \Delta^{(3)}\nabla^{(3)} \otimes 1)(1 \otimes 1 \otimes \sigma^{-1} \otimes 1 \otimes 1)(1 \otimes 1 \otimes \tilde{G})\Delta^{(3)}$ (34)

using (4b)

$$= -M(\tilde{E}', \tilde{E}'', (1 \otimes 1 \otimes \mu)(1 \otimes 1 \otimes \alpha \otimes 1)(1 \otimes \Delta \otimes 1)\tilde{G}) + (1 \otimes 1 \otimes \mu(1 \otimes \mu))((\tilde{E}' \otimes \mu) \otimes 1 \otimes (\mu \otimes \tilde{E}'') \otimes 1 \otimes 1) (1 \otimes \Delta \otimes 1 \otimes \varepsilon \otimes 1)(1 \otimes 1 \otimes \tilde{G})\Delta^{(3)}$$
(35)

$$(1 \otimes A \otimes I \otimes C \otimes I)(1 \otimes I \otimes C)A$$

$$= -M(\tilde{E}', \tilde{E}'', (1 \otimes 1 \otimes \mu)(1 \otimes 1 \otimes \alpha \otimes 1)(1 \otimes \Delta \otimes 1)\tilde{G})$$

$$+ (1 \otimes 1 \otimes \mu)(C_{C_{1}} \otimes E_{2})A$$

$$(36)$$

$$+ (1 \otimes 1 \otimes \mu)(G_{[a_1]} \otimes E_{\tilde{a}})\Delta.$$
(30)

Putting all terms together finishes the proof.

Proposition 4.2. The map $E: BA \otimes BA \to A$ is a twisting cochain. Moreover, if E' and E'' are normalized, then so is E.

Proof. To verify (5a), we compute:

$$d(E_a) = \varepsilon d(G_a)$$

= $-\varepsilon G_{da} + \mu(\alpha \otimes E_a)\Delta$
+ $\sum_{i=1}^k (-1)^{|[a_1|\cdots|a_i]|} \mu(E_{[a_1|\cdots|a_i]} \otimes E_{[a_{i+1}|\cdots|a_k]})\Delta$
= $-E_{da} + \sum_{i=0}^k (-1)^{|[a_1|\cdots|a_i]|} \mu(E_{[a_1|\cdots|a_i]} \otimes E_{[a_{i+1}|\cdots|a_k]})\Delta.$

Condition (5b) holds by definition. Condition (5c) holds for k = 1 because $G_{[a_1]}(\mathbf{1}) = (a'_1 \otimes 1) \otimes \mathbf{1} \otimes (1 \otimes a''_1)$. For k > 1, one similarly has $G_a(\mathbf{1}) \in (A' \otimes 1) \otimes BA \otimes A$, hence $\varepsilon(G_a(\mathbf{1})) = 0$ by condition (5c) for E''. (This is related to the length condition in Example 3.2.)

Assume now that E' and E'' are normalized. For the proof of (6a) one inductively shows $G_a(b) \in \bigoplus_{m \ge 1} A \otimes B_m A \otimes A$ if some $a_i = 1$ or some $b_j = 1$. For (6b), notice

259

that the image of $E'_{[a'_1]} \otimes \mu$ lies in $\overline{A'} \otimes A'' \subset \overline{A}$ if $a'_1 \in \overline{A'}$, and analogously for $\mu \otimes E''_{[a''_1]}$. Hence, $\varepsilon(G_a(b)) \in \overline{A}$ if $k \ge 1$ and $a_1 \in \overline{A}$.

We now turn to the shuffle maps

$$\nabla \colon BA' \otimes BA'' \to B(A' \otimes A''),$$

$$\nabla \colon \bar{B}A' \otimes \bar{B}A'' \to \bar{B}(A' \otimes A''),$$
(37)

cf. [8, Sec. 7.1].

Proposition 4.3. The shuffle maps (37) are multiplicative.

Proof. It suffices to consider the unnormalized bar construction. We have to show that the diagram

$$\begin{array}{c} (BA' \otimes BA'') \otimes (BA' \otimes BA'') & \xrightarrow{\nabla \otimes \nabla} B(A' \otimes A'') \otimes B(A' \otimes A'') \\ \downarrow \\ (BA' \otimes BA') \otimes (BA'' \otimes BA'') \\ \downarrow \mu \otimes \mu \\ BA' \otimes BA'' & \xrightarrow{\nabla} B(A' \otimes A'') \end{array}$$

commutes. Because all maps are morphisms of coalgebras, it is enough to verify that the two associated twisting cochains coincide.

Take two elements $a = a' \otimes a'' \in B_{p'}A' \otimes B_{p''}A''$ and $b = b' \otimes b'' \in B_{q'}A' \otimes B_{q''}A''$. The twisting cochain of the composition via $BA' \otimes BA''$ vanishes unless p' = q' = 0 or p'' = q'' = 0. Consider now the twisting cochain of the other composition. It follows from properties (5b) and (5c) and the inductive definition of G_a that for p' > 0 this twisting cochain vanishes if p'' > 0 or q'' > 0. The case p'' > 0 is analogous. It is therefore enough to check the two cases $a = a' \otimes \mathbf{1}$, $b = b' \otimes \mathbf{1}$ and $a = \mathbf{1} \otimes a''$, $b = \mathbf{1} \otimes b''$. That both twisting cochains agree follows again inductively from the definition of G_a .

5. Operadic reformulation

It is useful to translate Theorem 1.1 into the language of operads. Let $\mathcal{A}ss$ be the operad of associative augmented unital *R*-algebras. We write $\mu \in \mathcal{A}ss(2)$ for the multiplication, $\varepsilon \in \mathcal{A}ss(1)$ for the augmentation and $\iota \in \mathcal{A}ss(0)$ for the unit. An operad under $\mathcal{A}ss$ is a morphism of operads $\mathcal{A}ss \to \mathcal{P}$.

We define the Hirsch operad \mathcal{H} to be the dg operad under $\mathcal{A}ss$ generated by operations $E_{kl} \in \mathcal{H}(k+l)_{1-k-l}$ subject to the relations (5) and (6) (modulo the desuspension) plus the generators and relations for $\mathcal{A}ss$. A Hirsch algebra then is the same as an algebra over \mathcal{H} .

Let \mathcal{H}_3 be the dg operad under $\mathcal{A}ss$ describing level 3 Hirsch algebras. It is the quotient of \mathcal{H} by the relations $E_{kl} = 0$ for k > 1. Equivalently, it is generated by operations $E_{1k} \in \mathcal{H}_3(1+k)_{-k}$ and E_{01} subject to the relations (5) and (6) with (5a) replaced by (7), and of course again plus the generators and relations for $\mathcal{A}ss$.

Theorem 5.1. The construction in Section 3 defines a morphism $f: \mathcal{H} \to \mathcal{H}_3 \otimes \mathcal{H}_3$ of dg operads under Ass.

Proof. Let \mathcal{P} be the free dg operad under $\mathcal{A}ss$ generated by the operations E_{kl} . It is clear that our construction defines a morphism of dg operads under $\mathcal{A}ss$

$$\mathcal{P} \to \mathcal{H}_3 \otimes \mathcal{H}_3.$$

Moreover, we know that the relations for \mathcal{H} hold whenever $\mathcal{H}_3 \otimes \mathcal{H}_3$ acts on a tensor product of two \mathcal{H}_3 -algebras A' and A''. More precisely, we have proven that the composed map

$$\mathcal{P} \to \mathcal{H}_3 \otimes \mathcal{H}_3 \to \mathcal{E}nd(A') \otimes \mathcal{E}nd(A'')$$

factors through \mathcal{H} . Because A' and A'' can be free \mathcal{H}_3 -algebras (*cf.* [7, Sec. I.1.4]), this implies that the necessary relations hold already in $\mathcal{H}_3 \otimes \mathcal{H}_3$.

Example 5.2. The homotopy Gerstenhaber algebra structure on the cochain complex $C^*(X)$ of a simplicial set X is constructed by dualizing a "homotopy Gerstenhaber coalgebra" structure on the chain complex C(X). Therefore, for simplicial sets X and Y there is a natural action of $\mathcal{H}_3 \otimes \mathcal{H}_3$ on the complex dual to $C(X) \otimes C(Y)$, and the canonical map

$$C^*(X) \otimes C^*(Y) \to \left(C(X) \otimes C(Y)\right)^*$$

is a morphism of $\mathcal{H}_3 \otimes \mathcal{H}_3$ -algebras, hence of \mathcal{H} -algebras. Note however that the dual of the shuffle map

$$C^*(X \times Y) \xrightarrow{\nabla^*} (C(X) \otimes C(Y))^*$$

is *not* a morphism of Hirsch algebras. (∇^* already fails to commute with the operation (9).)

An analogous remark applies to Hochschild cochains.

Example 5.3. Let A be a cosemisimplicial \mathcal{H}_3 -algebra. By this we mean a collection A^q , $q \ge 0$, of \mathcal{H}_3 -algebras together with morphisms $d_i: A^q \to A^{q+1}$, $0 \le i \le q+1$, satisfying the usual coface relations, cf. [8, Def. 8.40]. Then the associated total complex Tot A^* is an algebra over $\mathcal{H}_3 \otimes \mathcal{H}_3$ in the following way: Let $E \otimes E' \in \mathcal{H}_3(m)_n \otimes \mathcal{H}_3(m)_{n'}$, and $a_i \in A^{q_i}$ for $1 \le i \le m$. Set $q = \sum_i q_i - n'$. Via the coface operators, E' determines morphisms $\phi_i: A^{q_i} \to A^q$ in the same way as it acts on the unnormalized cochains of a simplicial set. We can therefore set

$$(E \otimes E')(a_1, \ldots, a_m) = E(\phi_1(a_1), \ldots, \phi_m(a_m)) \in A^q.$$

(If $q < q_i$ for some *i*, we define the result to be 0.)

An important special case of this is the Mayer–Vietoris double complex

$$C^{pq}(\mathcal{U}) = \prod_{i_0 < \dots < i_q} C^p(U_{i_0} \cap \dots \cap U_{i_q}; R)$$

associated to an ordered cover $\mathcal{U} = (U_i)_{i \in I}$ of a simplicial set, *cf.* [2, §§8, 14] for instance. In this case Theorem 5.1 says that Tot $C^{**}(\mathcal{U})$ has the structure of a Hirsch

MATTHIAS FRANZ

algebra which extends the familiar dg algebra structure. Note also that the canonical inclusion map

$$C^*(X; R) \to \operatorname{Tot} C^{**}(\mathcal{U}), \quad \alpha \mapsto \left(\left. \alpha \right|_{U_i} \right)_{i \in I} \in C^{*0}(\mathcal{U}; R)$$

is a morphism of Hirsch algebras because for n' > 0 the maps ϕ_1, \ldots, ϕ_m described above vanish on the image of the inclusion map, and for n' = 0 they must all be the identity map.

Remark 5.4. Assume $R = \mathbb{Z}_2$ and let $\tau = (12) \in S_2$. Note that μ is basis of $\mathcal{H}_3(2)_0$ over $R[S_2]$, and E_{11} is one for $\mathcal{H}_3(2)_{-1}$. A direct computation shows that up to applying τ and transposing the factors, $h = \mu \otimes E_{11} + E_{11} \otimes \tau \mu \in (\mathcal{H}_3 \otimes \mathcal{H}_3)(2)_{-1}$ is the only solution to $d(h) = \mu \otimes \mu + \tau \mu \otimes \tau \mu$. Hence, our definition (9) of $f(E_{11})$ is essentially the only possible choice. Together with $d(f(E_{21})) \neq 0$, this also proves that one cannot hope for a morphism $\mathcal{H}_3 \to \mathcal{H}_3 \otimes \mathcal{H}_3$ of dg operads under $\mathcal{A}ss$ because condition (7b) never holds.

But of course one may ask:

Question 5.5. Is \mathcal{H} a dg Hopf operad under $\mathcal{A}ss$? In other words, is the tensor product of two Hirsch algebras again a Hirsch algebra?

References

- H.-J. Baues, The double bar and cobar constructions, Compositio Math. 43 (1981), 331–341.
- [2] R. Bott, L. W. Tu, Differential forms in algebraic topology, GTM 82, Springer, New York, 1982.
- [3] M. Gerstenhaber, A. A. Voronov, Homotopy G-algebras and moduli space operad, Internat. Math. Res. Notices 1995, 141–153.
- [4] E. Getzler, J. D. S. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces; arXiv:hep-th/9403055.
- [5] T. V. Kadeishvili, The structure of the A(∞)-algebra, and the Hochschild and Harrison cohomologies, (Russian) Tr. Tbilis. Mat. Inst. Razmadze 91, 19–27 (1988); (English) arXiv:math/0210331.
- [6] T. Kadeishvili, On the cobar construction of a bialgebra, *Homology Homotopy Appl.* 7 (2005), 109–122.
- [7] M. Markl, S. Shnider, J. Stasheff, Operads in algebra, topology and physics, AMS, Providence, RI, 2002.
- [8] J. McCleary. A user's guide to spectral sequences, 2nd ed., Cambridge Univ. Press, Cambridge, 2001.
- [9] A. A. Voronov, M. Gerstenhaber, Higher operations on the Hochschild complex, Funct. Anal. Appl. 29, 1–5 (1995).

Matthias Franz mfranz@uwo.ca

Department of Mathematics, University of Western Ontario, London, ON N6A 5B7, Canada