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TENSOR PRODUCTS OF

HOMOTOPY GERSTENHABER ALGEBRAS

MATTHIAS FRANZ

(communicated by Johannes Huebschmann)

Abstract
On the tensor product of two homotopy Gerstenhaber alge-

bras we construct a Hirsch algebra structure which extends the
canonical dg algebra structure. Our result applies more gener-
ally to tensor products of “level 3 Hirsch algebras” and also to
the Mayer–Vietoris double complex.

1. Introduction

Let R be a commutative unital ring and A an augmented associative differential
graded (dg) algebra over R. A Hirsch algebra structure on A is a (possibly non-
associative) multiplication in the normalized bar construction B̄A of A which is a
morphism of coalgebras and has the counit 1 ∈ B̄A as a unit. It is uniquely determined
by its associated twisting cochain

E : B̄A⊗ B̄A → A.

Because the map a1 ⊗ b1 7→ E([a1], [b1]) is essentially a ∪1 product for A (without
strict Hirsch formulas), the product of a Hirsch algebra is always commutative up to
homotopy in the naive sense.

Let a = [a1| · · · |ak] ∈ B̄kA and b = [b1| · · · |bl] ∈ B̄lA. A Hirsch algebra satisfying
E(a, b) = 0 for all k > 1 is called a level 3 Hirsch algebra in [6]. It is a homotopy
Gerstenhaber algebra (or “homotopy G-algebra”) if in addition the resulting mul-
tiplication is associative. Important examples of homotopy Gerstenhaber algebras
are the cochain complex of a simplicial set or topological space [1], the Hochschild
cochains of an associative algebra [5], [4, Sec. 5.1], [9] and the cobar construction of
a dg bialgebra over Z2 [6].

Let A′ and A′′ be two Hirsch algebras. Then A′ ⊗A′′ is a dg algebra, again com-
mutative up to homotopy in the naive sense. In this paper we address the question
of whether such a homotopy is part of a system of higher homotopies. We obtain the
following result:
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Theorem 1.1. Let A′ and A′′ be two level 3 Hirsch algebras. Then A′ ⊗A′′ is a
Hirsch algebra in a natural way, and the shuffle map B̄A′ ⊗ B̄A′′ → B̄(A′ ⊗A′′) is
multiplicative.

As shown in Remark 5.4, one cannot generally hope for the tensor product of two
level 3 Hirsch algebras to be again of the same type. Whether Hirsch algebras are
closed under tensor products remains open, see Question 5.5.

The paper is organized as follows: In Section 2 we introduce the notation needed
for the later parts. The Hirsch algebra structure of A = A′ ⊗A′′ is constructed in
Section 3. Example 3.1 shows how our twisting cochain E : B̄A⊗ B̄A → A looks
like in small degrees, and Example 3.2 illustrates a general recipe for computing it
explicitly. Section 4 contains the proof that E is well-defined and that the shuffle map
is multiplicative. We conclude by reformulating our result in an operadic language
and applying it to the Mayer–Vietoris double complex in Section 5.

Acknowledgements

The author thanks Tornike Kadeishvili for helpful discussions.

2. Notation

We work in a cohomological setting, so that differentials are of degree +1. We
denote the desuspension of a complex C by s−1C, and the canonical chain map
s−1C → C of degree 1 by σ. Anticipating the definition of the bar construction, we
also write σ−1(c) = [c] for c ∈ C. The differential on s−1C is given by d[c] = −[dc].

Let A be an augmented, unital associative dg algebra over R with multiplication
map µA : A⊗A → A and augmentation εA : A → R. Denote the augmentation ideal
of A by Ā, so that A = R⊕ Ā canonically.

Note that there are canonical isomorphisms of complexes

s−1A′ ⊗A′′ → s−1(A′ ⊗A′′), [a′]⊗ a′′ 7→ [a′ ⊗ a′′],

A′ ⊗ s−1A′′ → s−1(A′ ⊗A′′), a′ ⊗ [a′′] 7→ (−1)|a
′|[a′ ⊗ a′′]. (1)

Although we are mostly interested in the normalized bar construction B̄A of A, it
will be convenient to consider the unnormalized bar construction BA as well. This is
the tensor coalgebra of the desuspension of A (instead of Ā),

BA = T (s−1A) =
⊕

k>0

(s−1A)⊗k.

We write BkA = (s−1A)⊗k and for elements [a1| · · · |ak] ∈ BkA. The differential on
BA is the sum of the tensor product differential d⊗ and the differential

∂ =

k−1
∑

i=1

1⊗i−1 ⊗ µ̃⊗ 1⊗k−i−1 : BkA → Bk−1A.

Here µ̃ denotes the desuspension of µ,

µ̃ = σ−1µ(σ ⊗ σ) : s−1A⊗ s−1A → s−1A.
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We write 1 ∈ B0A for the counit of BA and α for the canonical twisting cochain

α : BA → B1A = s−1A
σ

−→ A.

Let M be a right dg-A-module and N a left dg-A-module with structure maps
µM : M ⊗A → M and µN : A⊗N → N , respectively. The two-sided bar construction
of the triple (M,A,N) is

B(M,A,N) = M ⊗BA⊗N

with differential dB(M,A,N) = dM⊗BA⊗N + ∂′, where

∂′ = (µM (1⊗ α)⊗ 1⊗ 1)(1⊗∆⊗ 1)− (1⊗ 1⊗ µN (α⊗ 1))(1⊗∆⊗ 1), (2)

and with augmentation

εB(M,A,N) : B(M,A,N) → M ⊗A N,

m[a1| . . . |ak]n 7→

{

m⊗ n if k = 0,

0 otherwise.

We write repeated (co)associative maps in the form

µ(k) : A⊗k → A,

∆(k) : T (s−1A) → T (s−1A)⊗k,

for instance, and we agree that µ(0) is the unit map ι : R → A.
We will also need the concatenation operator

∇ : BA⊗BA → BA, [a1| · · · |ak]⊗ [b1| · · · |bl] 7→ [a1| · · · |ak|b1| · · · |bl],

which satisfies

d(∇) = ∇(3)(1⊗ µ̃⊗ 1)(1⊗ α⊗ α⊗ 1)(∆⊗∆) (3)

and

(α⊗ 1)∆∇ = (α⊗∇)(∆⊗ 1) + εBA ⊗ (α⊗ 1)∆

= (1⊗∇)
(

(α⊗ 1)∆⊗ 1
)

+ εBA ⊗ (α⊗ 1)∆, (4a)

(1⊗ α)∆∇ = (∇⊗ α)(1⊗∆) + (1⊗ α)∆⊗ εBA

= (∇⊗ 1)
(

1⊗ (1⊗ α)∆
)

+ (1⊗ α)∆⊗ εBA. (4b)

On both the unnormalized and the normalized bar construction, we will only con-
sider multiplications which are coalgebra maps and have the counit 1 as a (two-sided)
unit. We do not require the multiplication to be associative.

Any such multiplication f : BA⊗BA → BA is uniquely determined by its twisting
cochain E = αf , which satisfies

d(E) = E ∪ E,

E(1,−) = E(−,1) = α.

We will only consider twisting cochains E satisfying both conditions.
Any multiplication on the normalized bar construction B̄A ⊂ BA can be extended

to BA in a canonical way: Define E([1],1) = E(1, [1]) = 1 and, for a = [a1| · · · |ak],
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b = [b1| · · · |bl] ∈ BA, set E(a, b) = 0 if k + l > 1 and some ai = 1 or some bj = 1. Then
E(a, b) ∈ Ā whenever k + l > 1. We call a twisting cochain having these additional
properties normalized. Any normalized twisting cochain E : BA⊗BA → A comes
from a unique multiplication on B̄A.

For a map E : BA⊗BA → A and a ∈ BA we define

Ea : BA → A, b 7→ E(a, b).

In this notation, the properties of a multiplication on BA become

d(Ea) = −Eda +
k

∑

i=0

(−1)|[a1|···|ai]|µ
(

E[a1|···|ai] ⊗ E[ai+1|···|ak]

)

∆, (5a)

E1(b) = α(b), (5b)

Ea(1) = α(a), (5c)

for a = [a1| · · · |ak] and b = [b1| · · · |bl] ∈ BA. If E is normalized, then one additionally
has

Ea(b) = 0 if k + l > 1 and some ai = 1 or some bj = 1, (6a)

ε(Ea(b)) = 0 if k + l > 1. (6b)

If E is of level 3, then condition (5a) is equivalent to the two identities

d(E[a1]) = −Ed[a1] + µ
(

α⊗ E[a1] + (−1)|a1|−1E[a1] ⊗ α
)

∆, (7a)

E[a1a2] = (−1)|a1|−1µ(E[a1] ⊗ E[a2])∆. (7b)

3. Construction of the twisting cochain

Let A′ and A′′ be two level 3 Hirsch algebras with twisting cochains E′ and E′′,
respectively. Set A = A′ ⊗A′′. We are going to inductively define maps Ga : BA →
B(A,A,A) of degree |a|+ 1 for a ∈ BA and then set Ea = εB(A,A,A)Ga. In Section 4
we will show that this defines a twisting cochain E : BA⊗BA → A, hence a multi-
plication in BA. Moreover, if both E and E′′ are normalized, then so is E.

For the construction as well as for the proof, it is convenient to identify B(A,A,A)
with A⊗BA⊗A. This is an isomorphism of graded R-modules; the difference be-
tween the two differentials is given by (2). We write a = [a1| · · · |ak] ∈ BA with ai =
a′i ⊗ a′′i .

For k = 0 we set E1 = α as required by (5b). We define for k = 1

G[a1] =
(

(E′
[a′

1]
⊗ µA′′)⊗ 1⊗ (µA′ ⊗ E′′

[a′′
1 ]
)
)

∆(3)

and for k > 1

Ga = M(E′
[a′

1]
, E′′

[a′′
1 ]
, G[a2|···|ak]).

Here we have used the abbreviation

M(Ẽ′, Ẽ′′, G̃) = (1⊗ 1⊗ µA)
(

(Ẽ′ ⊗ µA′′)⊗ 1⊗ (µA′ ⊗ Ẽ′′)⊗ 1
)

(1⊗∆∇(3) ⊗ 1)(1⊗ 1⊗ (σ−1 ⊗ 1⊗ 1)G̃)∆(3) (8)
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BA

∆(3)

µA′ ⊗ E′′
[a′′

1 ]

ABA

E′
[a′

1]
⊗ µA′′

A

Figure 1: “Electronic diagram” for G[a1]

for maps Ẽ′ : BA′ → A′, Ẽ′′ : BA′′ → A′′ and G̃ : BA → A⊗BA⊗A. Moreover, by
Ẽ′ ⊗ µA′′ : BA → A we mean the map

[b1| · · · |bk] 7→
(

∏

i>j

(−1)(|b
′
i|−1)|b′′j |

)

Ẽ′([b′1| · · · |b
′
k])⊗ µA′′(b′′1 ⊗ · · · ⊗ b′′k),

and similarly by µA′ ⊗ Ẽ′′ : BA → A

[b1| · · · |bk] 7→
(

∏

i>j

(−1)|b
′
i|(|b

′′
j |−1)

)

µA′(b′1 ⊗ · · · ⊗ b′k)⊗ Ẽ′′([b′′1 | · · · |b
′′
k ]).

By identities (1), the differentials of these maps are

d(Ẽ′ ⊗ µA′′) = d(Ẽ′)⊗ µA′′ , d(µA′ ⊗ Ẽ′′) = µA′ ⊗ d(Ẽ′′).

Figures 1 and 2 visualize the definitions of G[a1] and of M(Ẽ′, Ẽ′′, G̃).

Example 3.1. The following list shows E(a, b) for a ∈ BkA and b ∈ BlA with k 6 2
and l 6 2. We are ignoring signs here.

E([a1], [b1]) = a′1b
′
1 ⊗ E′′([a′′1 ], [b

′′
1 ]) + E′([a′1], [b

′
1])⊗ b′′1a

′′
1 , (9)

E([a1], [b1|b2]) = a′1b
′
1b

′
2 ⊗ E′′([a′′1 ], [b

′′
1 |b

′′
2 ])

+ E′([a′1], [b
′
1])b

′
2 ⊗ b′′1E

′′([a′′1 ], [b
′′
2 ])

+ E′([a′1], [b
′
1|b

′
2])⊗ b′′1b

′′
2a

′′
2 , (10)

E([a1|a2], [b1]) = a′1E
′([a′2], [b

′
1])⊗ E′′([a′′1 ], [b

′′
1 ])a

′′
2 , (11)
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BA

∆(3)

σ−1

∇(3)

∆

µA

G̃

µA′ ⊗ Ẽ′′

A

Ẽ′ ⊗ µA′′

A BA

Figure 2: “Electronic diagram” for M(Ẽ′, Ẽ′′, G̃)
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E([a1|a2], [b1|b2]) = a′1E
′([a′2], [b

′
1])b

′
2 ⊗ E′′([a′′1 ], [b

′′
1 ])E

′′([a′′2 ], [b
′′
2 ])

+ a′1E
′([a′2], [b

′
1])b

′
2 ⊗ E′′([a′′1 ], [b

′′
1 |b

′′
2 ])a

′′
2

+ a′1E
′([a′2], [b

′
1|b

′
2])⊗ E′′([a′′1 ], [b

′′
1b

′′
2 ])a

′′
2

+ a′1b
′
1E

′([a′2], [b
′
2])⊗ E′′([a′′1 ], [b

′′
1 |b

′′
2 ])a

′′
2

+ E′([a′1], [b
′
1])E

′([a′2], [b
′
2])⊗ b′′1E

′′([a′′1 ], [b
′′
2 ])a

′′
2 . (12)

Example 3.2. We give a general recipe for computing E(a, b) as in Example 3.1. To
show all features of the algorithm, we illustrate it with a =

[

a′1 ⊗ a′′1
∣

∣ a′2 ⊗ a′′2
]

and

b =
[

b′1 ⊗ b′′1
∣

∣ · · ·
∣

∣ b′5 ⊗ b′′5
]

. We are going to explain how to obtain the terms c′ ⊗ c′′ ∈
A′ ⊗A′′ appearing in E(a, b), again ignoring signs for simplicity.

We start by looking at the component c′ ∈ A′. Take [b′1| · · · |b
′
l] and cut it into

2k pieces such that the pieces at positions 3, 5, . . . , 2k − 1 have length at least 1. In
our example, one such decomposition is

[b′1]⊗ [b′2|b
′
3]⊗ [b′4|b

′
5]⊗ 1.

(The last piece has length 0.) Now apply E′
[a′

i
] to the (2i− 1)-th group and then

multiply everything together:

E′
[a′

1]
([b′1]) · b

′
2b

′
3 · E

′
[a′

2]
([b′4|b

′
5]) · 1 = E′([a′1], [b

′
1])b

′
2b

′
3E

′([a′2], [b
′
4|b

′
5]) = c′.

These are the possible factors c′ ∈ A′ of the terms c′ ⊗ c′′ appearing in E(a, b).

For each such factor, we now describe which factors c′′ ∈ A′′ appear: Switch from
primed to doubly primed variables and multiply the components within the odd-
numbered groups together to obtain

[

b′′1
∣

∣ b′′2
∣

∣ b′′3
∣

∣ b′′4b
′′
5

]

.

Take the first factor of the tensor product (in the example, [b′′1 ]) apart. Cut the rest
[

b′′2
∣

∣ b′′3
∣

∣ b′′4b
′′
5

]

into k pieces. Only cuts satisfying the following condition are allowed: If some b′j
appears as argument to E′

[a′
i
], then the corresponding element b′′j can only appear

in the (i− 1)-th piece or earlier. In our example, this forces the second piece to be
empty, hence the first piece is everything. Now plug the i-th piece into E′′

[a′′
i
] and

multiply everything together, including the first factor we have put apart earlier:

b′′1 · E′′
[a′′

1 ]
([b′′2 |b

′′
3 |b

′′
4b

′′
5 ]) · E

′′
[a′′

1 ]
(1) = b′′1E

′′([a′′1 ], [b
′′
2 |b

′′
3 |b

′′
4b

′′
5 ])a

′′
1 = c′′.

Summing up,

E′([a′1], [b
′
1])b

′
2b

′
3E

′([a′2], [b
′
4|b

′
5])⊗ b′′1E

′′([a′′1 ], [b
′′
2 |b

′′
3 |b

′′
4b

′′
5 ])a

′′
1

is one term appearing in E(a, b). (There are 70 terms altogether.)

The reason for the length condition imposed in the first step is the following: The
recursive definition of Ga together with the assignment Ea = εGa force everything
that “runs through” E′

[a′
i
] ⊗ µ, i > 1, to “go through” some µ⊗ E′′

[a′′
j
] with j < i as

well. Because (E′
[a′

i
] ⊗ µ)(1) = a′i ⊗ 1 and E′′

[a′′
j
](1) = 0, the length of the argument

of E′
[a′

i
] must therefore be at least 1 if i > 1.
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Remark 3.3. The multiplication in B̄(A′ ⊗A′′) is not associative in general, not even
if it is so in B̄A′ and B̄A′′ (which means that A′ and A′′ are homotopy Gerstenhaber
algebras). In the latter case one has

(

[a] · [b]
)

· [c] + [a] ·
(

[b] · [c]
)

= d(h)([a], [b], [c])

for a = a′ ⊗ a′′, b = b′ ⊗ b′′, c = c′ ⊗ c′′ ∈ A′ ⊗A′′ and

h([a], [b], [c]) =
[

a′E([b′], [c′])⊗ E([a′′], [c′′|b′′])
]

+
[

E([a′], [b′|c′])⊗ E([b′′], [c′′]) a′′
]

.

(We are again ignoring signs here.)

Question 3.4. Is B̄(A′ ⊗A′′) an A∞-algebra if A′ and A′′ are homotopy Gersten-
haber algebras?

4. Proof of the main result

In Section 3 we constructed a map Ga : BA → B(A,A,A) for each a ∈ BA. They
can be assembled into a map G : BA⊗BA → B(A,A,A). We now study its differ-
ential.

Denote the left and right action of A on B(A,A,A) by µL and µR, respectively,
and let β be the twisting cochain

β = εBA ⊗ αBA : BA⊗BA → R⊗A = A.

Proposition 4.1. The differential of G is

d(G) = µL(β ⊗G)∆BA⊗BA + µR(G⊗ (E − β))∆BA⊗BA.

Proof. We again identify B(A,A,A) with A⊗BA⊗A. Taking equation (2) into
account, we have to show

d(Ga) = −Gda

+ (µ⊗ 1⊗ 1)(α⊗Ga)∆BA

+
k

∑

i=1

(−1)|[a1|···|ai]|(1⊗ 1⊗ µ)(G[a1|···|ai] ⊗ E[ai+1|···|ak])∆BA

− (µ⊗ 1⊗ 1)(1⊗ α⊗ 1⊗ 1)(1⊗∆⊗ 1)Ga

+ (1⊗ 1⊗ µ)(1⊗ 1⊗ α⊗ 1)(1⊗∆⊗ 1)Ga (13)

for all a = [a1| · · · |ak] ∈ BA We proceed by induction on k. Write Ẽ′ = E′
[a′

1]
and

Ẽ′′ = E′′
[a′′

1 ]
. Recall that we have

∣

∣E′
[a′

1]

∣

∣ = |a′1|,
∣

∣E′′
[a′′

1 ]

∣

∣ = |a′′1 |,
∣

∣Ga

∣

∣ = |a|+ 1.

For k = 1, i.e., a = [a′1 ⊗ a′′1 ] ∈ s−1A, we have

d(Ga) =
(

(d(E′
[a′

1]
)⊗ µ)⊗ 1⊗ (µ⊗ E′′

[a′′
1 ]
)
)

∆(3)

+ (−1)|a
′
1|
(

(E′
[a′

1]
⊗ µ)⊗ 1⊗ (µ⊗ d(E′′

[a′′
1 ]
))
)

∆(3) (14)
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using formula (7a)

= −
(

(E′
d[a′

1]
⊗ µ)⊗ 1⊗ (µ⊗ E′′

[a′′
1 ]
)
)

∆(3)

− (−1)|a
′
1|
(

(E′
[a′

1]
⊗ µ)⊗ 1⊗ (µ⊗ E′′

d[a′′
1 ]
)
)

∆(3)

+ (µ⊗ 1⊗ 1)
(

α⊗ (E′
[a′

1]
⊗ µ)⊗ 1⊗ (µ⊗ E′′

[a′′
1 ]
)
)

∆(4)

+ (−1)|a
′
1|−1(µ⊗ 1⊗ 1)

(

(E′
[a′

1]
⊗ µ)⊗ α⊗ 1⊗ (µ⊗ E′′

[a′′
1 ]
)
)

∆(4)

+ (−1)|a
′
1|(1⊗ 1⊗ µ)

(

(E′
[a′

1]
⊗ µ)⊗ 1⊗ α⊗ (µ⊗ E′′

[a′′
1 ]
)
)

∆(4)

+ (−1)|a
′
1|+|a′′

1 |−1(1⊗ 1⊗ µ)
(

(E′
[a′

1]
⊗ µ)⊗ 1⊗ (µ⊗ E′′

[a′′
1 ]
)⊗ α

)

∆(4) (15)

= −Gda

+ (µ⊗ 1⊗ 1)(α⊗G[a1]
)∆

+ (−1)|[a1]|(1⊗ 1⊗ µ)(G[a1] ⊗ E1)∆

− (µ⊗ 1⊗ 1)(1⊗ α⊗ 1⊗ 1)(1⊗∆⊗ 1)Ga

+ (1⊗ 1⊗ µ)(1⊗ 1⊗ α⊗ 1)(1⊗∆⊗ 1)Ga. (16)

For k > 1, we write ã = [a2| · · · |ak] and G̃ = Gã. Then, using definition (8),

d(Ga) = d
(

M(Ẽ′, Ẽ′′, G̃)
)

(17)

= M(d(Ẽ′), Ẽ′′, G̃) + (−1)|a
′
1|M(Ẽ′, d(Ẽ′′), G̃)

+ (−1)|a
′
1|+|a′′

1 |(1⊗ 1⊗ µA)
(

(Ẽ′ ⊗ µA′′)⊗ 1⊗ (µA′ ⊗ Ẽ′′)⊗ 1
)

(1⊗∆d(∇(3))⊗ 1)(1⊗ 1⊗ σ−1 ⊗ 1⊗ 1)(1⊗ 1⊗ G̃)∆(3)

+ (−1)|a
′
1|+|a′′

1 |−1M(Ẽ′, Ẽ′′, d(G̃)) (18)

using (3), µ̃(1⊗ σ−1) = σ−1µ(σ ⊗ 1) and µ̃(σ−1 ⊗ 1) = −σ−1µ(1⊗ σ)

= M(d(Ẽ′), Ẽ′′, G̃) + (−1)|a
′
1|M(Ẽ′, d(Ẽ′′), G̃)

+ (−1)|a1|M
(

Ẽ′, Ẽ′′, (µ⊗ 1⊗ 1)(α⊗ G̃)∆
)

+ (−1)|a1|−1M
(

Ẽ′, Ẽ′′, (µ⊗ 1⊗ 1)(1⊗ α⊗ 1⊗ 1)(1⊗∆⊗ 1)G̃
)

+ (−1)|a1|−1M(Ẽ′, Ẽ′′, d(G̃)) ; (19)

Gd⊗a = M(E′
d[a′

1]
, Ẽ′′, G̃) + (−1)|a

′
1|M(Ẽ′, E′′

d[a′′
1 ]
, G̃)

+ (−1)|a1|−1M(Ẽ′, Ẽ′′, Gd⊗ã) ; (20)

k
∑

i=2

M(Ẽ′, Ẽ′′, (1⊗ 1⊗ µ)(G[a2|···|ai] ⊗ E[ai+1|···|ak])∆)

=
k

∑

i=2

(1⊗ 1⊗ µ)(G[a1|···|ai] ⊗ E[ai|···|ak])∆ ; (21)
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M(Ẽ′, Ẽ′′, G∂ã) =
k−1
∑

i=2

(−1)|[a2|···|ai]|G[a1|···|aiai+1|···|ak] ; (22)

M(µ(α⊗ Ẽ′)∆, Ẽ′′, G̃) = (µ⊗ 1⊗ 1)(α⊗G)∆ ; (23)

M(Ẽ′, µ(α⊗ Ẽ′′)∆, G̃) = (−1)|a
′
1|(1⊗ 1⊗ µ)(1⊗ 1⊗ α⊗ 1)(1⊗∆⊗ 1)G ; (24)

and

M(µ(Ẽ′ ⊗ α)∆, Ẽ′′, G̃)

= (−1)|a
′′
1 |(µ⊗ 1⊗ µ)

(

(Ẽ′ ⊗ µ)⊗ 1⊗ 1⊗ (µ⊗ Ẽ′′)⊗ 1
)

(1⊗ 1⊗∆∇(3) ⊗ 1)(1⊗ (α⊗ 1)∆⊗ (σ−1 ⊗ 1⊗ 1)G̃)∆(3) (25)

using (4a) and the fact that G̃ maps to A⊗BA⊗A

= (−1)|a
′′
1 |(µ⊗ 1⊗ 1)(1⊗ α⊗ 1⊗ 1)(1⊗∆⊗ 1)M(Ẽ′, Ẽ′′, G̃)

+ (−1)|a
′′
1 |(1⊗ 1⊗ µ)

(

1⊗ 1⊗ (µ⊗ Ẽ′′)⊗ 1
)

(µ⊗∆⊗ 1)
(

(Ẽ′ ⊗ µ)⊗ G̃
)

∆. (26)

We consider the case k = 2 first.

= (−1)|a
′′
1 |(µ⊗ 1⊗ 1)(1⊗ α⊗ 1⊗ 1)(1⊗∆⊗ 1)M(Ẽ′, Ẽ′′, G̃)

+ (−1)|a
′′
1 |(1⊗ 1⊗ µ)

(

1⊗ 1⊗ (µ⊗ Ẽ′′)⊗ 1
)

(µ⊗∆⊗ 1)
(

(Ẽ′ ⊗ µ)⊗G[a2]

)

∆ (27)

using (7b) in the form µ
(

(E′
[a′

1]
⊗ µ)⊗ (E′

[a′
2]
⊗ µ)

)

∆ = (−1)|a
′
1|−1E′

[a′
1a

′
2]
⊗ µ

= (−1)|a
′′
1 |(µ⊗ 1⊗ 1)(1⊗ α⊗ 1⊗ 1)(1⊗∆⊗ 1)G

+ (−1)|a1|+|a′
1||a

′′
1 |−1(1⊗ 1⊗ µ)

(

1⊗ 1⊗ (µ⊗ E′′
[a′′

1 ]
)⊗ 1

)

(1⊗∆⊗ 1)G[a′
1a

′
2⊗a′′

2 ]
∆ (28)

using (7b) in the form µ
(

(µ⊗ E′′
[a′′

1 ]
)⊗ (µ⊗ E′′

[a′′
2 ]
)
)

∆ = (−1)|a
′′
1 |−1µ⊗ E′′

[a′′
1 a

′′
2 ]

= (−1)|a
′′
1 |(µ⊗ 1⊗ 1)(1⊗ α⊗ 1⊗ 1)(1⊗∆⊗ 1)G

+ (−1)|a
′
1|+|a′′

1 ||a
′
2|G[a′

1a
′
2⊗a′′

1 a
′′
2 ]

(29)

using a1a2 = (−1)|a
′′
1 ||a

′
2|a′1a

′
2 ⊗ a′′1a

′′
2

= (−1)|a
′′
1 |(µ⊗ 1⊗ 1)(1⊗ α⊗ 1⊗ 1)(1⊗∆⊗ 1)G

+ (−1)|a
′
1|G[a1a2]. (30)
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Continuing at (26) for k > 2 and using the same identities as before,

= (−1)|a
′′
1 |(µ⊗ 1⊗ 1)(1⊗ α⊗ 1⊗ 1)(1⊗∆⊗ 1)G

+ (−1)|a1|+|a′
1||a

′′
1 |−1(1⊗ 1⊗ µ)

(

1⊗ 1⊗ (µ⊗ E′′
[a′′

1 ]
)⊗ 1

)

(1⊗∆⊗ 1)M(E′
[a′

1a
′
2]
, E′′

[a′′
2 ]
, G[a3|···|ak]) (31)

= (−1)|a
′′
1 |(µ⊗ 1⊗ 1)(1⊗ α⊗ 1⊗ 1)(1⊗∆⊗ 1)G

+ (−1)|a
′
1|+|a′′

1 ||a
′
2|M(E′

[a′
1a

′
2]
, E′′

[a′′
1 a

′′
2 ]
, G[a3|···|ak]) (32)

= (−1)|a
′′
1 |(µ⊗ 1⊗ 1)(1⊗ α⊗ 1⊗ 1)(1⊗∆⊗ 1)G

+ (−1)|a
′
1|G[a1a2|a3|···|ak]. (33)

So the result is the same for all k > 2.

M(Ẽ′, µ(Ẽ′′ ⊗ α)∆, G̃)

= (1⊗ 1⊗ µ(µ⊗ 1))
(

(Ẽ′ ⊗ µ)⊗ 1⊗ (µ⊗ Ẽ′′)⊗ α⊗ 1
)

(1⊗∆(3)∇(3) ⊗ 1)(1⊗ 1⊗ σ−1 ⊗ 1⊗ 1)(1⊗ 1⊗ G̃)∆(3) (34)

using (4b)

= −M
(

Ẽ′, Ẽ′′, (1⊗ 1⊗ µ)(1⊗ 1⊗ α⊗ 1)(1⊗∆⊗ 1)G̃
)

+ (1⊗ 1⊗ µ(1⊗ µ))
(

(Ẽ′ ⊗ µ)⊗ 1⊗ (µ⊗ Ẽ′′)⊗ 1⊗ 1
)

(1⊗∆⊗ 1⊗ ε⊗ 1)(1⊗ 1⊗ G̃)∆(3) (35)

= −M
(

Ẽ′, Ẽ′′, (1⊗ 1⊗ µ)(1⊗ 1⊗ α⊗ 1)(1⊗∆⊗ 1)G̃
)

+ (1⊗ 1⊗ µ)(G[a1] ⊗ Eã)∆. (36)

Putting all terms together finishes the proof.

Proposition 4.2. The map E : BA⊗BA → A is a twisting cochain. Moreover, if
E′ and E′′ are normalized, then so is E.

Proof. To verify (5a), we compute:

d(Ea) = ε d(Ga)

= −εGda + µ(α⊗ Ea)∆

+

k
∑

i=1

(−1)|[a1|···|ai]|µ(E[a1|···|ai] ⊗ E[ai+1|···|ak])∆

= −Eda +

k
∑

i=0

(−1)|[a1|···|ai]|µ
(

E[a1|···|ai] ⊗ E[ai+1|···|ak]

)

∆.

Condition (5b) holds by definition. Condition (5c) holds for k = 1 because G[a1](1) =
(a′1 ⊗ 1)⊗ 1⊗ (1⊗ a′′1). For k > 1, one similarly has Ga(1) ∈ (A′ ⊗ 1)⊗BA⊗A,
hence ε(Ga(1)) = 0 by condition (5c) for E′′. (This is related to the length condition
in Example 3.2.)

Assume now that E′ and E′′ are normalized. For the proof of (6a) one inductively
shows Ga(b) ∈

⊕

m>1 A⊗BmA⊗A if some ai = 1 or some bj = 1. For (6b), notice
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that the image of E′
[a′

1]
⊗ µ lies in Ā′ ⊗A′′ ⊂ Ā if a′1 ∈ Ā′, and analogously for µ⊗

E′′
[a′′

1 ]
. Hence, ε(Ga(b)) ∈ Ā if k > 1 and a1 ∈ Ā.

We now turn to the shuffle maps

∇ : BA′ ⊗BA′′ → B(A′ ⊗A′′),

∇ : B̄A′ ⊗ B̄A′′ → B̄(A′ ⊗A′′), (37)

cf. [8, Sec. 7.1].

Proposition 4.3. The shuffle maps (37) are multiplicative.

Proof. It suffices to consider the unnormalized bar construction. We have to show
that the diagram

(BA′ ⊗BA′′)⊗ (BA′ ⊗BA′′) B(A′ ⊗A′′)⊗B(A′ ⊗A′′)

(BA′ ⊗BA′)⊗ (BA′′ ⊗BA′′)

BA′ ⊗BA′′ B(A′ ⊗A′′)

∇⊗∇

µ⊗ µ

µ

∇

commutes. Because all maps are morphisms of coalgebras, it is enough to verify that
the two associated twisting cochains coincide.

Take two elements a = a′ ⊗ a′′ ∈ Bp′A′ ⊗Bp′′A′′and b = b′ ⊗ b′′ ∈ Bq′A
′ ⊗Bq′′A

′′.
The twisting cochain of the composition via BA′ ⊗BA′′ vanishes unless p′ = q′ = 0 or
p′′ = q′′ = 0. Consider now the twisting cochain of the other composition. It follows
from properties (5b) and (5c) and the inductive definition of Ga that for p′ > 0
this twisting cochain vanishes if p′′ > 0 or q′′ > 0. The case p′′ > 0 is analogous. It
is therefore enough to check the two cases a = a′ ⊗ 1, b = b′ ⊗ 1 and a = 1⊗ a′′,
b = 1⊗ b′′. That both twisting cochains agree follows again inductively from the
definition of Ga.

5. Operadic reformulation

It is useful to translate Theorem 1.1 into the language of operads. Let Ass be the
operad of associative augmented unital R-algebras. We write µ ∈ Ass(2) for the mul-
tiplication, ε ∈ Ass(1) for the augmentation and ι ∈ Ass(0) for the unit. An operad
under Ass is a morphism of operads Ass → P.

We define the Hirsch operad H to be the dg operad under Ass generated by oper-
ations Ekl ∈ H(k + l)1−k−l subject to the relations (5) and (6) (modulo the desus-
pension) plus the generators and relations for Ass. A Hirsch algebra then is the same
as an algebra over H.

Let H3 be the dg operad under Ass describing level 3 Hirsch algebras. It is the
quotient of H by the relations Ekl = 0 for k > 1. Equivalently, it is generated by
operations E1k ∈ H3(1 + k)−k and E01 subject to the relations (5) and (6) with (5a)
replaced by (7), and of course again plus the generators and relations for Ass.
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Theorem 5.1. The construction in Section 3 defines a morphism f : H → H3 ⊗H3

of dg operads under Ass.

Proof. Let P be the free dg operad under Ass generated by the operations Ekl. It is
clear that our construction defines a morphism of dg operads under Ass

P → H3 ⊗H3.

Moreover, we know that the relations for H hold whenever H3 ⊗H3 acts on a tensor
product of two H3-algebras A′ and A′′. More precisely, we have proven that the
composed map

P → H3 ⊗H3 → End(A′)⊗ End(A′′)

factors through H. Because A′ and A′′ can be free H3-algebras (cf. [7, Sec. I.1.4]),
this implies that the necessary relations hold already in H3 ⊗H3.

Example 5.2. The homotopy Gerstenhaber algebra structure on the cochain com-
plex C∗(X) of a simplicial set X is constructed by dualizing a “homotopy Gersten-
haber coalgebra” structure on the chain complex C(X). Therefore, for simplicial sets
X and Y there is a natural action of H3 ⊗H3 on the complex dual to C(X)⊗ C(Y ),
and the canonical map

C∗(X)⊗ C∗(Y ) →
(

C(X)⊗ C(Y )
)∗

is a morphism of H3 ⊗H3-algebras, hence of H-algebras. Note however that the dual
of the shuffle map

C∗(X × Y )
∇∗

−→
(

C(X)⊗ C(Y )
)∗

is not a morphism of Hirsch algebras. (∇∗ already fails to commute with the opera-
tion (9).)

An analogous remark applies to Hochschild cochains.

Example 5.3. Let A be a cosemisimplicial H3-algebra. By this we mean a collec-
tion Aq, q > 0, of H3-algebras together with morphisms di : A

q → Aq+1, 0 6 i 6

q + 1, satisfying the usual coface relations, cf. [8, Def. 8.40]. Then the associated
total complex TotA∗ is an algebra over H3 ⊗H3 in the following way: Let E ⊗ E′ ∈
H3(m)n ⊗H3(m)n′ , and ai ∈ Aqi for 1 6 i 6 m. Set q =

∑

i qi − n′. Via the coface
operators, E′ determines morphisms φi : A

qi → Aq in the same way as it acts on the
unnormalized cochains of a simplicial set. We can therefore set

(E ⊗ E′)(a1, . . . , am) = E
(

φ1(a1), . . . , φm(am)
)

∈ Aq.

(If q < qi for some i, we define the result to be 0.)

An important special case of this is the Mayer–Vietoris double complex

Cpq(U) =
∏

i0<···<iq

Cp(Ui0 ∩ · · · ∩ Uiq ;R)

associated to an ordered cover U = (Ui)i∈I of a simplicial set, cf. [2, §§8, 14] for
instance. In this case Theorem 5.1 says that TotC∗∗(U) has the structure of a Hirsch
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algebra which extends the familiar dg algebra structure. Note also that the canonical
inclusion map

C∗(X;R) → TotC∗∗(U), α 7→
(

α|Ui

)

i∈I
∈ C∗0(U ;R)

is a morphism of Hirsch algebras because for n′ > 0 the maps φ1, . . . , φm described
above vanish on the image of the inclusion map, and for n′ = 0 they must all be the
identity map.

Remark 5.4. Assume R = Z2 and let τ = (12) ∈ S2. Note that µ is basis of H3(2)0
over R[S2], and E11 is one for H3(2)−1. A direct computation shows that up to
applying τ and transposing the factors, h = µ⊗ E11 + E11 ⊗ τµ ∈ (H3 ⊗H3)(2)−1 is
the only solution to d(h) = µ⊗ µ+ τµ⊗ τµ. Hence, our definition (9) of f(E11) is
essentially the only possible choice. Together with d(f(E21)) 6= 0, this also proves that
one cannot hope for a morphism H3 → H3 ⊗H3 of dg operads under Ass because
condition (7b) never holds.

But of course one may ask:

Question 5.5. Is H a dg Hopf operad under Ass? In other words, is the tensor
product of two Hirsch algebras again a Hirsch algebra?
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